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1

Introduction

The fundamental characteristic of wireless communication, that is, its
ability to connect users in motion, represents an attractive feature for
users, but at the same time a strong challenge to systems designers.
The appeal of wireless systems is documented by their commercial suc-
cess, with projections indicating that in the near future the number of
their subscribers will exceed that of wireline subscribers. Concurrently,
users expect a growing variety of sophisticated services along with in-
creasingly higher quality, which contrasts with the difficulties involved
with transmission on a mobile radio channel. On one hand, multimedia
services require high data rates, while mobility requires networking
with seamless connectivity. On the other hand, bandwidth and power
are limited, interferences from other users impair transmission quality,
mobility causes rapid variations of the physical channel, portability de-
mands a long battery life, etc. All this makes it very difficult to provide
high-quality mobile services.

Up until recently, it was accepted that the degrees of freedom to
be allocated to system design could only obtained from time or band-
width. Of late, it was discovered that space, obtained by increasing the
number of transmit and receive antennas, can also effectively generate

1
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2 Introduction

degrees of freedom, and hence expand the range of choices made avail-
able to the design. The use of many antennas at the receiver side is
not a new proposition, but the option of simultaneously transmitting
information from multiple antennas was originally left aside, because
of the spatial interference that degrades the received signal. The use
of multiple transmit antennas was initially examined in the context
of “beam-forming” techniques [20, 81]. More recently, the discovery
of the stunningly high channel capacities that multiple antennas can
yield [39,40,106], of receiver architectures that make it possible to mit-
igate spatial interference with limited complexity [39], and of “space–
time” codes that can be used to approach capacity [104], made it clear
that the introduction of multiple antennas in the wireless link, and
consequently of signal processing in the space and time domains, is
not only a useful addition to existing systems, but may be needed to
provide the necessary transmission quality.

This paper focuses on the main aspects of single-user multiple-
antenna theory, with the goal of presenting a comprehensive, yet com-
pact, survey, emphasizing its mathematical aspects. After describing
channel models, we compute the capacities they achieve, we briefly
overview “space–time” codes, and we describe how suboptimum archi-
tectures can be employed to simplify the receiver. Since each one of the
several topics presented here might be expanded to a full article length,
some of them could only receive here a cursory treatment, or no treat-
ment at all. We regret in particular that no discussion was possible of
the bandwidth-power tradeoff in the wideband regime characterized by
low spectral efficiency and low energy per bit [112], of multiuser chan-
nels [47], and of questions regarding applications of multiple antennas
to wireless LANs and to cellular systems ( [45] and references therein).
The effects of channel state information known at the transmitter, or
not known at all, would also warrant a more thorough discussion.
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2

Preliminaries

We consider a radio transmission whereby t antennas simultaneously
transmit one signal each, and r antennas receive these signals (Fig. 2.1).
Assume two-dimensional elementary constellations throughout, and the
additive presence of Gaussian noise only.1 The channel input–output
relationship is

y = Hx + z, (2.1)

where x ∈ C
t, y ∈ C

r, H ∈ C
r×t (i.e., H is an r × t complex matrix

whose entries hij describe the fading gains from the jth transmit to the
ith receive antenna), and z is zero-mean circularly-symmetric complex
Gaussian noise. The component xi, i = 1, . . . , t, of vector x is the
signal transmitted from antenna i; the component yj, j = 1, . . . , r, of
vector y is the signal received by antenna j. We also assume that the
noise components affecting the different receivers are independent with
variance N0, i.e.,

E[zz†] = N0Ir, (2.2)

where Ir is the r × r identity matrix, and the signal energy is con-
strained by E[x†x] = tEs where Es denotes the energy per symbol.

1 The presence of external interferences is considered, among others, in [16, 17, 77].

3
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4 Preliminaries

H

TX RX

Fig. 2.1 Transmission and reception with multiple antennas. The gains of each propagation
path are described by the r × t matrix H.

The additional assumption that E[|hij |2] = 1 for all i, j 2 yields the
average signal-to-noise ratio (SNR) at the receiver

ρ =
tEsRs

N0W
, (2.3)

where Rs denotes the symbol rate and W the signal bandwidth. In the
following we further assume that Rs = W (Nyquist signalling rate), so
that the relation

ρ =
tEs

N0
(2.4)

holds. Then, rather than assuming a power or energy constraint, we
will refer to an SNR constraint, i.e.,

E[x†x] ≤ ρN0. (2.5)

Finally, we define the energy per bit Eb � tEs/µb, where µb denotes
the number of information bits transmitted per symbol interval.

Explicitly, we have from (2.1):

yj =
t∑

i=1

hijxi + zj , j = 1, . . . , r (2.6)

2 The assumption of equal second-order moments for the channel coefficients facilitates
the analysis, but is somewhat restrictive, as it does not allow consideration of antennas
differing in their radiation patterns, etc. See, e.g., [34, 78].
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Fig. 2.2 Spatial multiplexing and diversity obtained by transmission and reception with
multiple antennas.

which shows how every component of the received signal is a linear
combination of the signals emitted by each transmit antenna. We say
that y is affected by spatial interference from the signals transmitted by
the various antennas. This interference has to be removed, or controlled
in some way, in order to sort out the multiple transmitted signals. We
shall see in the following how this can be done: for the moment we may
just observe that the tools for the analysis of multiple-antenna trans-
mission have much in common with those used in the study of other
disciplines centering on interference control, like digital equalization of
linear dispersive channels [5] (where the received signals are affected
by intersymbol interference) or multiuser detection [111] (where the
received signals are affected by multiple-access interference).

The upsides of using multiple antennas can be summarized by defin-
ing two types of gain. As we shall see in the following, in the presence
of fading a multiplicity of transmit antennas creates a set of parallel
channels, that can be used to potentially increase the data rate up to
a factor of min{t, r} (with respect to single-antenna transmission) and
hence generate a rate gain. This corresponds to the spatial multiplexing
depicted in Fig. 2.2. Here the serial-to-parallel converter S/P distributes
the stream of data across the transmit antennas; after reception, the

Full text available at: http://dx.doi.org/10.1561/0100000002



6 Preliminaries

(a) (b)

Fig. 2.3 Spatial multiplexing through transmission and reception with multiple antennas.

original stream is reconstituted by the parallel-to-serial converter P/S3.
The other gain is due to the combination of received signals that are
independently faded replicas of a single transmitted signal, which al-
lows a more reliable reception. We call diversity gain the number of
independent paths traversed by each signal, which has a maximum
value rt. We hasten to observe here that these two gains are not in-
dependent, but there is a fundamental tradeoff between the two: and
actually it can be said that the problem of designing a multiple-antenna
system is based on this tradeoff. As an example, Fig. 2.3 illustrates the
diversity–rate tradeoff for a multiple-input multiple-output (MIMO)
system with t = 2 transmit and r = 2 receive antennas. Fig. 2.3(a) as-
sumes the channels are orthogonal, so that the rate is maximum (twice
as large as the single-channel rate) but there is no diversity gain since
each symbol is transmitted on one channel only. Fig. 2.3(b) assumes
that the transmitter replicates the same signal over the two channels,
so that there is no rate gain, but the diversity is now four, since the sig-
nal travels four independent paths. We shall further discuss this point
in Section 9.

3 Here we limit ourselves to considering only transmissions with the same rate on all anten-
nas. However, different (and possibly adaptive) modulation rates can also be envisaged [26].
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The problems we address in this paper are the following:

(1) What is the limiting performance (channel capacity) of this
multiple-antenna system?

(2) What is its error probability?
(3) How can we design codes matched to the channel structure

(space–time codes)?
(4) How can we design architectures allowing simple decoding of

space-time codes, and what is their performance?

As mentioned in the Introduction, the above points will be addressed
in different depths. In particular, (3) and (4) deserve a treatment more
thorough than we could provide here.
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Channel models

In a wireless communication system the transmitted signal is assumed
to arrive at the receiver after propagation through several different
paths. This phenomenon is referred to as multipath propagation. Sig-
nal propagation depends on different electromagnetic effects such as
scattering, refraction, reflection, or diffraction caused by other objects
present in the communication scenario. All these combine together, and
produce an overall attenuation of the signal amplitude accompanied by
a phase rotation which is accounted for by a complex gain coefficient.
Due to the difficulty of modeling the geometry of the propagation, it
is assumed that these coefficients change randomly: the common term
used to denote this physical effect is fading. We start dealing with fading
from the point of view of single-input, single-output (SISO) communi-
cation systems, and further extend the results to MIMO systems.

3.1 Fading channel

Fading occurs in a multipath communication scenario over different
time and frequency scales. Its effects are perceived depending on the
time and frequency characteristics of the transmitted signal. The fading

9
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10 Channel models

attenuation is commonly decomposed as the sum of three components:
i) path loss; ii) macroscopic fading; and iii) microscopic fading.

Path loss. This is an attenuation that depends on the distance d

between transmitter and receiver, and on the antenna parameters. In
the open space, the received power is approximately given by the Friis
formula

Pr = Pt

(
λc

4πd

)2

GtGr, (3.1)

where Pt is the transmitted power, λc is the carrier wavelength, and Gt,
Gr are the transmit and receive antenna gains, respectively. Assuming
that the wavelength λc is much smaller than the size of the obstacles
encountered in the signal path, in a land-mobile communication en-
vironment there are usually two main propagation paths: direct and
surface-reflected. The received power is approximately given by [64]:

Pr = Pt

(
hthr

d2

)2

GtGr, (3.2)

where ht and hr are the transmit and the receive antenna heights,
respectively. Notice that in this case the path loss is independent of the
carrier wavelength, in contrast with the case of free-space propagation.

Macroscopic fading. This is mainly due to the presence of obsta-
cles in the propagation path causing an effect called shadowing. This
attenuation is called macroscopic because its time scale is longer than
the time scale of microscopic fading due to the relatively slow changes
in the communication scenario.1 Experimental results show that the
logarithm of this attenuation is approximately Gaussian distributed. A
typical value for the standard deviation is 8 dB [64].

Microscopic fading. This is the result of scattered signal compo-
nents received from the (possibly) moving objects populating the com-
munication scenario. The presence of many scatterers produces the

1 Time scales here are a consequence of motion, and hence it may be more appropriate to
talk about spatial scales. These are on the order of the wavelength for microscopic fading,
and on the order of size of the obstacles encountered for macroscopic fading. See [33, 64].
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3.1. Fading channel 11

superposition of a large number of independent path gains that tends to
be distributed as a complex Gaussian random variable. Thus, assuming
the presence of a direct path, the received signal complex amplitude
gain can be modeled, in the presence of L propagation paths, as

Γ = Ad +
L∑

i=1

Aie
jΘi ,

where Ad is a constant due to the presence of a direct path while the
amplitudes Ai and phases Θi are random variables (RVs) depending
on the individual path gains. These RVs are reasonably assumed to
be independent, as they are due to different scatterers, with phases
uniformly distributed over (0, 2π). Then, their sum

Γs �
L∑

i=1

Aie
jΘi

has independent, identically distributed (iid) real and imaginary parts
which, by the Central Limit Theorem, converge in distribution, as L →
∞, to a pair of independent Gaussian random variables.

Summarizing, the fading gain is modeled by a complex Gaussian
random variable with independent real and imaginary parts having
the same variance and (possibly) different means. After normalization
of the second moment of the fading gain, it is assumed that the real
part has mean (K/(K + 1))1/2 and the common variance is equal to
1/(2(K + 1)), so that K represents the direct-to-diffuse power ratio,
i.e., the ratio of the squared mean to the sum of the two variances,
which represent the diffuse power component. This is the Rician fading
model; under the assumption that E[R2] = 1, the probability density
function (pdf) of the random channel gain R, taking values r ≥ 0, is
given by

pRice(r) = 2r(1 + K) exp
{−(1 + K)r2 − K

}
I0

(
2r
√

K(1 + K)
)

u(r),
(3.3)

where I0( · ) is the zeroth-order modified Bessel function defined as

I0(x) � 1
π

∫ π

0
ex cos φdφ (3.4)

Full text available at: http://dx.doi.org/10.1561/0100000002



12 Channel models

and u( · ) denotes the unit-step function: u(x) = 1 for x > 0, and
u(x) = 0 otherwise. As K → 0, i.e., as the direct path reduces its
power, and hence only diffuse power is received, since I0(0) = 1 the
Rice pdf tends to the Rayleigh pdf

pRayleigh(r) = 2 re−r2
u(r). (3.5)

Conversely, if K grows, i.e., the fixed-path power becomes considerably
higher than the diffuse power, then the Gaussian pdf is a good approx-
imation for the Rician density. In particular, as K → ∞ (no diffuse
power) we obtain the unfaded-channel pdf:

punfaded(r) = δ(r − 1). (3.6)

Another popular statistical model for the envelope R of the fading is
the Nakagami-m distribution. The probability density function of R is

pNakagami(r) =
2mm

Γ(m)
r2m−1e−mr2

u(r). (3.7)

The parameter m ≥ 1/2, called the fading figure, is the inverse of the
variance of R2. As special cases, the choice m = 1 yields the Rayleigh
distribution, m = 1/2 yields a single-sided Gaussian distribution, and
m → ∞ yields the unfaded-channel pdf.

3.2 Dynamics of the fading channel

Consider the complex baseband equivalent model of a fading channel.
Let h(θ; τ) be the response of a fading channel at time θ to an impulse
transmitted at time θ − τ , namely, δ(t − (θ − τ)), in the absence of
receiver noise. We interpret θ as time and τ as delay. Denoting the
transmitted and received signals as x(t) and y(t), respectively, we have
the following channel equation:

y(t) =
∫ ∞

−∞
h(t; τ)x(t − τ) dτ + z(t), (3.8)

where z(t) is a complex white Gaussian random process with indepen-
dent real and imaginary parts having power spectral density N0/2.

A typical representation of the fading channel impulse response is

h(t; τ) =
L∑

�=1

h�(t)δ(τ − τ�), (3.9)
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3.2. Dynamics of the fading channel 13

representing the linear superposition of L signal paths with gain h�(t)
and delay τ�. The received signal corresponding to the transmission of
x(t) is given by

y(t) =
L∑

�=1

h�(t)x(t − τ�). (3.10)

Further simplifications of the model consist of assuming that the
impulse response is wide-sense stationarity with respect to time, i.e.,

E[h(t1; τ)h∗(t2; τ)] = Rh(t1 − t2; τ), (3.11)

and uncorrelated for different delays, i.e.,

E[h(t; τ1)h∗(t; τ2)] = 0 if τ1 �= τ2. (3.12)

The latter assumption yields the so-called uncorrelated scattering. As
a further simplification comprising the above assumptions we set

E[h(t1; τ1)h∗(t2; τ2)] � Rh(t1 − t2; τ1)δ(τ1 − τ2), (3.13)

which implies stationarity in the frequency domain. In fact, defining
the Fourier transform

H(t; f) �
∫ ∞

−∞
h(t; τ)e−j2πfτ dτ, (3.14)

we obtain

E[H(t1; f1)H∗(t2; f2)]

=
∫ ∞

−∞

∫ ∞

−∞
E[h(t1; τ1)h∗(t2; τ2)]e−j2πf1τ1+j2πf2τ2 dτ1dτ2

=
∫ ∞

−∞

∫ ∞

−∞
Rh(t1 − t2; τ1)δ(τ1 − τ2)e−j2πf1τ1+j2πf2τ2 dτ1dτ2

=
∫ ∞

−∞
Rh(t1 − t2; τ1)e−j2π(f1−f2)τ1 dτ1

� RH(t1 − t2; f1 − f2). (3.15)

A double Fourier transform of this autocorrelation function yields the
scattering function of the fading channel:

SH(τ ;λ) �
∫ ∞

−∞

∫ ∞

−∞
RH(∆t;∆f)e−j2π(λ∆t−τ∆f)d∆t d∆f, (3.16)
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14 Channel models

where τ represents the delay and λ the frequency offset. Marginalization
with respect to τ and λ yields the spectra

SH(τ) �
∫ ∞

−∞
SH(τ ;λ) dλ (3.17)

and
SH(λ) �

∫ ∞

−∞
SH(τ ;λ) dτ. (3.18)

The delay spread TD and the Doppler-bandwidth spread BD can be
defined as the sizes of the intervals where SH(τ) �= 0 and SH(λ) �= 0,
respectively, if SH(τ) and SH(λ) have bounded support. Otherwise,
TD and BD can be defined as standard deviations, or 3-dB fallouts,
of the complete support of SH(τ) and SH(λ). These two quantities,
whose operational meaning will be discussed soon, describe the delay
and Doppler-frequency variations due to fading.

Other key parameters are the coherence time Tc, the coherence
bandwidth Bc, and the coherence angle θc. Qualitatively, Tc, Bc, and
θc are, respectively, the duration of a time interval, a bandwidth, and
a range of angles of arrival, where the fading does not alter signifi-
cantly the spectrum of the received signal. It can be shown [64] that
the Doppler-bandwidth spread and the delay spread are linked to the
coherence time and bandwidth by the approximate relations

Bc ≈ 1
TD

and Tc ≈ 1
BD

. (3.19)

Comparison of these parameters against the symbol time and the
signal bandwidth allows a classification of fading channels. Assume
transmission of a signal with duration T and bandwidth W . Then:

• If Tc < T , the fading channel is fast, or time-selective. Other-
wise, it is slow, or time-nonselective.

• If Bc < W , the fading channel is frequency-selective. Other-
wise, it is frequency-flat, or frequency-nonselective.

Since the signal bandwidth and duration are approximately the inverse
of each other: W ≈ 1/T , and since for most channels of interest BD 	
Bc, then we have a classification of the fading channel based on the
signal bandwidth:

Full text available at: http://dx.doi.org/10.1561/0100000002



3.3. MIMO channel 15

• If W < BD, the fading channel is fast and frequency-
nonselective.

• If BD < W < Bc, the fading channel is slow and frequency-
nonselective.

• If Bc < W , the fading channel is slow and frequency-selective.

If the fading channel is selective both in time and frequency, the
Doppler-bandwidth spread has to exceed the coherence bandwidth,
namely, BD > Bc. This situation occurs, for example, in avionic com-
munications, where the mobile speed and the transmission delay are
very large. Some typical values for indoor wireless communications are:
carrier frequency of 1 GHz, delay spread of 10 ns, and mobile speed of
3 m/s. We have

BD =
v

λ
= 10 Hz Bc ≈ 1

Tm
= 100 MHz

Thus, if the signal bandwidth W ranges from 100 Hz to 10 MHz, the
fading process is slow and frequency-nonselective.

3.3 MIMO channel

According to the classification given in the previous section we can
list equivalent discrete-time channel models depending on the type of
fading considered. The reader should be warned that the classification
here is rather coarse, as it hinges upon models simple enough to allow
tractable analysis.

For fast, frequency-nonselective channels we have

yn = Hnxn + zn (3.20)

with Hn, −∞ < n < ∞, an independent, identically distributed ran-
dom process. This fading model is usually referred to as ergodic. The
reason for this classification lies in the fact that, during transmission, a
long enough code word experiences essentially all states of the channel,
and hence it “averages out” the channel randomness.

For slow, frequency-nonselective channels the model becomes

yn = Hxn + zn (3.21)
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16 Channel models

and each code word, however long, experiences only one channel state.
In this case we talk about nonergodic fading.

For slow, frequency-selective channels we have

yn =
L∑

�=1

H�xn−� + zn. (3.22)

In this case, the delay spread TD is large compared to the symbol
duration T , which causes several delayed copies of the input signal to
combine linearly to produce the output. It is assumed that the channel
is so slow that the matrix coefficients H� remain constant throughout
the transmission of the code word. In other words, it is required that
NT 	 Tc, or W 
 NBD, which adds to the frequency-selectivity
condition yielding

W 
 max{Bc, NBD}. (3.23)

This model applies, for instance, to spread-spectrum communications.
In the following we focus our attention on narrowband communi-

cations only (for treatments of MIMO broadband fading channels, and
in particular of the impact of frequency selectivity on capacity and on
receiver structures, see, e.g., [1, 19]).

3.3.1 More on ergodicity: Interleaving, and the block-fading
model

The nonergodic channel model is applicable to a wireless system with
mobile terminals moving no faster than walking speed, so that the
channel gain, albeit random, varies so slowly with time that it can be
assumed as constant along transmission of a long block of data (see
also [31, 39, 40, 84, 104, 106]). For each transmitted block, the channel
matrix takes on an independent realization. Generally, blocks can be
transmitted in separate times (e.g., in a time-division system [80]), in
separate frequencies (e.g., in a multicarrier system), or in separate times
and frequencies (e.g., with slow time-frequency hopping [23, 67, 68]).
This observation elicits the definition of the block-fading (BF) channel
model (see [8] and references therein).

Assume for example a wireless transmission system whose Doppler
bandwidth spread ranges from 1 to 100 Hz, corresponding to coherence
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3.4. Narrowband multiple-input, multiple-output channel models 17

times from 0.01 to 1 s, and whose transmission rates go from 2 · 104

to 2 · 106 symbols per second. Here, blocks whose lengths range from
2·104×0.01 = 200 symbols to 2·106×1 = 2·106 symbols are affected by
approximately the same fading gain. This channel can be made ergodic
if interleaving is introduced. Notice that interleaving and deinterleaving
involve a delay that for some applications may not be acceptable. In
this case, separation of coded symbols by more that the coherence time
of the channel is not possible, and therefore a length-N block is affected
by a number of independent fading gains which is less than N . In the
block-fading model, each word is split into a number of blocks which
is a fraction of N , and over each block the channel fading is correlated
so highly that we may model it as constant.

When delay constraints are present, the block-fading model turns
out to be the sensible choice in many instances. This model assumes
that the fading gain process is piecewise constant, and can be described
through a sequence of independent random variables, each of which is
the fading gain in a block of ν elementary signals. A code word of length
N is spread over F blocks of length ν symbols each, so that N = νF .
If ν = N , and hence F = 1 (no interleaving), we have a channel in
which the entire code word is affected by the same fading gain. If ν =
1, and hence F = N (ideal interleaving) each symbol if affected by
an independent fading gain, which shows that the independent fading
channel model (3.20) is a special case of this model.

The delay constraint to which the communication system is subject
determines the maximum number F of blocks over which a code word
of length N = νF can be spread. The choice F → ∞ makes the channel
ergodic.

3.4 Narrowband multiple-input, multiple-output channel
models

Assume again that the r × t channel matrix H remains constant dur-
ing the transmission of an entire code word. Analysis of this channel
requires the joint pdf of the rt entries of H. A number of relatively sim-
ple models for this pdf have been proposed in the technical literature,
based on experimental results and analyses. Among these we consider
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the following:

Rich scattering. The entries of H are independent circularly-
symmetric complex zero-mean Gaussian random variables [39,
40].

Fully correlated. The entries of H are correlated circularly-
symmetric complex zero-mean Gaussian random variables. The
correlation coefficients of all the pairs of elements are required
to specify this model.

Separately correlated. The entries of H are correlated circularly-
symmetric complex zero-mean Gaussian random variables, with
the correlation between two entries of H separated in two fac-
tors accounting for the receive and transmit correlation:

E[(H)i,j(H)∗i′,j′] = (R)i,i′(T)j,j′ (3.24)

for two given Hermitian nonnegative definite matrices R (r×r)
and T (t × t). This model is justified by the fact that only
the surrounding objects at the receiver and at the transmitter
cause the local antenna-elements correlation, while they have
no impact on the correlation at the other end of the link [76,94].
The channel matrix can be expressed as

H = R1/2HuT1/2, (3.25)

where Hu is a matrix of uncorrelated, circularly-symmetric
complex zero-mean Gaussian random variables with unit vari-
ance, and (·)1/2 denotes matrix square root.2

For a fair comparison of different correlation cases, we assume
that the total average received power is constant, i.e.,

E[Tr (THuRH†
u)] =

∑
i,j,k,�

E[(T)ij(Hu)jk(R)k�(Hu)∗i�]

=
∑
i,k

(T)ii(R)kk

= Tr (T)Tr (R)

= tr (3.26)

2 The square root of matrix A ≥ 0 whose singular-value decomposition (SVD) [62] is
A = UDV† is defined as A1/2 � UD1/2V†.
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Since H is not affected if T is scaled by a factor α �= 0 and R
by a factor α−1, we assume without loss of generality that

Tr (T) = t and Tr (R) = r. (3.27)

Uncorrelated keyhole. The rank of H may be smaller than
min{t, r}. A special case occurs when H has rank one (“key-
hole” channel). Assume H = hrh

†
t , with the entries of the vec-

tors hr and ht being independent, circularly-symmetric, com-
plex zero-mean Gaussian random variables [30,44]. This model
applies in the presence of walls that the propagating signal
passes through a small aperture, such as a keyhole. In this way,
the incident electric field is a linear combination of the elec-
tric fields arriving from the transmit antennas, and irradiates
through the hole after scalar multiplication by the scattering
cross-section of the keyhole. As a result, the channel matrix
can be written as the product of a column vector by a row
vector. Similar phenomena arise in indoor propagation through
hallways or tunnels, which can be thought of as overmoded
waveguides at microwave frequencies [30].
Notice that the channel matrix entries are mutually uncor-
related but not independent (in fact, hr and ht are in-
dependent, and hence E[HijH∗

i′j′ ] = E[hr,ih∗
t,jh

∗
r,i′ht,j′ ] =

E[hr,ih∗
r,i′ ]E[h∗

t,jht,j′ ] = 0 whenever i �= i′ or j �= j′). The mag-
nitude of each matrix entry is given by the product of two
independent Rayleigh-distributed random variables. Denoting
by h a generic entry of H, and assuming that the vectors hr

and ht have unit variances, we have

P(|h|2 ≤ ρ) =
∫ ∞

0
e−x

∫ ρ/x

0
e−ydydx = 1 −

∫ ∞

0
e−x−ρ/xdx.

(3.28)
Hence, |h|2 has pdf

p(ρ) =
∫ ∞

0

1
x

e−x−ρ/xdx = 2K0(2
√

ρ), (3.29)

where K0(x) is the zeroth-order modified Bessel function of the
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second kind, defined as

K0(x) �
∫ ∞

0
cos(x sinh t)dt =

∫ ∞

0

cos(xt)√
1 + t2

dt (3.30)

Rician channel. The channel models listed above are zero mean.
However, for certain applications, the channel matrix H should
be modeled as having a nonzero mean. Rician MIMO channels
are examined in [99].

3.5 Channel state information

As we shall discuss with more detail in the following, a crucial fac-
tor in determining the performance of a multi-antenna system is the
availability, at the transmitting or at the receiving terminal, of the
channel-state information (CSI), that is, the set of values taken on by
the fading gains in each one of the transmission paths.

In a fixed wireless environment, the fading gains can be expected
to vary slowly, so their estimate can be obtained by the receiver with a
reasonable accuracy, even in a system with a large number of antennas,
and possibly relayed to the transmitter. In some cases, we may assume
that a partial knowledge of the CSI is available. One way of obtain-
ing this estimate is by periodically sending pilot signals on the same
channel used for data (these pilot signals are used in wireless systems
also for acquisition, synchronization, etc.). We shall address this issue
in Section 5.
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Channel capacity

In this section we evaluate the capacity of the multiple-antenna,
or MIMO (multiple-input, multiple-output) transmission system de-
scribed by (2.1). Several models for the matrix H will be consid-
ered [106]:

(a) H is deterministic.
(b) H is a random matrix, and each channel use (viz., the trans-

mission of one symbol from each of the t transmit anten-
nas) corresponds to an independent realization of H (ergodic
channel).

(c) H is a random matrix, but once it is chosen it remains fixed
for the whole transmission (nonergodic channel).

When H is random (cases (b) and (c) above) we assume here that its
entries are ∼ Nc(0, 1), i.e., iid Gaussian with zero-mean, independent
real and imaginary parts, each with variance 1/2. Equivalently, each
entry of H has uniform phase and Rayleigh magnitude. This choice
models Rayleigh fading with enough separation within antennas such
that the fades for each transmit/receive antenna pair are independent.
We also assume, unless otherwise stated, that the CSI (that is, the

21
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22 Channel capacity

realization of H) is known at the receiver, while the distribution of
H is known at the transmitter (the latter assumption is necessary for
capacity computations, since the transmitter must choose an optimum
code for that specific channel).

As discussed in previous Section, model (b) is applicable to fast
fading, or to slow fading with deep-enough interleaving, while model
(c) is applicable to a slow fading channel in which delay constraints do
not allow ergodicity to be achieved.

We will measure capacity in bits per dimension pair. This translates
into bit/s/Hz if signal design allows one dimension pair per second to
be transmitted in a 1-Hz bandwidth. Unless otherwise specified, log(·)
will denote the base-2 logarithm of (·).

4.1 Deterministic channel

Here we assume that the nonrandom value of H is known at both trans-
mitter and receiver. We derive the capacity by maximizing the average
mutual information I(x;y) between input and output of the channel
over the choice of the distribution of x. Singular-value decomposition
of the matrix H yields [62]

H = UDV†, (4.1)

where U ∈ C
r×r and V ∈ C

t×t are unitary, and D ∈ R
r×t is diagonal.

We can write
y = UDV†x + z. (4.2)

Premultiplication of (4.2) by U† shows that the original channel is
equivalent to the channel described by the input–output relationship

ỹ = Dx̃ + z̃, (4.3)

where ỹ � U†y, x̃ � V†x (so that E[x̃†x̃] = E[x†x]), and z̃ � U†z ∼
Nc(0, N0Ir). Now, the rank of H is at most m � min{t, r}, and hence
at most m of its singular values are nonzero. Denote these by

√
λi,

i = 1, . . . ,m, and rewrite (4.3) componentwise in the form

ỹi =
√

λix̃i + z̃i, i = 1, . . . ,m (4.4)

which shows that transmission takes place on a set of m parallel equiv-
alent channels. The remaining components of ỹ (if any) are equal to
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µ

1−
iλ

1−− iλµ

Fig. 4.1 Illustration of “water-filling.”

the corresponding components of the noise vector z̃: we see that, for
i > m, ỹi is independent of the transmitted signal, and x̃i does not play
any role.

Maximization of the mutual information requires independent x̃i,
i = 1, . . . ,m, each with independent Gaussian, zero-mean real and
imaginary parts. Their variances should be chosen, as indicated in Ap-
pendix B, via “water-filling” (Fig. 4.1):

E[Re x̃i]2 = E[Im x̃i]2 =
1
2
(
µ − λ−1

i

)
+

(4.5)

where (·)+ � max(0, ·). This comes from a result of Information Theory
concerning parallel channels [43]. With µ chosen so as to meet the SNR
constraint, we see that the SNR, as parametrized by µ, is

ρ(µ) =
∑

i

(
µ − λ−1

i

)
+

(4.6)

and the capacity takes on the value (in bits per dimension pair)

C(µ) =
∑

i

(log(µλi))+. (4.7)

Observation 4.1. Since the nonzero eigenvalues of H†H are the same
as those of HH†, the capacities of the channels corresponding to H and
to H† are the same. A sort of “reciprocity” holds in this case [106].
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Observation 4.2. Section B.2 illustrates a different method of ob-
taining the “water-filling” solution (4.5). The method is based on
Hadamard’s inequality instead of channel diagonalization as in (4.4).

Example 4.3. Take t = r = m, and H = Im. Due to the structure of
H, there is no spatial interference here, and transmission occurs over
m parallel additive white Gaussian noise (AWGN) channels, each with
SNR ρ/m and hence with capacity log(1 + ρ/m) bit/dimension pair.
Thus,

C = m log(1 + ρ/m). (4.8)

We see here that we have a rate gain, as the capacity is proportional
to the number of transmit antennas. Notice also that, as m → ∞, the
capacity tends to the limiting value

C = ρ log e.

Example 4.4. Consider as H the all-1 matrix. This corresponds to a
maximum of spatial interference. Its SVD is

H =

⎡⎢⎢⎢⎣
√

1/r√
1/r
...√
1/r

⎤⎥⎥⎥⎦ (
√

rt)[
√

1/t · · ·
√

1/t]. (4.9)

In this case we have m = 1,
√

λ1 =
√

rt, and hence λ1 = rt. Thus, for
ρ > 0,

ρ =
(

µ − 1
rt

)
+

= µ − 1
rt

(4.10)

and hence the capacity is

C = log
[(

ρ +
1
rt

)
rt

]
= log(1 + rt ρ). (4.11)
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The signals achieving this capacity can be described as follows. We
have that x̃ has only one component, and

V =

√
1
t

⎡⎢⎢⎢⎣
1
1
...
1

⎤⎥⎥⎥⎦ . (4.12)

Thus, the components of x = Vx̃ are all equal, i.e., the transmit anten-
nas all send the same signal. If P denotes the total transmitted power,
each transmit antenna sends a power P/t. Because of the structure of
H the signals add coherently at the receiver, so that at each receiver we
have the voltage t

√
P/t, and hence the power t2P/t = Pt. Since each

receiver sees the same signal, and the noises are uncorrelated, the over-
all SNR is rtρ, as shown by the capacity formula (4.11). In this case
we see no rate gain, but a diversity gain is obtained through proper
combination of the received signals. This result can be interpreted in
the context of beam-forming [18].

4.2 Ergodic Rayleigh fading channel

We assume here that H is independent of both x and z, with entries
∼ Nc(0, 1). We also assume that for each channel use an independent re-
alization of H is drawn, so that the channel is ergodic (see Section 3.3).
If the receiver has perfect CSI, the mutual information between the
channel input (the vector x) and its output (the pair y,H), is [32]:

I(x;y,H) = I(x;H) + I(x;y | H). (4.13)

Since H and x are independent, then I(x;H) = 0, and hence

I(x;y,H) = I(x;y | H) = E eH[I(x;y | H = H̃)], (4.14)

where H̃ denotes a realization of the random matrix H. The maximum
of I(x;y,H), taken with respect to x, yields the channel capacity C.
From the results of Appendix B we know that the capacity, achieved
by a transmitted signal x ∼ Nc(0, (ρ/t)It), is equal to

C = E

[
log det

(
Ir +

ρ

t
HH†

)]
. (4.15)
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The exact computation of (4.15) will be examined soon. For the mo-
ment, note that for fixed r and as t → ∞, the strong law of large
numbers yields

1
t
HH† → Ir a.s. (4.16)

Thus, as t → ∞ the capacity tends to

log det(Ir + ρIr) = log(1 + ρ)r

= r log(1 + ρ) (4.17)

so that it increases linearly with r. Compare this result with (4.11),
where C increases with r only logarithmically.

A simplistic interpretation of the above would qualify fading as
beneficial to MIMO transmission, as independent path gains generate
r independent spatial channels. More accurately, it should be realized
that high capacity is generated by a multiplicity of nonzero singular
values in H, which is typically achieved if H is random matrix, but
not if it is deterministic. For a quantitative expression of the above
statement, see [61]. There, it is proved that if H is the sum of a deter-
ministic (line-of-sight) matrix D and a random matrix whose entries
are iid zero-mean unit-variance complex circularly-symmetric Gaussian
random variables, then the capacity of the MIMO channel is monoton-
ically non-decreasing in the singular values of D.

4.2.1 A simple upper bound to C

The exact computation of C is rather intricate and yields an integral
expression that is not easily amenable to analysis. Before examining
it, we introduce an exceedingly simple upper bound to the value of C.
Observe that the log-det function is concave over the set of nonnegative
matrices [32, Th. 16.8.1]:

log det(λK1 + (1 − λ)K2) ≥ λ log detK1 + (1 − λ) log detK2 (4.18)

for all λ ∈ (0, 1). Therefore, by Jensen’s inequality, we have

C = E

[
log det

(
Ir +

ρ

t
HH†

)]
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≤ log det
(
Ir +

ρ

t
E[HH†]

)
= r log(1 + ρ). (4.19)

Also, recalling that the matrices HH† and H†H share the same set of
nonzero eigenvalues, and hence

det(Ir + (ρ/t)HH†) = det(It + (ρ/t)H†H), (4.20)

we obtain the bound

C = E

[
log det

(
It +

ρ

t
H†H

)]
≤ log det

(
It +

ρ

t
E[H†H]

)
= t log(1 + rρ/t). (4.21)

The upper limits are attained for HH† = Ir and H†H = It, respec-
tively.

By combining (4.19) and (4.21), we obtain the upper bound

C ≤ min {r log(1 + ρ), t log(1 + rρ/t)} . (4.22)

Fig. 4.2 plots (4.22) in terms of capacity per transmit antenna (C/t),
for ρ = 0, 10, and 20 dB, versus the ratio t/r. It also shows the asymp-
totic (t, r → ∞ with t/r → the finite limit on the abscissa) capacity
per transmit antenna of an ergodic independent Rayleigh fading MIMO
channel (to be derived soon). It can be seen that the highest gap to the
upper bound occurs when t = r, where the upper bound is from 20%
(SNR=0 or 20 dB) to 27% (SNR=10 dB) higher than the asymptotic
capacity per transmit antenna of the ergodic independent Rayleigh fad-
ing MIMO channel (Eq. (4.32) adapted).

4.2.2 Exact computation of C

We have the exact result (see Appendix E for its proof)

C = log(e)
m!

(n − 1)!

m−1∑
�=0

m∑
µ=0

�+µ+n−m∑
p=0
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Fig. 4.2 Comparison of the capacity upper bound (4.22) with the (asymptotic) capacity of
the independent Rayleigh fading channel when the SNR is 0, 10, and 20 dB.

(−1)�+µ(
 + µ + n − m)!

!µ!

et/ρEp+1(t/ρ)[(
n − 1

m − 1 − 


)(
n

m − 1 − µ

)
−
(

n − 1
m − 2 − 


)(
n

m − µ

)]
,(4.23)

where

En(x) �
∫ ∞

1
e−xyy−n dy

is the exponential integral function of order n.
Some exact capacity values for ρ = 20 dB are plotted in Fig. 4.3

and 4.4. Special cases, as well as asymptotic approximations to the
values of C, are examined in the examples that follow.

Example 4.5. (r 
 t) Consider first t = 1, so that m = 1 and n = r.
Application of (4.23) yields

C = log(e)
r∑

k=1

e1/ρEk(1/ρ). (4.24)

This is plotted in Fig. 4.5. An asymptotic expression of C, valid as
r → ∞, can be obtained as follows. Using in (4.24) the approximation,
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Fig. 4.3 Capacity of the ergodic Rayleigh MIMO channel with ρ = 20 dB.

valid for large k,

exEk(x) ∼ 1
x + k

, (4.25)

we obtain

C ∼ log(e)
r∑

k=1

1
1/ρ + k

≈ log(e)
∫ r

0

1
1/ρ + x

dx = log(1 + rρ). (4.26)

This approximation to the capacity is also plotted in Fig. 4.5. We see
here that if t = 1 the capacity increases only logarithmically as the num-
ber of receive antennas is increased—a quite inefficient way of boosting
capacity.

For finite t > 1 (and r → ∞), we set W = H†H → rIt a.s. Hence,
the following asymptotic expression holds:

C = log det(It + (ρ/t)W) → t log(1 + (ρ/t)r). (4.27)
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Fig. 4.4 Capacity of the ergodic Rayleigh MIMO channel with ρ = 20 dB.

Example 4.6. (t 
 r) Consider first r = 1, so that m = 1 and n = t.
Application of (4.23) yields

C = log(e)
t∑

k=1

et/ρEk(t/ρ). (4.28)

This is plotted in Fig. 4.6. Proceeding as in Example 4.5, an asymptotic
expression of C as t → ∞ can be obtained, yielding C ∼ log(1 + ρ).
This approximation to the capacity is also plotted in Fig. 4.6.

For finite r > 1 (and t → ∞), we set W = HH† → tIr a.s. Hence,
the following asymptotic expression holds:

C = log det(Ir + (ρ/t)W) → r log(1 + ρ). (4.29)
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Fig. 4.5 Capacity of the ergodic Rayleigh MIMO channel with t = 1 (continuous line). The
asymptotic approximation C ∼ log(1 + ρr) is also shown (dotted line).

Example 4.7. (r = t) With r = t we have m = n = r, so that
application of (4.23) yields

C = r log(e)
r−1∑
�=0

r∑
µ=0

�+µ∑
p=0

(−1)�+µ(
 + µ)!

!µ!

et/ρEp+1(t/ρ)[(
r − 1




)(
r

µ + 1

)
−
(

r − 1

 + 1

)(
r

µ

)]
.

The capacity is plotted in Fig. 4.7.

The results of Fig. 4.7 show that capacity increases almost linearly
with m. This fact can be analyzed in a general setting by showing that
when t and r both grow to infinity the capacity per antenna tends
to a constant. To prove this, observe that with the usual definitions
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Fig. 4.6 Capacity of the ergodic Rayleigh MIMO channel with r = 1 (continuous line). The
asymptotic approximation C ∼ log(1 + ρ) is also shown (dotted line).

m � min{t, r} and n � max{t, r}, (E.2) becomes

C

m
∼ E

[
log
(
1 + ρ

m

t
ν
)]

, (4.30)

where ν � λ1/m is now a random variable whose pdf is known
(see Theorem C.2): as m → ∞ and n/m approaches a limit τ ≥ 1,

p(ν) =
1

2πν

√
(ν+ − ν)(ν − ν−) (4.31)

with
ν± � (1 ±√

τ)2

for ν− ≤ ν ≤ ν+. The expectation in (4.30) can be computed in closed
form [85,11,113], yielding

C

m
= (log(w+ρ) + (1 − α) log(1 − w−) − (w−α) log e) · max{1, 1/α},

(4.32)
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Fig. 4.7 Capacity with independent Rayleigh fading and t = r antennas.

where
w± � (w ±

√
w2 − 4/α)/2 (4.33)

and
w � 1 +

1
α

+
1
ρ
. (4.34)

This asymptotic result can be used to approximate the value of C

for finite r, t by setting α = t/r. This approximation provides values
very close to the true capacity even for small r and t, as shown in
Figs. 4.8 and 4.9. The figures show the asymptotic value of C/m (for
t, r → ∞ with t/r → α) versus α and the nonasymptotic values of C/m

corresponding to r = 2 and 4, respectively.

Observation 4.8. We can observe from (4.32) how, for large SNR,
i.e., for ρ → ∞, the ergodic capacity is asymptotically equal to m log ρ:
comparing this result with the asymptotic capacity of the single-input,
single-output channel C ∼ log ρ, we see that use of multiple antennas
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Fig. 4.8 Asymptotic ergodic capacity per antenna (C/m) with independent Rayleigh fading
as t, r → ∞ and t/r → α (solid curves). The exact ergodic capacity per antenna for r = 2
is also shown for comparison (×).

increases the capacity by a factor m. That is, multiple antennas gener-
ate m independent parallel channels. This explains why m is sometimes
called the number of degrees of freedom generated by the MIMO system.

Observation 4.9. In [93], it is proved that for an uncorrelated keyhole
channel

C ≤ log(1 + rζ).

This result can be interpreted by saying that this channel, regardless
of the number of antennas, offers no rate gain.

Observation 4.10. For the validity of (4.32), it is not necessary to
assume that the entries of H are Gaussian, as needed for the preceding
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Fig. 4.9 Same as Fig. 4.8, but r = 4.

nonasymptotic results: a sufficient condition is that H have iid entries
with unit variance (Theorem C.2).

Observation 4.11. The reciprocity valid for deterministic channels
(Observation 4.1) does not hold in this case. If C(r, t, ρ) denotes the
capacity of a channel with t transmit and r receive antennas, and SNR
ρ, we have

C(a, b, ρ̂b) = C(b, a, ρ̂a). (4.35)

Thus, for example, C(r, 1, ρ̂) = C(1, r, rρ̂), which shows that with trans-
mit rather than receive diversity we need r times as much transmit
power to achieve the same capacity.

Observation 4.12. Choose t = r = 1 as the baseline; this yields one
more bit per dimension pair for every 3 dB of SNR increase. In fact,
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for large ρ,
C = log(1 + ρ) ∼ log ρ (4.36)

and hence, if ρ → 2ρ, we have

log(2ρ) = 1 + log ρ. (4.37)

For multiple antennas with t = r, (4.30) shows that for every 3 dB of
SNR increase we have t more bits per dimension pair.

4.3 Correlated channels

The separately-correlated MIMO channel model has been introduced in
Section 3.4. The entries of the channel matrix are correlated, circularly-
symmetric, complex zero-mean Gaussian random variables, and the
channel matrix can be written as

H = R1/2HuT1/2, (4.38)

where Hu is a matrix of independent, circularly-symmetric complex
zero-mean Gaussian random variables with unit variance. The ergodic
capacity of this channel is given by:

C = E

[
log det

(
Ir +

ρ

t
HuTH†

uR]
)]

. (4.39)

Applying Jensen’s inequality we obtain the following upper bound [93]:

C ≤ log E

[
det
(
Ir +

ρ

t
HuTH†

uR
)]

= log
{ m∑

k=0

(
ρ

t

)k

k!
∑

1≤i1<...<ik≤t

det
(
Ti1,...,ik

) ∑
1≤j1<...<jk≤r

det
(
Rj1,...,jk

)}
,

where Ai1,...,ik denotes the submatrix of A obtained by extracting the
rows and columns of indices i1, . . . , ik (i.e., (Ai1,...,ik)rs = Air ,is for
r, s = 1, . . . , k). In the special case t = r, the upper bound can be
simplified by taking only the highest power term (k = m = t = r) and
yields the asymptotic approximation:

C ∼ m log(ρ/t) + log(m!) + log det(TR) (4.40)
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(in fact, the only set of indices 1 ≤ i1 < . . . < im ≤ m is i1 =
1, . . . , im = m, and hence the submatrices coincide with the full matri-
ces themselves).

This result is tantamount to saying that, in the case of equal number
of transmit and receive antennas, m, the asymptotic power loss of the
separately correlated MIMO channel with respect to the uncorrelated
channel is −10 log10 det(TR)/m dB. Let ti, i = 1, . . . ,m denote the
positive eigenvalues of T, and recall the trace constraint (3.27). We
obtain

det(T)1/m =
∏

i

t
1/m
i ≤ 1

m

∑
i

ti = 1.

A similar result applies to R, so that we conclude that the power loss

−10 log10 det(TR)/m ≥ 0

with equality if and only if T = R = Im. This confirms that, under the
“fair comparison” conditions dictated by (3.27), the asymptotic power
loss due to separate correlation is always positive, and zero only in the
uncorrelated case. This proves the following asymptotic (in the SNR)
statements:

• (Separate) correlation degrades system performance.
• The linear growth of capacity with respect to the minimum

number of transmit/receive antennas is preserved.

The above can be extended, with the help of some algebra, to the case
t �= r.

Example 4.13. Consider the case of a constant separately-correlated
m × m MIMO fading channel with correlation matrices

T =

⎛⎜⎜⎜⎝
1 ρT . . . ρT

ρT 1 . . . ρT
...

...
. . .

...
ρT ρT . . . 1

⎞⎟⎟⎟⎠ (4.41)
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and

R =

⎛⎜⎜⎜⎝
1 ρR . . . ρR

ρR 1 . . . ρR
...

...
. . .

...
ρR ρR . . . 1

⎞⎟⎟⎟⎠ . (4.42)

Simple algebra leads to the asymptotic approximation

C ∼ m log(ρ/t) + log(m!) + (m − 1) log(1 − ρT )

+ log(1 − ρT + mρT ) + (m − 1) log(1 − ρR) + log(1 − ρT + mρR).

When m is large, the asymptotic power loss is about

−10 log10((1 − ρT )(1 − ρR)) dB.

4.4 A critique to asymptotic analysis [29]

The previous results derived under the assumption r → ∞ should be ac-
cepted cum grano salis. Our assumption that the entries of the channel-
gain matrix H are independent random variables becomes increasingly
questionable as r increases. In fact, for this assumption to be justified
the antennas should be separated by some multiple of the wavelength,
which cannot be obtained when a large number of antennas is packed
in a finite volume. Thus, as r increases the effects of correlation inval-
idates the assumption of independent channel gains. In addition, if the
variance of the entries of H does not depend on r, increasing r leads
to an increased total received power, which becomes physically unac-
ceptable beyond a certain value. It follows that capacity calculations
for large r and a finite volume become quite involved. A simple, yet
instructive, analysis is possible if the effects of varying correlation are
disregarded, and a MIMO system is assumed whereby not only the to-
tal transmit power remains constant as t increases, but also the average
received power remains constant when r increases. This is obtained by
rescaling H by a factor r−1/2, so that the capacity (4.15)-(E.2) becomes

C = E

[
log det

(
Ir +

ρ

rt
HH†

)]
=

m∑
i=1

E log
(
1 +

ρ

rt
λi

)
. (4.43)
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One simple heuristic way of dealing with this situation consists of
rewriting C in the form

C = E

[
log det

(
It +

ρ

rt
H†H

)]
and observing that, due to the strong law of large numbers,
(1/r)H†H → It almost surely. Thus,

C → t log(1 + ρ/t), (4.44)

that is, the channel is transformed into a set of t independent parallel
channels, each with capacity log(1 + ρ/t). As also t grows to infinity,
from (4.44) we obtain

C → ρ log e, (4.45)

a conclusion in contrast with our previous result that capacity increases
linearly with the number of antennas. In a more rigorous fashion, using
the inequality ln(1 + x) ≤ x, and observing that the trace of a matrix
equals the sum of its eigenvalues, we obtain from (4.36)

C ≤ ρ

rt
Tr [E(HH†)] log e → ρ log e.

Conversely, observing that x ≥ 0 implies ln(1+x) ≥ x−x2/2, and that∑
i λ

2
i = Tr (HH†HH†), we obtain

C ≥ ρ

{
1 − 1

2r2t2
Tr [E(HH†HH†)]

}
log e. (4.46)

The expectation can be calculated as follows:

E[Tr (HH†HH†)]

=
r∑

i=1

r∑
j=1

t∑
k=1

t∑
�=1

E[(H)i,k(H)∗j,k(H)∗i,�(H)j,�]

=
r∑

i=1

t∑
k=1

t∑
�=1

E[|(H)i,k|2|(H)i,�|2] +
r∑

i=1

r∑
j=1
j �=i

t∑
k=1

E[|(H)i,k|2|(H)j,k|2]

= [rt(t − 1) + r(r − 1)t]{E[|(H)i,k |2]}2 + rt E[|(H)i,k|4
= tr(t + r), (4.47)
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since the pdf of |(H)i,k|2 is e−xu(x) and hence E[|(H)i,k|2m] = m!.
Inserting (4.47) in (4.46) we get

C ≥ ρ

[
1 − ρ(r + t)

2rt

]
log e. (4.48)

In conclusion, for a fixed ρ, as r and t increase we have again C →
ρ log e.

4.5 Nonergodic Rayleigh fading channel

When H is chosen randomly at the beginning of the transmission, and
held fixed for all channel uses, average capacity has no meaning, as
the channel is nonergodic. In this case the quantity to be evaluated is
outage probability, that is, the probability that the transmission rate
R exceeds the mutual information of the channel [39,40,42,106].

Under these conditions, the mutual information, that we shall call
(with a suggestive but theoretically inaccurate terminology) instanta-
neous capacity, is the random variable

C(H) = log det
(
Ir +

ρ

t
HH†

)
(4.49)

and the outage probability is defined as

Pout(R) � P(C(H) < R). (4.50)

The maximum rate that can be supported by the channel with a given
outage probability is referred to as the outage capacity.

The evaluation of (4.50) should be done by Monte Carlo simulation.
However, one can profitably use an asymptotic result which states that,
as t and r grow to infinity, the instantaneous capacity C(H) tends to
a Gaussian random variable. This result has been recently obtained
independently by several authors under slightly different technical as-
sumptions [46,58,91,77], and its value is strongly enhanced by the fact
that C(H) is very well approximated by a Gaussian random variable
even for small numbers of antennas. Following in part the approach pro-
posed in [91,77], which is based on a technique borrowed from statistical
mechanics and called the Replica Method, we prove in Appendix E that
C(H) is asymptotically Gaussian. Thus, by computing its asymptotic
mean and variance, we characterize its asymptotic behavior.
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Fig. 4.10 Variance of the nonergodic capacity. Continuous line: Asymptotic variance
from [91, 77]. (∗): Numerical integration of Bai-Silverstein [3] expression for the variance.
(�) and (�): Monte Carlo simulation.

In practice, the asymptotic mean and variance of C(H) yield a close
approximation to the statistics of C(H) even for very small r and t.
Thus, the outage probability can be closely approximated for any pair
t, r in the form

Pout(R) ≈ Q

(
µC − R

σC

)
, (4.51)

where, from Appendix E,

µC � −t
{
(1 + β) log w + q0r0 log e + log r0 + β log(q0/β)

}
σ2

C � − log e · log(1 − q2
0r

2
0/β)

expressed in bit/dimension pair and (bit/dimension pair)2, respectively,
with w �

√
1/ρ, β � α−1, and q0, r0 defined in (E.41). (An alterna-

tive expression for the asymptotic capacity variance in the form of an
integral was obtained in [3]). Numerical results are shown in Fig. 4.10.
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Fig. 4.11 Outage probability for r = t = 4 and a nonergodic Rayleigh channel vs. R, the
transmission rate in bits per dimension pair. The continuous line shows the results obtained
by Monte Carlo simulation, while the dashed line shows the normal approximation.

Fig. 4.11, which plots Pout versus ρ for r = t = 4 and two values of
SNR, shows the quality of the Gaussian approximation for r = t = 4
and a Rayleigh channel.

Based on these results, we can approximate closely the outage prob-
abilities as in Figs. 4.12 and 4.13. These figures show the rate that can
be supported by the channel for a given SNR and a given outage prob-
ability, that is, from (4.51):

R = µC − σCQ−1(Pout). (4.52)

Notice how as r, t increase the outage probabilities curves come closer
to each other: in fact, as r and t grow to infinity the channel tends to
an ergodic channel.

Fig. 4.14 shows the outage capacity (at Pout = 0.01) of an indepen-
dent Rayleigh fading MIMO channel.

An asymptotic expression for R as ρ → ∞ can be obtained. Observe
that

q0 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
β

1 − β
w + O(w3) β < 1

1 − w/2 + O(w2) β = 1
β − 1

w
+

1
β − 1

w + O(w3) β > 1

(4.53)
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Fig. 4.12 Transmission rate that can be supported with r = t = 4 and a given outage
probability by a nonergodic Rayleigh channel. The results are based on the Gaussian ap-
proximation.

and

r0 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 − β

w
+

β

1 − β
w + O(w3) β < 1

1 − w/2 + O(w2) β = 1
1

β − 1
w + O(w3) β > 1

. (4.54)

Since from the above we obtain

1 − q2
0r

2
0

β
=

⎧⎪⎪⎨⎪⎪⎩
1 − β + O(w2) β < 1
1 − w/2 + O(w2) β = 1

1 − 1
β

+ O(w2) β > 1
, (4.55)
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Fig. 4.13 Transmission rate that can be supported with r = t = 16 and a give outage
probability by a nonergodic Rayleigh channel. The results are based on the Gaussian ap-
proximation.

then, as ρ → ∞, we have

σ2
C ∼

⎧⎨⎩
ln(1 − β) β < 1
ln(2w) β = 1
ln(1 − 1/β) β > 1

. (4.56)

Similarly, we can obtain, as ρ → ∞,

µC ∼ m log ρ, (4.57)

a result compatible with previous observations. Using (4.56) and (4.57)
in (4.52), we see that R ∼ m log ρ, which shows that the outage cap-
acity, for ρ → ∞, behaves as the ergodic capacity.

4.5.1 Block-fading channel

Here we take the approach of choosing a block-fading channel model,
introduced before (Section 3.3.1) and shown in Fig. 4.15. Here the
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Fig. 4.14 Outage capacity (at Pout = 0.01) with independent Rayleigh fading and r = t
antennas.
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•••

Fig. 4.15 One code word in an F -block fading channel.

channel is described by the F matrices Hk, k = 1, . . . , F , each describ-
ing the fading gains in a block. The channel input–output equation
is

yk[n] = Hkxk[n] + zk[n] (4.58)

for k = 1, . . . , F (block index) and n = 1, . . . , N (symbol index along a
block), yk, zk ∈ C

r, and xk ∈ C
t. Moreover, the additive noise zk[n] is

a vector of circularly-symmetric complex Gaussian RVs with zero mean
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and variance N0: hence,

E[zk[n]zk[n]†] = N0Ir.

It is convenient to use the SVD

Hk = UkDkV
†
k, (4.59)

where Dk is an r × t real matrix whose main-diagonal entries are the
ordered singular values

√
λk,1 ≥ · · · ≥√λk,m, with λk,i the ith largest

eigenvalue of the Hermitian matrix HkH
†
k, and m � min{r, t}. Since Uk

and Vk are unitary, by premultiplying yk[n] by U†
k the input–output

relation (4.58) can be rewritten in the form

ỹk[n] = Dkx̃k[n] + z̃k[n], (4.60)

where ỹk[n] � U†
kyk[n], x̃k[n] � V†

kxk[n], z̃k[n] � U†
kzk[n], and z̃k[n] ∼

Nc(0, N0Ir) since

E[z̃k[n]z̃k[n]†] = U†
E[z̃k[n]z̃k[n]†]U = N0Ir.

No delay contraints. Since the random matrix process {Hk}F
k=1 is

iid, as F → ∞ the channel is ergodic, and the average capacity is the
relevant quantity. When perfect CSI is available to the receiver only,
this is given by

C = E

[
m∑

i=1

log
(
1 +

ρ

t
λi

)]
. (4.61)

If perfect CSI is available to transmitter and receiver,

C = E

[
m∑

i=1

(log(µλi))+

]
, (4.62)

where µ is the solution of the “water-filling” equation

E

[
m∑

i=1

(µ − 1/λi)+

]
= ρ. (4.63)

For all block lengths N = 1, 2, . . ., the capacities (4.61) and (4.62)
are achieved by code sequences with length FNt with F → ∞. Cap-
acity (4.61) is achieved by random codes whose symbols are iid complex
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∼ Nc(0, ρ/t). Thus, all antennas transmit the same average energy per
symbol. Capacity (4.62) can be achieved by generating a random code
with iid components ∼ Nc(0, 1) and having each code word split into
F blocks of N vectors x̃k[n] with t components each. For block k, the
optimal linear transformation

Wk = Vk diag (
√

ρk,1, . . . ,
√

ρk,m, 0, . . . , 0︸ ︷︷ ︸
t−m

) (4.64)

is computed, where ρk,i � (µ− 1/λk,i)+. The vectors xk[n] = Wkx̃k[n]
are transmitted from the t antennas. This optimal scheme can be viewed
as the concatenation of an optimal encoder for the unfaded AWGN
channel, followed by a beamformer with weighting matrix Wk varying
from block to block [6].

Delay constraints. Consider now a delay constraint that forces F

to take on a finite value. Define Λ � {λk,i}F,m
k=1,i=1, Γ � {ρk,i}F,m

k=1,i=1,
the instantaneous mutual information

I(Λ,Γ) � 1
F

F∑
k=1

m∑
i=1

log(1 + λk,iρk,i) (4.65)

and the instantaneous SNR per block

ρF � 1
F

F∑
k=1

m∑
i=1

ρk,i. (4.66)

Assuming that the receiver has perfect knowledge of the CSI (and hence
of Λ) we can define a power allocation rule depending on Λ so that ρk,i

and ρF are functions of Λ. Then, we consider two power constraints:

ρF (Λ) ≤ ρ (short-term) (4.67)

E[ρF (Λ)] ≤ ρ (long-term). (4.68)

The optimum power allocation rules minimizing the outage probability

Pout(R) � P (I(Λ,Γ) < R) (4.69)

under constraints (4.67) and (4.68) are derived in [6] and reported as
follows.

Full text available at: http://dx.doi.org/10.1561/0100000002



48 Channel capacity

(1) With the short-term power constraint,

Γ(Λ) =
{

Γst(Γ, ρ) if Λ ∈ Ron(R, ρ)
G(Γ) if Λ ∈ Roff(R, ρ)

, (4.70)

where

(a) The (k, i)-th SNR is given by

ρst
k,i = (µst(Λ, ρ) − 1/λk,i)+, (4.71)

where

µst(Λ, ρ) =
F

|F(ρ)|ρ +
1

|F(ρ)|
∑

(k,i)∈F(ρ)

1
λk,i

(4.72)

and F(ρ) is the unique set of indexes (k, i) such that
1/λk,i ≤ µst(Λ, ρ) for all (k, i) ∈ F(ρ) and 1/λk,i >

µst(Λ, ρ) for all (k, i) /∈ F(ρ).

(b) The set

Ron(R, ρ) �
{
Λ : I(Λ,Γst(Λ, ρ)) ≥ R

}
(4.73)

is called power-on region.

(c) The set

Roff(R, ρ) �
{
Λ : I(Λ,Γst(Λ, ρ)) < R

}
(4.74)

is called outage or power-off region.

(d) G(Λ) is an arbitrary power allocation function satis-
fying the short-term constraint, i.e., ρF (G) ≤ ρ.

(2) With the long-term power constraint,

Γ(Λ) =
{

Γlt(Λ, R) if Λ ∈ R∗
on(R, ρ∗)

0 if Λ ∈ R∗
off(R, ρ∗)

, (4.75)

where

(a) The (k, i)-th SNR is given by

ρlt
k,i = (µlt(Λ, R) − 1/λk,i)+, (4.76)
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where

µlt(Λ, R) =

(
2FR∏

(k,i)∈F∗(R) λk,i

)1/|F∗(R)|
(4.77)

and F∗(R) is the unique set of indexes (k, i) such
that 1/λk,i ≤ µlt(Λ, R) for all (k, i) ∈ F∗(R) and
1/λk,i > µlt(Λ, R) for all (k, i) /∈ F∗(R).

(b) The set

R∗
on(R, ρ∗) �

{
Λ : ρF (Γlt(Λ, R)) ≤ ρ∗

}
(4.78)

is called power-on region.

(c) The set

R∗
off(R, ρ∗) �

{
Λ : ρF (Γlt(Λ, R)) > ρ∗

}
(4.79)

is called outage or power-off region.

(d) The threshold ρ∗ > 0 is set in order to satisfy the
long-term contraint (4.68) with equality, i.e., it is the
solution of

E[ρF (Γlt(Λ, R)) 1{Λ ∈ Ron(R, ρ∗)}] = ρ,

where 1{A} � 1 if A is true and 0 otherwise.

In other words, the outage probability is minimized under a
long-term power constraint by setting a threshold ρ∗. If the
instantaneous SNR per block necessary to avoid an outage
exceeds ρ∗, then transmission is turned off and an outage
is declared. If it is below ρ∗, transmission is turned on, and
power is allocated to the blocks according to a rule that de-
pends on the fading statistics only through the threshold
value ρ∗ (see [6]).

Fig. 4.16 illustrates the concept of outage region for a single trans-
mit and receive antenna system (t = r = 1) with F = 2, R = 1
bit/dimension pair, and ρ = 1 dB. The outage region is the inner re-
gion corresponding to smaller values of the channel matrix eigenvalues
(
√

λk,1, k = 1, 2) reflecting the occurrence of a deep fade.
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Fig. 4.16 Outage region Roff (R, ρ) of a single transmit and receive antenna system (t = r =
1) with F = 2, R = 1 bit/dimension pair, and ρ = 1 dB. The boundaries of constant-|F|
regions are also indicated for the short-term and long-term constraints as dotted and dashed
lines, respectively.

It is interesting to note that the outage regions Roff(R, ρ) (short-
term) and R∗

off(R, ρ) (long-term) exhibit the same functional depen-
dence on R and ρ in spite of their very different definitions of eqs. (4.74)
and (4.79) [6]. This is again illustrated by Fig. 4.16. The figure also
shows that though the outage regions Roff(1, 100.1) and R∗

off(1, 100.1)
coincide, the boundaries of constant-|F| regions differ in the two cases
(short-term and long-term) [6].

Another important concept related to outage probability is given in
the following.

Definition 4.14. The zero-outage capacity, sometimes also referred to
as delay-limited capacity, is the maximum rate for which the minimum
outage probability is zero under a given power constraint [6,24,25,107].
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It can be shown [6] that, under a positive long-term power con-
straint, the zero-outage capacity of a block-fading channel is positive if
the channel is regular. A regular channel is defined as follows.

Definition 4.15. A block fading channel is said to be regular if the
fading distribution is continuous, and

E[1/λ̄F ] < ∞, (4.80)

where λ̄F is the geometric mean of the λi,k:

λ̄F �
∏
k,i

λ
1/mF
k,i , (4.81)

where m � min{t, r}.

Example 4.16. The Rayleigh fading channel with F = m = 1 is not
regular, and its zero-outage capacity is null. The Rayleigh block fading
channel is regular if mF > 1 (see [6] for a proof). For example, if F > 1
and m = 1 we have

E[1/λ̄F ] = (E[λ−1/F
1 ])F = [Γ(1 − 1/F )]F < ∞,

where Γ(x) �
∫∞
0 ux−1e−udu is the standard Gamma function.

4.5.2 Asymptotics

Under a long-term power constraint and with optimal transmit power
allocation the zero-outage capacity of a regular block-fading channel as
ρ → ∞ is given by [6]

Czero-outage ∼ m log
(

ρ

mE [1/λ̄F ]

)
. (4.82)

As m → ∞ and max{t, r}/m → α > 0, the limiting value of the
normalized zero-outage capacity per degree of freedom C/m coincides
with the limiting normalized ergodic capacity [6].
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5

Influence of channel-state information

A crucial factor in determining the performance of a multi-antenna
system is the availability of the channel-state information (CSI), that
is, the knowledge of the values of the fading gains in each one of
the transmission paths. As we have seen, in a system with t trans-
mit and r receive antennas and an ergodic Rayleigh fading channel
modeled by a t × r matrix with random iid complex Gaussian entries,
the average channel capacity with perfect CSI at the receiver is about
m � min{t, r} times larger than that of a single-antenna system for the
same transmitted power. The capacity increases by about m bits per
dimension pair for every 3-dB increase in SNR. Due to the assumption
of perfect CSI available at the receiver, this result can be viewed as a
fundamental limit for coherent multiple-antenna systems [120].

5.1 Perfect CSI at the receiver

The most commonly studied situation is that of perfect CSI available
at the receiver, which is the assumption under which we developed our
study of multiple-antenna systems above.

53
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5.2 Imperfect CSI

Fundamental limits of noncoherent communication, i.e., one taking
place in an environment where estimates of the fading coefficients
are not available, were derived by Marzetta and Hochwald in [73, 56].
They use a block-fading channel model, whereby the fading gains are
Rayleigh and remain constant for N time instants before changing to
an independent realization. To compute the capacity of this channel,
we assume that coding is performed using blocks, each of them con-
sisting of tN elementary symbols being transmitted by t antennas in
N time instants. Each block is represented by the t×N matrix X. We
further assume that the r×N noise matrix Z has iid Nc(0, N0) entries.
With the assumptions of Section 2 on the statistics of H, the received
signal is the r × N matrix

Y = HX + Z. (5.1)

The entries of Y have the explicit expression

yin =
t∑

j=1

hijxjn + zin, i = 1, . . . , r, n = 1, . . . , N. (5.2)

Given X, these are random variables whose mean value is zero and
whose covariance is

E[yiny∗i′n′ | X] =
t∑

j=1

t∑
j′=1

E[hijh
∗
i′j′]xjnx∗

j′n′ + E[zinz∗i′n′ ]. (5.3)

Now, under our assumptions H and Z are temporally and spatially
white, that is,

E[hijh
∗
i′j′] = δii′ E[zinz∗i′n′ ] = δii′δnn′ , (5.4)

so we have

E[yiny∗i′n′ | X] = δii′

⎡⎣ t∑
j=1

xjnx∗
jn′ + δnn′

⎤⎦ . (5.5)

The previous equality expresses the fact that the rows of Y are indepen-
dent, while the columns have a nonzero correlation. This observation
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allows us to write down the relation connecting the rows (Y)i of Y
with those of H, denoted (H)i, and those of Z, denoted (Z)i, so that

(Y)i = (H)iX + (Z)i i = 1, . . . , r. (5.6)

Each row of Y is a zero-mean Gaussian vector with covariance matrix

E[(Y)†i (Y)i | X] = X†X + IN , (5.7)

and writing the pdf of matrix Y as the product of the pdfs of its rows,
we obtain

p(Y | X) =
r∏

i=1

p(Yi | X)

=
1

πr detr[X†X + IN ]

r∏
i=1

exp{−(Y)i(X†X + IN )−1(Y)†i}

=
1

πr detr[X†X + IN ]
exp{−Tr ((X†X + IN )−1Y†Y)}. (5.8)

Observe the following:

(a) The pdf of Y depends on its argument only through the
product Y†Y, which consequently plays the role of a suffi-
cient statistic. If N < r, the N × N matrix Y†Y provides a
representation of the received signals which is more econom-
ical than the r × N matrix Y.

(b) The pdf (5.8) depends on the transmitted signal X only
through the N × N matrix X†X.

Observation (b) above is the basis of the following theorem, which, in
its essence, says that there is no increase in capacity if we have t > N ,
and hence there is no point in making the number of transmit antennas
greater than N if there is no CSI. In particular, if N = 1 (an indepen-
dent fade occurs at each symbol period) only one transmit antenna
is useful. Note how this result contrasts sharply with its counterpart
of CSI known at the receiver, where the capacity grows linearly with
min{t, r}.
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Theorem 5.1. The channel capacity for t > N equals the capacity for
t = N .

Proof. Suppose that the capacity is achieved for a particular pdf of
matrix X with t > N . Recalling observation (b) above, the capacity is
determined by the matrix X†X: if we prove that a transmitted signal
can be found that generates the same matrix with only N transmit
antennas, then the theorem is proved. Now, perform the Cholesky fac-
torization [62, p. 407] X†X = LL†, with L an N × N lower-triangular
matrix. Using N transmit antennas with a signal matrix that has the
same pdf as L†, we obtain the same pdf that achieves capacity. In fact,
if X satisfies that average-power constraint

1
N

E[Tr X†X] = ρN0, (5.9)

so does L†. �

From [73], the signal matrix that achieves capacity can be written
in the form:

X = DΦ (5.10)

where Φ is a t × N matrix such that ΦΦ† = It. Moreover, Φ has a
pdf which is unchanged when the matrix is multiplied by a determin-
istic unitary matrix (this is the matrix counterpart of a complex scalar
having unit magnitude and uniformly-distributed phase). D is a t × t

real nonnegative diagonal matrix independent of Φ, whose role is to
scale X to meet the power constraint. In general, the optimizing D
is unknown, as is the exact expression of capacity. However, for the
high-SNR regime (ρ 
 1), the following results [73,120] are available:

(a) If N 
 t and t ≤ min{N/2, r}, then capacity is attained
when D =

√
ρNN0/t It, so that X =

√
ρNN0/tΦ.

(b) For every 3-dB increase of ρ, the capacity increase is ť(1 −
ť/N), where ť � min{t, r, 
N/2�}.

(c) If N ≥ 2r, there is no capacity increase by using r > t.
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An obvious upper bound to capacity can be obtained if we assume that
the receiver is provided with perfect knowledge of the realization of H.
Hence, the bound to capacity per block of N symbols is

C ≤ N log det
[
It +

ρ

t
H†H

]
. (5.11)

We can reasonably expect that the actual capacity tends to the RHS of
previous inequality, because a certain (small) fraction of the coherence
time can be reserved for sending training data to be used by the receiver
for its estimate of H.

5.3 Imperfect CSI at the receiver: General guidelines

In the real world the receiver has an imperfect knowledge of the CSI.
Here we assume that CSI is obtained by transmission of a pream-

ble in the form of a known t × Np code matrix Xp with total energy
Tr (XpX

†
p) = tNpEp, with Ep the average symbol energy. Since to est-

imate the r × t matrix H we need at least rt measurements, and each
symbol time yields r measurements at the receiver, we need Np ≥ t.
Moreover, the matrix Xp must have full rank t, since otherwise t lin-
early independent columns would not be available to yield rt indepen-
dent measurements. As a consequence, XpX

†
p must be nonsingular. The

corresponding received signal is denoted by

Yp = HXp + Zp. (5.12)

Among the several receiver structures that can be envisaged we
focus on the following:

(a) The simplest receiver inserts directly the maximum-
likelihood (ML) estimate of the channel into the ML metric
conditioned on H. The detection problem consists of com-
puting first

Ĥ � arg max
H

p(Yp | Xp,H) (5.13)

and then
X̂ � arg max

X
µ̃(X), (5.14)

where
µ̃(X) � ‖Y − ĤX‖2. (5.15)
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Since (5.15) is commonly referred to as mismatched metric,
we call this a mismatched receiver.

(b) The receiver estimates the channel matrix Ĥ from Yp and
Xp by an ML criterion, and uses this result to detect the
transmitted signal X. The detection problem consists of com-
puting

Ĥ � arg max
H

p(Yp | Xp,H) (5.16)

and
X̂ � arg max

X
p(Y | X,H = Ĥ), (5.17)

where p(Y | X,H = Ĥ) denotes the probability density func-
tion of Y given X and H, with H equal to Ĥ.

(c) The receiver detects the transmitted signal X by jointly pro-
cessing Y, Yp, and Xp (as suggested in [53]) without explicit
estimation of H. In this case, the detection problem can be
written as

X̂ � arg max
X

p(Y,Yp | X,Xp)

= EH

[
p(Y | X,H) p(Yp | Xp,H)

]
, (5.18)

since, conditionally on H, X, and Xp, the received signals Y
and Yp are independent.

Approach (a) is plainly the simplest. Approach (b) is more efficient
(see [27] for the single-input, single-output case) and allows one to
study the impairments caused by imperfect knowledge of H and by the
presence of noise in the received pilot signal Yp. Approach (c) is the
optimum: disregarding CSI recovery, it focuses on the detection of the
transmitted signal X. We discuss in detail the second and third receiver
types.

Approach (b): Receiver metric based on channel matrix est-

imate. The ML estimate of H based on the observation of Yp is
obtained by maximizing p(Yp | H,Xp) or, equivalently, by minimizing
‖Yp − HXp‖ with respect to H, yielding:

Ĥ = YpX†
p(XpX†

p)
−1 = H + E, (5.19)
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where
E � ZpX†

p(XpX†
p)

−1 (5.20)

is the matrix error on the estimate Ĥ. Plainly, H and E are indepen-
dent, and denoting by (·)i the ith row of a matrix (·), we can write

Ei = (Zp)iX†
p(XpX†

p)
−1. (5.21)

Thus, the rows of E are independent vectors of zero-mean circularly-
symmetric complex Gaussian random variables with covariance matrix

Σe � E[E†
iEi]

= E[(XpX†
p)

−1Xp(Zp)
†
i (Zp)iX†

p(XpX†
p)

−1]

= N0(XpX†
p)

−1. (5.22)

The simplest choice for Xp is a matrix with orthogonal rows and
average symbol energy Ep. In this case, the entries of E are independent
circularly-symmetric complex Gaussian random variables with mean
zero and variance N0/(NpEp). In [120] a diagonal Xp is advocated,
which corresponds to having only one transmit antenna active at a
time, since orthogonality, albeit attractive, may be incompatible with
standard signal constellations such as PSK. In fact, it is desirable that
the rows of Xp have good autocorrelation and cross-correlation prop-
erties. This is achieved by perfect root-of-unity sequences only in some
special cases (see [35] and references therein).

Based on these assumptions, we calculate the ML metric from the a
posteriori probability p(Y | X, Ĥ). First, we note that it can be written
as

p(Y | X, Ĥ) =
r∏

i=1

p(Yi | X, Ĥi), (5.23)

where Ĥi and Yi denote the ith rows of Ĥ and Y, respectively, since
it is plain to see that, conditionally on X, Yi depends only on Hi and
Zi. Thus, we can apply the following

Theorem 5.2 ([14]). Let z1 and z2 be circularly-symmetric complex
Gaussian random vectors with zero means and full-rank covariance ma-
trices Σij � E[ziz

†
j ]. Then, conditionally on z2, the random vector z1
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is circularly-symmetric complex Gaussian with mean Σ12Σ−1
22 z2 and

covariance matrix Σ11 − Σ12Σ−1
22 Σ21.

Letting

z1 = Y†
i = X†H†

i + Z†
i and z2 = Ĥ†

i = H†
i + E†

i (5.24)

in Theorem 5.2, we have

Σ11 = N0IN + X†X

Σ12 = X†

Σ22 = It + N0(XpX†
p)

−1.

Then, the conditional probability density function of Y†
i , given X and

Ĥi, is a circularly-symmetric complex Gaussian distribution, with

mean = Σ12Σ−1
22 z2

= X†(It + XpX†
p/N0)−1XpX†

p/N0Ĥ
†
i

= X†(It + XpX†
p/N0)−1XpX†

p/N0Ĥ
†
i (5.25)

covariance matrix = Σ11 −Σ12Σ−1
22 Σ†

12

= N0IN + X†X− X†(It + XpX†
p/N0)−1X

= N0[IN + X†(It + XpX†
p/N0)−1X/N0]. (5.26)

In the special case of XpX
†
p = NpEpIt, the previous expressions simplify

to

mean = µX†Ĥ†
i (5.27)

covariance matrix = N0IN + (1 − µ)X†X, (5.28)

where we define
µ � 1

1 + N0/(NpEp)
. (5.29)

As a result, we have:

p(Y | X, Ĥ) =
etr (−(Y − µĤX)(N0IN + (1 − µ)X†X)−1(Y − µĤX)†)

det(π(N0IN + (1 − µ)X†X))r
(5.30)
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corresponding to the metric

µ(X) = Tr ((Y − µĤX)(IN + (1 − µ)X†X/N0)−1(Y − µĤX)†)

+rN0 ln det(IN + (1 − µ)X†X/N0). (5.31)

For sequential implementation (required, e.g., by Viterbi decoding),
setting X = (X−,x) and Y = (Y−,y), we can write the branch metric
as

∆µ(x;X−,Y) � µ(X) − µ(X−)

= ‖y − µĤx‖2 − rN0 ln(1 + (1 − µ)x†Λ(X−)x/N0) (5.32)

−1 − µ

N0
Tr
(
Ξ(X)†Λ(X)Ξ(X) − Ξ(X−)†Λ(X−)Ξ(X−)

)
,

where

Ξ(X) � X(Y − ρĤX)† = Ξ(X−) + x(y − ρĤx)† (5.33)

Λ(X) � (It + (1 − ρ)XX†/N0)−1 (5.34)

= Λ(X−) − 1 − µ

N0 + (1 − µ)x†Λ(X−)x
Λ(X−)xx†Λ(X−)

(see [102] for further details).

Approach (c): Optimum receiver metric. In this case the re-
ceiver detects the transmitted word X maximizing the probability den-
sity function p(Y,Yp | X,Xp) without any prior estimate of the chan-
nel matrix H. We use the following

Theorem 5.3 ([87, App. B]). Given a Hermitian square matrix A
such that I + A > 0, a size-compatible complex matrix B, and a mat-
rix Z of iid zero-mean circularly-symmetric complex Gaussian random
variables with unit variance, the following identity holds:

E[etr (−ZAZ†−ZB†−BZ†)] = det(I+A)−retr [B(I+A)−1B†]. (5.35)

Applying Theorem 5.3 we obtain

p(Y,Yp | X,Xp)
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= EH

[
exp(−(‖Y − HX‖2 + ‖Yp − HXp‖2)/N0)

(πN0)(Np+N)r

]
= (πN0)−(Np+N)r

EH

[
etr (−(H†H(XX† + XpX†

p) − H(XY† + XpY†
p)

−(YX† + YpX†
p)H

† + (YY† + YpY†
p))/N0)

]
= (πN0)−(Np+N)r det

[
It + (XX† + XpX†

p)/N0

]−r

etr
(
(YX† + YpX†

p)[It + (XX† + XpX†
p)/N0]−1

(XY† + XpY†
p)/N

2
0 − (YY† + YpY†

p)/N0

)
. (5.36)

The logarithm of (5.36) yields the corresponding metric to be mini-
mized by the optimum receiver:

µ(X) = r ln det
[
It + (XX† + XpX†

p)/N0

]
−Tr

{
(YX† + YpX†

p)[It + (XX† + XpX†
p)/N0]−1

(XY† + XpY†
p)/N

2
0

}
. (5.37)

If the pilot matrix Xp has orthogonal rows, i.e., XpX
†
p = NpEpIt, we

have the surprising result that the metrics (5.37) and (5.31) are equiv-
alent (see [102] for details).

For sequential implementation, we can write the branch metric as

∆µ(x;X−) � µ(X) − µ(X−)

= r ln(1 + x†Λ(X−)x/N0)

+Tr [Ξ(X−)†Λ(X−)Ξ(X−) − Ξ(X)†Λ(X)Ξ(X)], (5.38)

where

Ξ(X) � (XY† + XpY†
p)/N0 = Ξ(X−) + xy†/N0

Λ(X) � [It + (XX† + XpX†
p)/N0]−1

= Λ(X−) − Λ(X−)xx†Λ(X−)
N0 + x†Λ(X−)x

ln detΛ(X) = ln detΛ(X−) − ln(1 + x†Λ(X−)x/N0)

(see [102] for details).
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Simulation results. Some simulation examples will show the perfor-
mance of space–time codes with imperfect channel estimation with the
suboptimum mismatched metric (5.15) and with the ML metric (5.31).
The latter metric is computed by using branch metrics (5.32). Perfor-
mance results relevant to an ML receiver with perfect CSI (provided
by a genie without rate loss) are also reported for comparison. Two
trellis space–time codes are considered. They are obtained by mapping
the rate-2/4 binary convolutional codes with 4 and 16 states, whose
generator matrices are [28]

G1 =
(

0 3 1 2
3 1 2 1

)
and

G2 =
(

3 7 1 6
4 7 6 3

)
onto QPSK, so that the 4 encoded bits are mapped to QPSK symbol
pairs sent to the t = 2 transmit antennas. Hereafter we refer to these
codes by the names STC-1 and STC-2.

Figures 5.1 and 5.2 show the performance of a 2 × 2 MIMO block
Rayleigh fading channel with the trellis space–time code STC-1 with
the mismatched and ML metrics (5.15) and (5.31). The frame length
considered is N = 130 and trellis termination is assumed. The diagrams
plot the frame-error rate (FER) versus the signal-to-noise ratio (SNR)
S/N = tEs/N0 at constant values of the pilot-to-noise ratio (PNR)
(S/N)p = NpEp/N0. These plots show that when the PNR exceeds
15 dB the ML receiver reaches the genie ML receiver performance. The
rate loss due to pilot symbol insertion is not accounted for in these
diagrams.

Figure 5.3 shows the performance of a 2× 2 MIMO block Rayleigh
fading channel with the trellis space–time code STC-1 with the mis-
matched and ML metrics (5.15) and (5.31). The frame length is
N = 130 including trellis termination. The diagrams plot the FER
versus Eb/N0. Eb denotes the average received energy per information
bit accounting for the rate loss due to pilot symbols, i.e.,

Eb =
N + Np

N

tEs

µb
.
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Fig. 5.1 Frame-error rate of a 2 × 2 (t = 2, r = 2) independent Rayleigh fading MIMO
channel with the trellis space–time code STC-1. Solid curves show the performance with
the ML metric (5.31). Dashed curves show the performance with the mismatched metric
(5.15).

Here, µb denotes the number of information bits per symbol interval of
the trellis space–time code. Moreover, it is assumed that the average
pilot symbol energy is equal to the average data symbol energy (i.e.,
Ep = Es) and Np (number of pilot intervals per frame) takes on the
values 2, 4, 8, 16, and 32.

Similarly, Figure 5.4 shows the performance of a 2× 4 MIMO chan-
nel with the trellis space–time code STC-1. Figure 5.5 shows the per-
formance of a 2 × 2 MIMO channel with the trellis space–time code
STC-2.

It can be noticed that the improvement achieved by increasing the
number of pilot symbols used with the ML metric is always limited and
there is a gap to the lower bound performance of the genie ML receiver
which has perfect CSI available at no expense. The gap depends on t,
r, the code and the receiver considered. When t = r = 2 it is about
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Fig. 5.2 Same as Fig. 5.1 for the code STC-2.

0.3 dB (STC-1 at FER = 10−2 with Np = 4, ML receiver) or 1.0 dB
(STC-1 at FER = 10−2 with Np = 16, mismatched receiver). When
t = 2 and r = 4 it is about 0.6 dB (STC-1 at FER = 10−2 with
Np = 4, ML receiver) or 1.3 dB (STC-1 at FER = 10−2 with Np = 16,
mismatched receiver). Finally, when t = r = 2 it is about 0.45 dB
(STC-2 at FER = 10−2 with Np = 4, ML receiver) or 1.1 dB (STC-2
at FER = 10−2 with Np = 16, mismatched receiver).

Notice that the mismatched receiver attains the optimum perfor-
mance when the number of pilot symbols per frame Np is equal to 16
(about 11% of the overall frame of pilot and data symbols) while the
ML receiver performance attains the optimum performance when the
number of pilot symbols per frame Np is equal to 4 (about 3% of the
overall frame of pilot and data symbols).

Figures 5.6 to 5.8 show the FER performance versus the fraction of
pilot symbols Np/(Np+N) at fixed Eb/N0. They refer to 2×2 and 2×4
MIMO systems with trellis space–time codes STC-1 and STC-2. The
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Fig. 5.3 Frame-error rate of a 2 × 2 (t = 2, r = 2) independent Rayleigh fading MIMO
channel with the trellis space–time code STC-1 versus Eb/N0 for several values of pilot
intervals Np = 2, 4, 8, and 16 and frame length N = 130. Solid curves with markers show
the performance with the suboptimum metric (5.15). Dashed curves with markers show the
performance with the ML metric (5.31). The lowest solid curves shows the performance
with perfect CSI.

ML receiver performs very close to the genie receiver and the optimum
number of pilot symbols is about 4 for the ML receiver and 16 for the
mismatched receiver.

5.4 CSI at the transmitter and at the receiver

It is also possible to envisage a situation in which channel state infor-
mation is known to the receiver and to the transmitter: the latter can
take the appropriate measures to counteract the effect of channel atten-
uations by suitably modulating its power. To assure causality, the as-
sumption of CSI available at the transmitter is valid if it is applied to a
multicarrier transmission scheme in which the available frequency band
(over which the fading is selective) is split into a number of subbands, as
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Fig. 5.4 Same as Fig. 5.3 for a 2 × 4 MIMO channel.

with OFDM. The subbands are so narrow that fading is frequency-flat
in each of them, and they are transmitted simultaneously, via ortho-
gonal subcarriers. From a practical point of view, the transmitter can
obtain the CSI either from a dedicated feedback channel (some existing
systems already implement a fast power-control feedback channel) or
by time-division duplex, where the uplink and the downlink time-share
the same subchannels and the fading gains can be estimated from the
incoming signal.

Situations where a partial (parametric) CSI is available at the trans-
mitter can also be envisaged. For example, for the Rician or Nakagami
fading channels (see Section 3.1) the transmitter may be privy to the
value of the parameter K or m, respectively. In another situation, only
the Dammel condition number of H may be known [55].
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Fig. 5.5 Same as Fig. 5.3 for the code STC-2.
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Fig. 5.6 Word error rate of a 2×2 (t = 2, r = 2) independent Rayleigh fading MIMO channel
with the trellis space–time code STC-1 versus the fraction of pilot symbols Np/(Np + N)

at Eb/N0 = 10 dB. Solid curves with � show the performance with the suboptimum metric
(5.15). Solid curves with ◦ show the performance with the ML metric (5.31). The lowest
straight line shows the performance of a genie-aided receiver, which has perfect CSI.
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Fig. 5.7 Same as Fig. 5.6 for a 2 × 4 MIMO channel at Eb/N0 = 4 dB.
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Fig. 5.8 Same as Fig. 5.6 for the code STC-2 at Eb/N0 = 8 dB.
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6

Coding for multiple-antenna systems

Given that considerable gains are achievable by a multi-antenna system,
the challenge is to design coding schemes that perform close to capacity:
space–time trellis codes, space–time block codes, and layered space–
time codes have been advocated (see, e.g., [50,95,96,100,104,105,69]).

A space–time code with block length N is described by the t × N

matrix X � (x[1], . . . ,x[N ]). The code, which we denote X, has |X|
words. The row index of X indicates space, while the column index indi-
cates time: to wit, the ith component of the t-vector x[n], denoted xi[n],
is a complex number representing the two-dimensional signal transmit-
ted by the ith antenna at discrete time n, n = 1, . . . , N , i = 1, . . . , t.
The received signal is the r × N matrix

Y = HX + Z, (6.1)

where Z is matrix of zero-mean circularly-symmetric complex Gaussian
RVs with variance N0. Thus, the noise affecting the received signal is
spatially and temporally independent, with E[ZZ†] = NN0Ir, where
Ir denotes the r × r identity matrix and (·)† denotes Hermitian trans-
position. The channel is described by the r × t matrix H. Here we
assume that H is independent of both X and Z, it remains constant

71
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during the transmission of an entire code word (the “quasi-static”, or
“block-fading”, assumption), and its realization (the CSI) is known at
the receiver.

6.1 Maximum likelihood detection

Under the above assumptions, ML decoding corresponds to choos-
ing the code word X which minimizes the squared Frobenius norm
‖Y−HX‖2. Explicitly, ML detection and decoding corresponds to the
minimization of the quantity

‖Y − HX‖2 =
r∑

i=1

N∑
n=1

∣∣∣∣yin −
t∑

j=1

hijxjn

∣∣∣∣2. (6.2)

6.1.1 Pairwise error probability

For computations, as calculation of exact error probability is out of the
question, we resort to the union bound

P (e) ≤ 1
|X|
∑
X∈X

∑
bX
=X

P (X → X̂), (6.3)

which is known to be asymptotically tight. The “pairwise error prob-
ability” (PEP) P(X → X̂) [5, p. 190], the basic building block for the
evaluation of P (e) in coded systems, admits a closed-form expression:

P (X → X̂) � P(‖Y − HX̂‖2 < ‖Y − HX‖2)

= P(‖H∆ + Z‖2 < ‖Z‖2)

= P((H∆ + Z,H∆ + Z) − (Z,Z)) < 0)

= P(‖H∆‖2 + 2(H∆,Z)) < 0), (6.4)

where ∆ � X − X̂. The variance of the Gaussian random variable
ν � (A,Z) can be obtained as follows. Setting A = A1 + jA2 and
Z = Z1 + jZ2 (where A1, A2, Z1, and Z2 are real matrices) we have:

E[ν2] = E[(Tr (A1Z1 − A2Z2))2]

= E

[(∑
i

∑
j

(A1)ij(Z1)ji − (A2)ij(Z2)ji

)2]
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=
∑

i

∑
j

((A1)2ijE[(Z1)2ji] + (A2)2ijE[(Z2)2ji])

=
N0

2
‖A‖2 (6.5)

since Z1 and Z2 are independent. Then, the pairwise error probability
becomes

P (X → X̂) = E

[
Q

(‖H∆‖√
2N0

)]
. (6.6)

By writing

‖H∆‖2 = Tr
(
H†H∆∆†

)
, (6.7)

we see that the exact pairwise error probability, and hence the union
bound to P (e), is given by the expected value of a function of the t× r

matrix H†H. This matrix can be interpreted as representing the effect
of the random spatial interference on error probability: in particular, if
H†H = It then (6.6) becomes

P (X → X̂) = Q

( ‖∆‖√
2N0

)
, (6.8)

which is the PEP we would obtain on a set of t parallel independent
AWGN channels, each transmitting a code word consisting of a row of
X.

A useful approximation to the pairwise error probability (6.6) can
be computed by substituting exponential functions for Q functions.
This is obtained by applying the bound, asymptotically tight for large
arguments:

Q

(‖H∆‖√
2N0

)
≤ exp

(−‖H∆‖2/4N0

)
. (6.9)

Under the assumption of Rayleigh fading, that is, when hij ∼ Nc(0, 1),
we can compute the exact expectation of the RHS of (6.9) using
Theorem C.1. We obtain

P (X → X̂) ≤ det
[
It + ∆∆†/4N0

]−r
. (6.10)
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6.1.2 The rank-and-determinant criterion

Since the determinant of a matrix is equal to the product of its eigen-
values, (6.10) yields

P (X → X̂) ≤
t∏

j=1

(1 + λj/4N0)
−r , (6.11)

where λj denotes the jth eigenvalue of ∆∆†. We can also write

P (X → X̂) ≤
∏
j∈J

(λj/4N0)
−r , (6.12)

where J is the index set of the nonzero eigenvalues of ∆∆†. Denoting
by ν the number of elements in J, and rearranging the indexes so that
λ1, . . . , λν are the nonzero eigenvalues, we have

P (X → X̂) ≤
⎛⎝ ν∏

j=1

λj

⎞⎠−r

γ−rν , (6.13)

where γ � 1/4N0. From this expression we see that the total diversity
order of the coded system is rνmin, where νmin is the minimum rank
of ∆∆† across all possible pairs X, X̂ (rνmin is the “diversity gain”).
In addition, the pairwise error probability depends on the power r of
the product of eigenvalues of ∆∆†. This does not depend on the SNR
(which is proportional to γ), and displaces the error probability curve
instead of changing its slope. We call this the “coding gain.” Thus,
for high enough SNR we can design a space–time code choosing as a
criterion the maximization of the coding gain as well as of the diversity
gain.

Notice that if νmin = t, i.e., ∆∆† is full-rank for all code word pairs,
we have

t∏
j=1

λj = det[∆∆†]. (6.14)

An obvious necessary condition for ∆∆† to be full-rank is that N ≥ t

(the code block length must be at least equal to the number of transmit
antennas).
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Observation 6.1. Note that, based on the above discussion, the max-
imum achievable diversity gain is rt. In Section 9 we shall discuss how
this gain is generally not compatible with the maximum rate gain m.

6.1.3 The Euclidean-distance criterion

Observe that the term in the RHS of (6.10) can be written as

det(It + γ∆∆†) = 1 + γTr (∆∆†) + . . . + γt det(∆∆†). (6.15)

We see that if γ 	 1 then the LHS of (6.15), and hence the PEP, de-
pends essentially on Tr (∆∆†), which is the squared Euclidean distance
between X and X̂, while if γ 
 1 it depends essentially on det(∆∆†),
that is, on the product of the eigenvalues of ∆∆†. This suggests that
for low SNR the upper bound (6.15) to error probability depends on
the Euclidean distance between code words, as one would expect be-
cause the system performance is dictated by additive noise rather than
by fading. Conversely, as the SNR increases, the fading effects become
more and more relevant, and the rank and determinant of ∆∆† dictate
the behavior of the PEP.

A different perspective can be obtained by allowing the number r

of receive antennas to grow to infinity. To do this, we first renormalize
the entries of H so that their variance is now 1/r rather than 1: this
prevents the total receive power from diverging as r → ∞. We obtain
the following new form of (6.10):

P (X → X̂) ≤ det
[
It + ∆∆†/4rN0

]−r
, (6.16)

which yields, in lieu of (6.15):

det(It + (γ/r)∆∆†) = 1 + (γ/r)Tr (∆∆†) + . . . + (γ/r)t det(∆∆†).
(6.17)

This shows that as r → ∞ the rank-and-determinant criterion is appro-
priate for a SNR increasing as fast as r, while the Euclidean-distance
criterion is appropriate for finite SNRs.1 This situation is illustrated

1 Other design criteria can also be advocated. See, e.g., [51].
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Fig. 6.1 Frame-error probability of the binary (24, 8, 12) extended Golay code with binary
PSK over a channel with t = 2 transmit antennas and r receive antennas with ML decoding.

in the example of Fig. 6.1, which shows the union upper bound on the
word-error probability P (e) of the space–time code obtained by split-
ting evenly the code words of the (24, 8, 12) extended Golay binary
code between two transmit antennas (the calculations are based on the
techniques described in Appendix D). This space–time code has the
minimum rank of ∆ equal to 1, and hence a diversity gain r. Now,
it is seen from Fig. 6.1 how the slope predicted by (6.10), and exhib-
ited by a linear behavior in the P (e)-vs.-Eb/N0 chart, can be reached
only for very small values of error probability (how small, generally
depends on the weight distribution of the code under scrutiny). To
justify this behavior, observe from Fig. 6.1 that for a given value of
r the error-probability curve changes its behavior from a “waterfall”
shape (for small to intermediate SNR) to a linear shape (high SNR).
As the number of receive antennas grows, this change of slope occurs
for values of P (e) that are smaller and smaller as r increases. Thus, to
study the error-probability curve in its waterfall region it makes sense
to examine its asymptotic behavior as r → ∞. The case r → ∞, t < ∞
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can easily be dealt with by using the strong law of large numbers: this
yields H†H → It a.s., It the t × t identity matrix. We can see that, as
r → ∞,

‖H∆‖2 → ‖∆‖2 (6.18)

and hence

P (X → X̂) → Q

( ‖∆‖√
2N0

)
. (6.19)

This result shows that, as the number of receiving antennas grows large,
the union bound on the error probability of the space–time code de-
pends only on the Euclidean distances between pairs of code words.
This is the result one would get with a transmission occurring over
a non-fading additive white Gaussian noise (AWGN) channel whose
transfer matrix H has orthogonal columns, i.e., is such that H†H is
a scalar matrix. In this situation the smallest error probability, at the
expense of a larger complexity, can be achieved by using a single code,
optimized for the AWGN channel, whose words of length tN are equally
split among the transmit antennas. Within this framework, the number
of transmit antennas does not affect the PEP, but only the transmission
rate which, expressed in bits per channel use, increases linearly with t.

For another example, observe Fig. 6.2. This shows how for inter-
mediate SNRs the Euclidean criterion may yield codes better than
the rank-and-determinant criterion. It compares the simulated perfor-
mances, in terms of frame-error rate, of the 4-state, rate-1/2 space–time
code of [103] and a comparable space–time code obtained by choosing
a good binary, 4-state, rate-2/4 convolutional code [28] and mapping
its symbols onto QPSK (the first and second encoded bits are mapped
onto the QPSK symbol transmitted by the first antenna by Gray en-
coding, while the third and fourth encoded bits are mapped onto the
QPSK symbol transmitted by the second antenna by Gray encoding).
The frame length N is 130 symbols for both codes, including 1 symbol
for trellis termination. It is seen that in the error-probability range of
these two figures the “standard” convolutional code generally outper-
forms the space–time code of [103] even for small values of r.

Decoding is performed by using the Viterbi algorithm with perfect
CSI at the receiver.

Full text available at: http://dx.doi.org/10.1561/0100000002



78 Coding for multiple-antenna systems

0 2 4 6 8 10 12

10
−3

10
−2

10
−1

10
0

SNR (dB)

F
E

R

4−state QPSK − 2 tx / 2,4,8 rx antennas

r=2 

r=4 

r=8 

Fig. 6.2 Frame-error rates of two space–time codes with 4 states, rate 1/2, and QPSK.
Number of transmit antennas: t = 2; number of receive antennas: r = 2, 4, 8. Continuous
line: Code from [103]. Dashed line: Code obtained from a binary convolutional code good
for the AWGN channel [28].

Full text available at: http://dx.doi.org/10.1561/0100000002



7

Some practical coding schemes

7.1 Delay diversity

One of the first coding schemes proposed [92, 118], is called delay di-
versity. This is a rate-1/t repetition code, each of whose symbols is
transmitted from a different antenna after being delayed. For example,
with t = 2 the transmitted code matrix is

X =
[

x1 x2 x3 · · ·
0 x1 x2 · · ·

]
.

We can see that each symbol traverses rt paths, so that diversity rt is
achieved. On the other hand, this comes at the cost of having a rate
of only 1 symbol per channel use. Also, observe that delay diversity
transforms the frequency-flat channel into an intersymbol-interference
(and hence frequency-selective) channel. Optimum detection can be
accomplished by using the Viterbi algorithm [5, Chap. 7] or standard
equalization techniques (see infra the discussion of V-BLAST).

7.2 Alamouti scheme

We describe first this scheme by considering the simple case t = 2,
r = 1, which yields the scheme illustrated in Fig. 7.1. The code matrix

79
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transmitter combiner

Fig. 7.1 Alamouti transmit-diversity scheme with t = 2 and r = 1.

X has the form

X =
[

x1 −x∗
2

x2 x∗
1

]
. (7.1)

This means that during the first symbol interval the signal x1 is trans-
mitted from antenna 1, while signal x2 is transmitted from antenna
2. During the next symbol period, antenna 1 transmits signal −x∗

2,
and antenna 2 transmits signal x∗

1. Thus, the signals received in two
adjacent time slots are

y1 = h1x1 + h2x2 + z1

and
y2 = −h1x

∗
2 + h2x

∗
1 + z2,

where h1, h2 denote the path gains from the two transmit antennas to
the receive antenna. The combiner of Fig. 7.1, which has perfect CSI
and hence knows the values of the path gains, generates the signals

x̃1 = h∗
1y1 + h2y

∗
2

and
x̃2 = h∗

2y1 − h1y
∗
2

so that

x̃1 = h∗
1(h1x1 + h2x2 + z1) + h2(−h∗

1x2 + h∗
2x1 + z∗2)

= (|h1|2 + |h2|2)x1 + (h∗
1z1 + h2z

∗
2) (7.2)
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transmitter combiner

Fig. 7.2 Alamouti transmit-diversity scheme with t = 2 and r = 2.

and similarly

x̃2 = (|h1|2 + |h2|2)x2 + (h∗
2z1 − h1z

∗
2). (7.3)

Thus, x1 is separated from x2. This scheme has the same performance
as one with t = 1, r = 2, and maximal-ratio combining [5, Chap. 13]
(provided that each transmit antenna transmits the same power as the
single antenna for t = 1). To prove the last statement, observe that if
the signal x1 is transmitted, the two receive antennas observe h1x1+n1

and h2x1 + n2, respectively, and after maximal-ratio combining the
decision variable is

h∗
1(h1x1 + n1)+ h∗

2(h2x1 + n2) = (|h1|2 + |h2|2)x1 + (h∗
1z1 + h2z

∗
2) = x̃1.

This scheme can be generalized to other values of r. For exam-
ple, with t = r = 2 and the same transmission scheme as before (see
Fig. 7.2), we have, if y11, y12, y21, y22, denote the signals received by
antenna 1 at time 1, by antenna 1 at time 2, by antenna 2 at time 1,
and by antenna 2 at time 2, respectively,[

y11 y12

y21 y22

]
=
[

h11 h12

h21 h22

] [
x1 −x∗

2

x2 x∗
1

]
+
[

z11 z12

z21 z22

]
=
[

h11x1 + h12x2 + z11 −h11x
∗
2 + h12x

∗
1 + z12

h21x1 + h22x2 + z21 −h21x
∗
2 + h22x

∗
1 + z22

]
.
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The combiner generates

x̃1 = h∗
11y11 + h12y

∗
12 + h∗

21y21 + h22y
∗
22

and
x̃2 = h∗

12y11 − h11y
∗
12 + h∗

22y21 − h21y
∗
22,

which yields

x̃1 = (|h11|2 + |h12|2 + |h21|2 + |h22|2)x1 + noise

and
x̃2 = (|h11|2 + |h12|2 + |h21|2 + |h22|2)x2 + noise.

As above, it can easily be shown that the performance of this t = 2,
r = 2 scheme is equivalent to that of a t = 1, r = 4 scheme with
maximal-ratio combining (again, provided that each transmit antenna
transmits the same power as with t = 1).

A general scheme with t = 2 and a general value of r can be exhib-
ited: it has the same performance of a single-transmit-antenna scheme
with 2r receive antennas and maximal-ratio combining.

7.3 Alamouti scheme revisited: Orthogonal designs

We can rewrite the transmitted signal in Alamouti scheme with t = 2
and r = 1 in the following equivalent form:[

y1

y∗2

]
=
[

h1 h2

h∗
2 −h∗

1

] [
x1

x2

]
+
[

z1

z2

]
. (7.4)

Now, if we define

Ȟ �
[

h1 h2

h∗
2 −h∗

1

]
,

we see that
Ȟ†Ȟ = (|h1|2 + |h2|2)I2. (7.5)

Recalling (6.6)–(6.7), this shows that the error probability for this
Alamouti scheme is the same as without spatial interference, and with
a signal-to-noise ratio increased by a factor (|h1|2 + |h2|2). For this
reason Alamouti scheme is called an orthogonal design. There are also
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orthogonal designs with t > 2. For example, with t = 3, r = 1, and
N = 4 we have

X =

⎡⎣ x1 −x∗
2 −x∗

3 0
x2 x∗

1 0 −x∗
3

x3 0 x∗
1 x∗

2

⎤⎦
so that the equation Y = HX + Z can be rewritten in the equivalent
form ⎡⎢⎢⎢⎣

y1

y∗2
y∗3
y∗4

⎤⎥⎥⎥⎦ = Ȟ

⎡⎣ x1

x2

x3

⎤⎦+ ž, (7.6)

where

Ȟ �

⎡⎢⎢⎢⎣
h1 h2 h3

h∗
2 −h∗

1 0
h∗

3 0 h∗
1

0 h∗
3 −h∗

2

⎤⎥⎥⎥⎦ (7.7)

and ž is a noise 4-vector. In this case we can verify that

Ȟ†Ȟ = (|h1|2 + |h2|2 + |h3|2)I3.

Notice that with this code we transmit three signals in four time inter-
vals, so that its rate is 3/4 signals per channel use, while the original
Alamouti schemes transmit 1 signal per channel use. In fact, orthogonal
designs with t > 2 have rates that cannot exceed 3/4 [116].

To avoid the rate loss of orthogonal designs, algebraic codes can be
designed that, for any number of transmit and receive antennas, achieve
maximum diversity as Alamouti codes, while the rate is t symbols per
channel use (see [71] and references therein).

7.4 Linear space–time codes

Alamouti codes and orthogonal designs share the property of having
simple decoders, due to the linearity of their “space–time” map from
symbols to transmit antennas. Schemes with this property form the
class of linear space–time codes [52]. These can be used for any num-
ber of transmit and receive antennas, and may outperform orthogonal
designs.
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In these codes, the L symbols x1, . . . , xL are transmitted by t an-
tennas in N time intervals. The code matrix X has the form

X =
L∑

�=1

(α�A� + jβ�B�), (7.8)

where α� and β� are the real and imaginary part of x�, respectively,
and A�,B�, 
 = 1, . . . , L, are t × N complex matrices.

Example 7.1. With Alamouti codes we may write

X =
[

x1 −x∗
2

x2 x∗
1

]
=
[

α1 + jβ1 −α2 + jβ2

α2 + jβ2 α1 − jβ1

]
= α1

[
1 0
0 1

]
+ jβ1

[
1 0
0 −1

]
+ α2

[
0 −1
1 0

]
+ jβ2

[
0 1
1 0

]
,

which shows them to be a special case of linear space–time codes.

Define the column vectors

x̌ � [α1 β1 · · · αL βL]′ ž � vec(Z)

and the Nr × 2L matrix

Ȟ � [vec(HA1) vec(jHB1) · · · vec(HAL) vec(jHBL)] .

Then we can write the received signal in the form

y̌ � vec(Y) = vec(HX + Z)

=
L∑

�=1

(α�vec(HA�) + β�vec(jHB�)) = Ȟx̌ + ž.

Notice that, since L signals are transmitted and y̌ has Nr components,
to be able to recover x̌ from y̌ we must have L ≤ Nr.

The observed signal y̌ can be decoded as follows. Perform the QR
factorization of Ȟ:

Ȟ = Q̌Ř,
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where Q̌ is unitary, and Ř is an upper triangular matrix. Thus, if we
operate a linear transformation on y̌ consisting of its premultiplica-
tion by Q̌†, we obtain (disregarding the noise for simplicity) a vector
Řx̌, whose last entry is proportional to βL. From this, βL can be de-
tected. The next-to-last entry is a linear combination of αL and βL:
thus, since βL has already been detected, and hence its contribution to
spatial interference can be canceled, we may use this entry to detect
αL. The third-from-last entry is a linear combination of βL−1, αL, and
βL. This can be used to detect βL−1, and so on. This “nulling-and-
canceling” idea will be reprised infra, with some additional details, in
our discussion of zero-forcing V-BLAST. More generally, our treatment
of V-BLAST can be applied, mutatis mutandis, to linear space–time
codes.

7.5 Trellis space–time codes

Trellis space–time codes are trellis-coded modulation (TCM)
schemes [7], in which every transition among states, as described by
a trellis, is labeled by t signals, each being associated with one trans-
mit antenna [104]. Trellis space–time codes can achieve higher rates
than orthogonal designs, but they suffer from a complexity which grows
exponentially in the number of transmit antennas.

Example 7.2. Examples of a space–time codes are shown in Figs. 7.3
and 7.4 through their trellises. The code in Fig. 7.3 has t = 2, four
states, and transmits 2 bits per channel use by using 4PSK, whose
signals are denoted 0, 1, 2, 3. With r = 1 its diversity is 2. Label xy

means that signal x is transmitted by antenna 1, while signal y is
simultaneously transmitted by antenna 2. The code in Fig. 7.4 has
again t = 2, eight states, and transmits 3 bits per channel use by using
8PSK, whose signals are denoted 0, 1, . . . , 7. With r = 1 its diversity is
2.

7.6 Space–time codes when CSI is not available

In a rapidly-changing mobile environment, or when long training se-
quences are not allowed, the assumption of perfect CSI at the receiver
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00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

Fig. 7.3 A 4-PSK trellis space–time coding scheme with t = 2 and diversity 2r.

00 01 02 03 04 05 06 07 

50 51 52 53 54 55 56 57 

20 21 22 23 24 25 26 27 

70 71 72 73 74 75 76 77 

40 41 42 43 44 45 46 47 

10 11 12 13 14 15 16 17 

60 61 62 63 64 65 66 67 

30 31 32 33 34 35 36 37 

Fig. 7.4 An 8-PSK trellis space–time coding scheme with t = 2 and diversity 2r.

may not be valid. In the absence of CSI at the receiver, [57, 74] ad-
vocate unitary space–time modulation, a technique which circumvents
the use of training symbols (which entail a rate loss). Here the informa-
tion is carried on the subspace that is spanned by orthonormal signals
that are sent. This subspace survives multiplication by the unknown
channel-gain matrix H. A scheme based on differential unitary space–
time signals is advocated in [59]. High-rate constellations with excellent
performance, obtained via algebraic techniques, are described in [54].
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Suboptimum receiver interfaces

From the capacity results described above we can see that extremely
large spectral efficiencies can be achieved on a wireless link if the num-
ber of transmit and receive antennas is large. However, as t and r in-
crease, the complexity of space–time coding with maximum-likelihood
detection may become too large. This motivates the design of sub-
optimal receivers whose complexity is lower than ML, and yet perform
close to it. In a receiver we distinguish an interface, which is a sys-
tem accepting as its input the channel observation Y and generating
a “soft estimate” Ỹ of the code matrix X, and a decoder, whose input
and output are Ỹ and the decoded matrix X̂, respectively.

We describe here some of these interfaces, categorized as linear and
nonlinear.1

1 Other reduced-complexity receiver interfaces can be envisaged. For example, in [75] a
scheme is advocated where r′ < r antennas are used, by selecting the r′ best received
signals. As long as r′ ≥ t, the capacity achieved by this system is close to that of a
full-complexity system.

87
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8.1 Linear interfaces

A linear interface operates a linear transformation A of the received
signal, with A = A(H) a t × r matrix chosen so as to allow a simpli-
fication of the metrics used in the Viterbi algorithm employed for soft
decoding of X. The conditional PEP for this linear interface with the
metric ‖AY −X‖2 is given by

P(X → X̂ | H)

= P(‖AY − X̂‖2 < ‖AY − X‖2 | H)

= P(‖AHX− X̂ + AZ‖2 < ‖AHX− X + AZ‖2 | H)

= P(‖∆‖2 + 2((AH − I)X,∆) + 2(AZ,∆) < 0 | H). (8.1)

By observing that (AZ,∆) is a zero-mean circularly-symmetric com-
plex Gaussian RV with variance N0‖A†∆‖2, the unconditional PEP
becomes

P(X → X̂) = E

[
Q

(‖∆‖2 + 2((AH − I)X,∆)√
2N0‖A†∆‖2

)]
. (8.2)

8.1.1 Zero-forcing interface

This consists of choosing A = H+, where the superscript + denotes
the Moore–Penrose pseudoinverse of a matrix. For future reference, we
note that we have

H+(H+)† = (H†H)−1. (8.3)

If we assume r ≥ t, then H†H is invertible with probability 1, and we
have

H+ = (H†H)−1H† (8.4)

so that
H+Y = X + H+Z, (8.5)

which shows that the spatial interference is completely removed from
the received signal, thus justifying the name “zero forcing” associated
with this interface. The metric used here is then ‖H+Y − X‖2.

From (8.1), the conditional PEP is given by

P (X → X̂ | H) = Q

(‖∆‖2

2σ

)
, (8.6)
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where, by (8.3),

σ2 � V[(∆,H+Z)]

=
N0

2
Tr [∆†H+(H+)†∆]

=
N0

2
Tr [∆†(H†H)−1∆]. (8.7)

8.1.2 Linear MMSE interface

Here we choose the matrix A that minimizes the mean-square value of
the spatial interference plus noise. Define the MSE as

ε2(A) � E[‖Ay−x‖2] = E[Tr ((AH− It)x+Az)((AH− It)x+Az)†].
(8.8)

Using the standard simplifying assumption of iid zero-mean compo-
nents of x (with second moment Es) we obtain the following expres-
sion:

ε2(A) = Tr (Es(AH − It)(AH − It)† + N0AA†). (8.9)

The variation of ε2(A) with respect to A is then given by

δ(ε2) = Tr
{

δA[EsH(AH−It)†+N0A†]+[Es(AH−It)H†+N0A]δA†
}
.

(8.10)
The corresponding stationary point obtained by nulling this variation
yields the MMSE solution:

A = Ammse � H†(HH† + δsIr)−1 = (H†H + δsIt)−1H†, (8.11)

where δs � N0/Es. From (8.2) we obtain

P (X → X̂) = E

[
Q

(
‖∆‖2 + 2(((H†H + δsIt)−1H†H − It)X,∆)√

2N0‖H(H†H + δsIt)−1∆‖2

)]
.

(8.12)
Notice that as δs → 0 the right-hand side of (8.12) tends to the PEP
of the zero-forcing detector, as it should.

8.1.3 Asymptotic performance of linear interfaces: Finite t,
r → ∞

Here we consider the case r 
 t by examining the asymptotic perfor-
mance obtained when r → ∞ while t remains constant. By the strong
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law of large numbers we have, as r → ∞,

H†H → It a.s. (8.13)

and we have previously seen from (6.19) that with ML detection the
pairwise error probability tends to that of a nonfading AWGN channel
(no spatial interference). Using (8.13) in (8.7) and in (8.12), we see
that, asymptotically, ZF and MMSE interfaces do not entail any loss
of performance with respect to ML.

8.1.4 Asymptotic performance of linear interfaces: t, r → ∞
with t/r → α > 0

Things change if both t and r grow to infinity while their ratio tends to
a constant positive value α. In this case an SNR loss is expected, as we
are going to illustrate for the ZF interface. We evaluate asymptotically
(8.6), and compare this result to the corresponding PEP of the ML
interface. Theorem C.2 shows that, as t, r → ∞ with t/r → α, the
cumulative empirical eigenvalue distribution of H†H/r converges to a
function F (λ;α) whose derivative is given by:

∂

∂λ
F (λ;α) = f(λ;α) � (1 − α−1)+δ(λ) + α−1

√
(λ − λ−)+(λ+ − λ)+

2πλ
,

(8.14)
where λ± � (

√
α±1)2. In particular, when α = 0 or ∞, the pdf f(λ;α)

tends to δ(λ − 1) or δ(λ), respectively.
The asymptotic PEP of the ML and ZF receivers can now be calcu-

lated by using results from Free Probability theory [114,63]. We apply
Theorem C.3 assuming that the matrix sequences An and Bn are given
by W � H†H/r and ∆∆† as r → ∞. Then, for the ML receiver we
have

‖H∆‖2

2N0
=

1
2N0

Tr (H†H∆∆†)

=
rt

2N0
τ(W∆∆†)

→ rt

2N0
E[τ(W)]τ(∆∆†) (a.s. as t, r → ∞, t/r → α),

(8.15)
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where τ(A) � Tr (A)/n for every n × n matrix A. Since

E[τ(W)] →
∫ b

a
λf(λ;α) dλ = 1, (8.16)

we obtain
‖H∆‖2

2N0
→ r‖∆‖2

2N0
(a.s. as t, r → ∞, t/r → α) (8.17)

and hence

P(X → X̂) → Q

(
r‖∆‖2

2N0

)
(a.s. as t, r → ∞, t/r → α).

(8.18)
For the ZF receiver we have from (8.7):

σ2 =
tN0

2r
τ(W−1∆∆†) → tN0

2r
E[τ(W−1)]τ(∆∆†). (8.19)

Since

E[τ(W−1)] →
∫ b

a
λ−1f(λ;α) dλ =

1
1 − α

, (8.20)

we obtain
‖∆‖4

4σ2
→ (1 − α)

r‖∆‖2

2N0
(a.s. as t, r → ∞, t/r → α) (8.21)

and hence

P(X → X̂) → Q

(
(1 − α)

r‖∆‖2

2N0

)
(a.s. as t, r → ∞, t/r → α).

(8.22)
Thus, the asymptotic SNR loss with respect to the ML interface is
equal to (1 − α)−1 for the ZF interface, which predicts that the choice
r = t with a large number of antennas yields a considerable loss in
performance [12]. From this we may expect that these linear interfaces
exhibit a PEP close to ML only for r 
 t; otherwise the performance
loss may be substantial. This is validated by Fig. 8.1, which shows the
error probability of a multiple-antenna system where the binary (8, 4, 4)
Reed–Muller code is used by splitting its code words evenly between
2 transmit antennas. The word error probabilities shown are obtained
through Monte Carlo simulation. Binary PSK is used, and the code
rate is 1 bit per channel use. It is seen that for r = 2 both MMSE
and ZF interface exhibit a considerable performance loss with respect
to ML, while for r = 8 the losses are very moderate.
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Binary Reed−Muller (8,4,4) code − t=2 − BPSK
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Fig. 8.1 Word error probability of the binary (8, 4, 4) Reed–Muller code with binary PSK
over a channel with t = 2 transmit antennas and r receive antennas with ML, MMSE, and
ZF interfaces (computer simulation results).

8.2 Nonlinear interfaces

The task of reducing the spatial interference affecting the received sig-
nal can be accomplished by first processing Y linearly, then subtracting
from the result an estimate of the spatial interference obtained from
preliminary decisions on the transmitted code word. The metric used
for decoding is ‖Ỹ − X‖, where Ỹ is a “soft estimate” of X given by

Ỹ � GY − LX̂ (8.23)

for a suitable choice of the two matrices G and L (Fig. 8.2). The diag-
onal entries of the matrix L must be zero in order to have only spatial
interference subtracted from GY.
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+

decoder

+ –

Fig. 8.2 General structure of a nonlinear interface.

8.2.1 Vertical BLAST interface

One nonlinear interface is called vertical BLAST (this stands for Bell
Laboratories Layered Space–Time Architecture). With V-BLAST, the
data are divided into t substreams to be transmitted on different anten-
nas. The receiver pre-processes linearly the received signal by forming
the matrix GY, which has t rows. Then, it first decodes one of the sub-
streams after reducing the spatial interference coming from the others.
Next, the contribution of this substream is subtracted from the re-
ceived signal, and the second substream is decoded after reducing the
remaining spatial interference. This process is repeated t times.

Different implementations of the basic V-BLAST idea are possible,
two of them being the zero-forcing ZF V-BLAST interface and the
minimum-mean-square-error MMSE V-BLAST interface. These arise
from the minimization of the mean-square error of the spatial interfer-
ence without or with noise, respectively.

It should be observed that the performance of V-BLAST depends
on the order in which the substreams are decoded (in the algorithm
above, the actual numbering of the rows of GY is arbitrary), and on
the data rate associated with each substream. Several strategies are
possible here (see [13] and references therein, and [121, 119, 41]): the
decoding order may predefined, and the data rates may be the same;
or an ordering is chosen so as to maximize an SNR-related parameter,
with equal data rates; or different data rates are assigned to different
substreams (see, e.g., [70]).
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ZF V-BLAST When the presence of noise is disregarded, the MSE
of the disturbance can be written as

ε2(G,L) = E[‖Ỹ −X‖2] = E[‖GHX− LX̂− X‖2]. (8.24)

Under the approximations

E[XX̂†] ≈ E[XX†]
E[X̂X̂†] ≈ E[XX†]

(8.25)

(which are justified by the assumption of having X̂ ≈ X unless the
error probability is high) we obtain

ε2(G,L) = E[‖(GH − L − It)X‖2]

= E[Tr {(GH − L − It)†(GH − L − It)XX†}]
= NEsE[‖GH − L − It‖2], (8.26)

since E[XX†] = NEsIt. From the QR factorization [62] of H,

H︸︷︷︸
r×t

= Q︸︷︷︸
r×t

R︸︷︷︸
t×t

(where R is an upper triangular matrix), we see that the MSE ε2(G,L)
vanishes by setting {

G = diag−1(R)Q†

L = diag−1(R)R − It.
(8.27)

The block diagram of Fig. 8.2 illustrates that ZF V-BLAST corresponds
to having a strictly upper diagonal matrix L. Explicitly, the steps of
the ZF V-BLAST algorithm proceed as follows, indicating by (A)i the
ith row of matrix A, by (A)ij its entry in ith row and jth column, and
by =⇒ the result of decoding:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

( eY)t = (GY)t =⇒ ( bX)t

( eY)t−1 = (GY)t−1 − (L)t−1,t( bX)t =⇒ ( bX)t−1

( eY)t−2 = (GY)t−2 − (L)t−2,t( bX)t − (L)t−2,t−1( bX)t−1 =⇒ ( bX)t−2

...

( eY)1 = (GY)1 − (L)1,t( bX)t − · · · − (L)1,2( bX)2 =⇒ ( bX)1.
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The soft estimate of X can be written as

Ỹ = diag−1(R)Q†Y − [diag−1(R)R − It]X̂ (8.28)

= X︸︷︷︸
�

+ [diag−1(R)R − It]∆︸ ︷︷ ︸
�

+ diag−1(R)Q†Z︸ ︷︷ ︸
�

.

The three terms in the last expression are: � the useful term (which
is free of spatial interference, thus justifying the name “zero forcing”
associated with this interface); � the interference due to past wrong
decisions; and � colored noise.

MMSE V-BLAST This minimizes the MSE of the disturbance
Ỹ − X taking into account the presence of noise. Again, under the
approximations (8.25) we can write the MSE as

ε2(G,L) = E[‖GY − LX − X‖2]

= E[‖(GH − L − It)X + GZ‖2]

= NEs

[
‖GH − L − It‖2 + δs‖G‖2

]
, (8.29)

where δs � N0/Es. The minimum MSE can be found in two steps:

i) Minimizing ε2(G,L) over the set of matrices G ∈ C
t×r leads

to
Gmmse = (L + It)(H†H + δsIt)−1H†. (8.30)

The corresponding minimum MSE is

ε2
mmse(L) = NN0Tr

[
(L+It)(H†H+δsIt)−1(L+It)†

]
. (8.31)

ii) Next, ε2
mmse(L) is minimized over the set of t× t strictly up-

per triangular matrices (i.e., such that [L]ij = 0 whenever
i ≥ j). This can be done by using the Cholesky factoriza-
tion [62] H†H + δsIt = S†S, where S is an upper triangular
matrix. After using basic multiplication properties of trian-
gular matrices, we obtain the following result:

ε2
mmse(L) = NN0Tr

[
(L + It)(H†H + δsIt)−1(L + It)†

]
= NN0‖(L + It)S−1‖2
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≥ NN0‖diag((L + It)S−1)‖2

= NN0‖diag(S−1)‖2 = NN0

t∑
i=1

|[S]i,i|−2. (8.32)

The minimum is attained by setting L = diag−1(S)S − It. Thus,
ε2(G,L) is minimized by setting{

G = Gmmse � diag−1(S)S−†H†

L = Lmmse � diag−1(S)S − It

(8.33)

and

ε2
mmse � ε2(Gmmse,Lmmse) = NN0

t∑
i=1

|[S]i,i|−2. (8.34)

As a result, the soft estimate Ỹ can be written as

Ỹ = diag−1(S)S−†H†Y − (diag−1(S)S − It)X̂

= (It − diag−1(S)S−†)X︸ ︷︷ ︸
�

+ (diag−1(S)S − It)∆︸ ︷︷ ︸
�

+ diag−1(S)S−†H†Z︸ ︷︷ ︸
�

, (8.35)

where the three terms in the last expression are: � the (biased) useful
term; � the interference due to past wrong decisions; and � colored
noise.

8.2.2 Diagonal BLAST interface

Consider the transmission scheme of Fig. 8.3, referred to as Diagonal
BLAST (D-BLAST). Here, a, b, c, . . . denote different data substreams.
As discussed in Section 9 infra, this scheme differs from V-BLAST
because each symbol in a data substream is transmitted by a different
antenna, and hence is expected to achieve a larger diversity. To obtain
this, the information stream is demultiplexed into t substreams, which
are transmitted by t antennas through a diagonal interleaving scheme.
The interleaver is designed so that the symbols of a given substream
are cyclically sent over all the t antennas, in order to guarantee the
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Fig. 8.3 An example of diagonal interleaving with t = 8.

necessary diversity order. Diagonals are written from top to bottom,
and the letters in each rectangle denote the corresponding code symbol
index, i.e., indicate the sequence in which diagonals are filled. Each
rectangle in Fig. 8.3 may actually contain an arbitrary number κ ≥ 1
of coded symbols. Each column of t symbols of the diagonal interleaver
array is transmitted in parallel, from the t antennas.

To illustrate the operation of D-BLAST, consider a simple case with
two transmit antennas. The transmitted matrix has the form

X =
[

x11 x12 x13 · · ·
0 x21 x22 · · ·

]
, (8.36)

where xij is the signal transmitted by the ith antenna in the jth sub-
stream. The receiver first detects x11, which is not affected by spatial
interference. Then, it detects x21; this is affected by the spatial in-
terference caused by x12, which can be reduced or nulled, by using for
example a zero-forcing filter. Next, the estimates of x11 and x21 are sent
to the decoder of the first substream. Once this has been decoded, its
contribution is subtracted out before decoding the second substream,
and so forth. Notice that D-BLAST entails a rate loss due to the over-
head symbols necessary to start the decoding process (these are shaded
in Fig. 8.3).
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Fig. 8.4 An example of threading with t = 8 (each letter represents a layer).

8.2.3 Threaded space–time architecture

To avoid the rate loss implied by D-BLAST, the latter architecture can
be generalized by wrapping substreams around as shown in Fig. 8.4.
This Figure shows a simple special case of “threaded layering,” whereby
the symbols are distributed in the code word matrix so as to achieve full
spatial span t (which guarantees the right spatial diversity order) and
full temporal span N (which guarantees the right temporal diversity
order in the case of fast fading) [37].

8.2.4 BLAST with per-survivor processing

The layered space–time architecture described above is attractive, but
exhibits some downsides. First, it requires several independent encoder/
decoder pairs running in parallel. Moreover, if used with component
trellis codes, not all symbols are decoded with the same decoding delay:
this may pose a problem for the underlying Viterbi algorithm. Finally,
the interference cancellation procedure on which BLAST is based is
prone to error propagation. In order to solve these problems, while
keeping the complexity limited, a modification of BLAST was proposed
in [21, 22]. There, a single trellis encoder output is wrapped along the
transmit antennas by a diagonal interleaver, and the detection scheme
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is integrated into a per-survivor processing (PSP) receiver. Thanks to
the PSP, the impact of unreliable decisions is greatly reduced.

8.2.5 Iterative interface

An alternative to BLAST consists of performing an iterative spatial
interference cancellation (see, e.g., [9, 10, 88, 89, 90] and references
therein). Referring again to the block diagram of Fig. 8.2, at itera-
tion k, k = 0, 1, . . ., an estimate of the spatial interference is generated
in the form

W(k) = (GH − diag (GH))X̂(k). (8.37)

Here X̂(k) is the decoded word at iteration k, computed by minimizing
the metric ‖Ỹ(k) − X‖2, where

Ỹ(k+1) = Ỹ − W(k)

= Ỹ − (GH − diag (GH))X̂(k) (8.38)

and for k = 0 we define X̂(0) � 0. It can easily be seen that, if decoding
is perfect (that is, if X̂(k) = X for some k), then

Ỹ(k) = diag (GH)X + GZ, (8.39)

which shows that the spatial interference is completely removed.
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9

The fundamental tradeoff

As we briefly mentioned in Section 2, the use of multiple antennas pro-
vides at the same time a rate gain and a diversity gain. The former is
due to the fact that multiple, independent transmission paths generate
a multiplicity of independent “spatial” channels that can simultane-
ously be used for transmission. The latter is obtained by exploiting the
independent fading gains that affect the same signal, and that can be
averaged through to increase the reliability of its detection. Here we
examine, based on recent seminal work [108, 121], how the two quan-
tities are related by fundamental performance limits that reflect the
ubiquitous tradeoff between rate and transmission quality of a trans-
mission system. Our discussion is qualitative and heuristic; the reader
interested in the details of a rigorous proof is addressed to the above
papers.

We focus our attention on the nonergodic fading channel of Sec-
tion 4.5, with channel state information available at the receiver only,
and to a high-SNR situation. The latter restriction refers to a sys-
tem whose performance is not power-limited. We have seen (Observa-
tion 4.8) that, as the SNR ρ → ∞, the capacity of an ergodic Rayleigh
fading channel behaves as C(ρ) ∼ m log ρ, with m � min{t, r}. Re-

101
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calling the high-SNR expression of the capacity of the single-antenna
ergodic Rayleigh fading channel, which is log ρ, the result above can
be interpreted by saying that the maximum number of independent
parallel channels (or, in a different parlance, the number of degrees of
freedom) created by t transmit and r receive antennas equals m, which
is the maximum rate gain we can achieve. Consider next the number of
independently faded paths: in our model this is equal to tr, which is in-
deed the maximum achievable diversity gain with maximum-likelihood
detection (Observation 6.1).

We discuss here the fact that, while both gains can be achieved
by MIMO systems, higher rate gains come at the expenses of diver-
sity gains. We start our discussion by defining precisely what we mean
by rate gain and diversity gain in the present context. In a situation
where different data rates are involved, a sequence of codes with in-
creasing rate, rather than a single code, must be considered. For a fair
comparison among codes with different rates, the rate gain is defined
by the ratio between the actual code rate R(ρ) and the capacity of the
scalar channel at that SNR:

µ � lim
ρ→∞

R(ρ)
C(ρ)

. (9.1)

This indicates how far the system is operating from the capacity limit.
Notice that the capacity increases with the SNR ρ, so to approach cap-
acity the code rate R(ρ) must also increase with ρ; if a single code were
used, the rate gain would vanish, because as ρ increases the ratio (9.1)
would tend to zero. As for the diversity gain δ, this is defined as the
exponent of ρ−1 in the expression of the average error probability of
the system:

δ � − lim
ρ→∞

log P (e)
log ρ

. (9.2)

The main point here is that the maximum values of rate gain and
diversity gain cannot be achieved simultaneously; µ and δ are connected
by a tradeoff curve that we are going to introduce and discuss. This
curve plots, as a function of the rate gain µ, the maximum achievable
diversity gain, denoted δ∗(µ).

The tradeoff curve, in the special but important case of a code
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(0, tr)

(1, (t − 1)(r − 1))

(2, (t − 2)(r − 2))

(κ, (t − κ)(r − κ))

(m, 0)

µ

δ∗(µ)

Fig. 9.1 Diversity–rate tradeoff for multiple-antenna systems with t transmit and r receive
antennas.

with length N ≥ t + r − 1,1 is given by the piecewise-linear function
connecting the points (κ, δ∗(κ)), κ ∈ {0, 1, . . . ,m}, where

δ∗(κ) � (t − κ)(r − κ), (9.3)

as shown in Fig. 9.1. We see that the maximum values that µ and δ

can achieve are m and tr, respectively, as discussed before. Eq. (9.3)
also shows that the maximum diversity gain can only be achieved for
zero rate gain, and the maximum rate gain can only be achieved for
zero diversity gain. More generally, (9.3) shows that, out of the total
number of t transmit and r receive antennas, κ transmit and κ receive
antennas are allocated to increase the rate, and the remaining t − κ

and r − κ create diversity. A concise derivation of this result and an
intuitive explanation based on it are given in Section 9.6.

This diversity–rate tradeoff curve can be used to compare different
schemes, and to interpret their behavior, as shown in the examples that
follow. In particular, we shall see how orthogonal schemes are attractive
when high diversity gain is sought, while BLAST interfaces favor rate
gain.

1See [121] for lower values of N . It suffices to observe here that no more diversity gain can
be obtained if the block length of the code exceeds t+ r−1, which consequently expresses
the infinite-block-length performance.
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(0, 4)

(1, 1)

µ

δ∗(µ)

(2, 0)

1/2 1

Fig. 9.2 Diversity–rate tradeoff for 2×2 systems. Continuous line: Optimal tradeoff. Dotted
line: Alamouti scheme. Dashed line: Repetition scheme.

9.1 2 × 2 schemes

Consider two transmit and two receive antennas, and a block length
chosen to comply with the condition of validity of (9.3), viz., N ≥
t + r − 1. The maximum diversity gain is tr = 4, achieved if each
transmitted signal passes through all the four propagation paths. The
maximum rate gain is t = r = 2. The optimal tradeoff curve for this
system is shown by the continuous line of Fig. 9.2.

A simple scheme that achieves maximum diversity is a repetition
code:

X =
[

x1 0
0 x1

]
, (9.4)

where x1 is a signal from a suitable constellation (we may think of
this scheme as an inner code concatenated with an outer code that
generates x1). Fig. 9.2 shows the tradeoff curve for this “repetition”
system. Since it takes two channel uses to transmit one symbol, the
maximum rate gain is 1/2. When maximum diversity is achieved, the
rate gain is 0. In fact, if a data rate µ log ρ must be supported, the
size of the constellation from which x1 is drawn must increase, and
consequently the minimum distance decreases, as does the achievable
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diversity gain.
The Alamouti scheme can also be used on this channel. Here

X =
[

x1 −x∗
2

x2 x∗
1

]
. (9.5)

This achieves the full diversity gain. Two symbols are transmitted every
2 channel uses, hence the maximum rate gain is 1. Its tradeoff curve
is shown in Fig. 9.2. Notice that, although both repetition and Alam-
outi scheme achieve the optimum diversity at µ = 0, their behavior is
markedly different when the diversity–rate tradeoff is taken into con-
sideration.

9.2 Orthogonal designs

Consider first the special case t = 2, with X given again by (9.5). The
optimal tradeoff can be computed, and yields

δ∗(µ) = tr(1 − µ)+. (9.6)

More generally, since orthogonal designs with full rate (that is, µ = 1)
do not exist for t > 2, one can observe that their maximum rate gain is
strictly less than 1. Hence, although they achieve maximum diversity
at µ = 0, they are strictly suboptimum in terms of the diversity–rate
tradeoff.

9.3 Zero-forcing vertical BLAST

Consider now zero-forcing vertical BLAST (ZF V-BLAST) with m

transmit and receive antennas. Its performance, as discussed in Sec-
tion 8.2.1, depends on the order of detection of the substreams and
on the data rates of the substreams. For all versions of V-BLAST, the
tradeoff curve is suboptimal, especially for low rate gains: in fact, every
transmitted substream experiences only m independent fading gains,
and, even with no spatial interference between substreams the tradeoff
curve cannot exceed δ(κ) = m − κ substreams.
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9.4 Zero-forcing diagonal BLAST

This system, which has coding over signals transmitted on different
antennas, promises a higher diversity gain. Here, if the rate loss caused
by the overhead symbols is disregarded, the tradeoff curve connects the
points (m − κ, κ(κ + 1)/2), κ = 0, . . . ,m. Observe that the maximum
diversity gain is now m(m + 1)/2, better that for V-BLAST but still
short of the theoretical maximum m2. It is recognized [1,121] that this
performance loss is caused by the zero-forcing step. If MMSE filtering
is used instead of ZF, then D-BLAST achieves the optimum tradeoff
curve (apart from the rate loss mentioned before). This behavior can
be justified by observing that D-BLAST achieves the optimum mutual
information of the MIMO channel for any realization of channel H [82,
Sec. 12.4.1].

9.5 MIMO transmission in a multiuser environment

Throughout this paper we have considered only point-to-point, single-
user transmission. Suppose instead that K users, each equipped with t

antennas, transmit data to an r-antenna receiver. If the latter wants to
detects the signals transmitted by user 1 (say), multiple antennas can be
used to discriminate among these signals. The optimum tradeoff can be
determined even in this situation [108]. Assuming optimum multiuser
detection [111], and a code block length N > Kt + r − 1, we have the
following results:

• For t ≤ r/(K−1), the tradeoff curve is the same as for single-
user transmission: the presence of multiuser interference does
not degrade the tradeoff curve.

• For t > r/(K − 1), the tradeoff curve is the same as for
single-user transmission up to κ∗ = r/(K − 1). For κ∗ < κ ≤
min{r/K, t}, the tradeoff is as if the K users were pooled
together into a single user transmitting with Kt antennas at
a rate multiplied by K. In particular, δ∗(min{r/K, t}) = 0.

A simple result can also be obtained in the presence of a subopti-
mum detector. Assume t = 1 antenna per user, K < r, and a decorre-
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r

δ∗(µ)

r −K + 1

µ 1

Fig. 9.3 Diversity–rate tradeoff for a multiuser scheme with 1 transmit antenna per user.
Optimum detection (continuous line) and decorrelator detection (dashed line).

lating detector. In this case the optimum tradeoff curve is the real line
connecting the point (0, r − K + 1) to the point (1, 0) (Fig. 9.3). This
is consistent with the finding in [117] that it costs K − 1 diversity gain
to null out K − 1 interferers.

9.6 Derivation of the diversity–rate tradeoff curve

Under the above assumptions, and in the asymptotic regime ρ → ∞,
the outage probability (see Section 4.5) corresponding to an informa-
tion rate R = µ log ρ can be written as

Pout(µ, ρ) � P

( m∑
i=1

log(1 + λiρ) ≤ µ log ρ

)
, (9.7)

where λi is the ith ordered eigenvalue of the matrix HH†. If µ ≥ m

the outage probability is always 1 (since log ρ dominates asymptotically
the other terms as ρ → ∞), so that we restrict ourselves to the case
µ < m. The joint pdf of the λi’s is given by (C.5). Defining the new
variables αi � − log λi/ log ρ, we can write the outage probability (9.7)
as follows:

Pout(µ, ρ) =
(ln ρ)m

Γm(m)Γm(n)
· (9.8)

Full text available at: http://dx.doi.org/10.1561/0100000002



108 The fundamental tradeoff

·
∫

α∈Rm,α1≥...≥αm

1
{ m∑

i=1

log(1 + ρ1−αi) ≤ µ log ρ

}

·
m∏

i=1

e−ρ−αi
ρ−(n−m+1)αi

∏
i<j

(ρ−αi − ρ−αj )2dα.

Since ρ → ∞, several simplifications can be used:

• The indicator function in the integral

1
{ m∑

i=1

log(1 + ρ1−αi) ≤ µ log ρ

}
→ 1

{ m∑
i=1

(1 − αi)+ ≤ µ

}
.

(9.9)
• Since exp(−ρ−αi) → 0 for αi < 0 and exp(−ρ−αi) → 1 for

αi > 0, the integration domain where the integrand is not
asymptotically small reduces to R

m
+ .

• (ρ−αi − ρ−αj )2 → ρ−2αj , since αi > αj for i < j except for a
set of measure zero.

Collecting the above observations we obtain, as ρ → ∞,

Pout(µ, ρ) → (ln ρ)m

Γm(m)Γm(n)

∫
α1≥...≥αm≥0

1
{ m∑

i=1

(1 − αi)+ ≤ µ

}

· exp
(
− ln ρ

m∑
i=1

(n − m + 2i − 1)αi

)
dα. (9.10)

Using Laplace’s method of asymptotic multidimensional integral ap-
proximation [15], it can be shown that

Pout(µ, ρ) → ρ−dout(µ), (9.11)

where

dout(µ) � min
α1≥...≥αm≥0,

Pm
i=1(1−αi)+≤µ

m∑
i=1

(n − m + 2i − 1)αi. (9.12)

This is a linear programming problem with nonlinear constraint, equiv-
alent to the maximization problem

ᾱ∗ � arg max
ᾱ1≤...≤ᾱm≤1,

P
i(ᾱi)+≤µ

m∑
i=1

(n − m + 2i − 1)ᾱi (9.13)
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Although such problems are very complex in general, this one admits
a very simple solution. In order to maximize the objective function one
sets ᾱi = 1 for i = m,m − 1, . . . ,m − 
µ� + 1. Next, one has to set
αm−�µ� = µ − 
µ� < 1. This corresponds to setting

αi =

⎧⎨⎩
1 i = 1, . . . ,m − 
µ� − 1
1 − (µ − 
µ�) i = m − 
µ�
0 i = m − 
µ� + 1 . . . ,m.

(9.14)

As a result we can write the following expression for the diversity:

dout = (n − 
µ�)(m − 
µ�) − (µ − 
µ�)(n + m − 1 − 2
µ�). (9.15)

Notice that, for integer µ, we have

dout = (n − µ)(m − µ). (9.16)

In this case, ᾱi represents an indicator of the usage of the ith equivalent
channel: ᾱi = 0 means that the ith channel is not used, and vice versa
for ᾱi = 1. In fact, if ᾱi = 0 and hence αi = 1, the ith eigenvalue
λi = ρ−αi → 0 as ρ → ∞. That implies a rate loss due to the inability
of using the ith channel. Meanwhile, the diversity dout(µ) is increased
by (n − m + 2i − 1) units as shown by eq. (9.10).
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A

Complex random variables and vectors

A complex random variable (RV) has the form

Z = X + jY, (A.1)

where X and Y are real RVs; Z can also be viewed as a two-dimensional
random vector RV (see below). Definition and basic properties of the
mean value and the variance of Z are given as follows:

E[Z] � E[X] + jE[Y ] (A.2)

V[Z] � E[|Z − E[Z]|2] (A.3)

= E[(X − E[X])2 + (Y − E[Y ])2]

= V[X] + V[Y ].

The cross-covariance of two complex RVs Z and W is defined as

RZW � E[(Z − E[Z])(W − E[W ])∗]. (A.4)

As a special case of this definition, we have RZZ = V[Z]. Cross-
covariance is Hermitian, viz., RWZ = R∗

ZW .

111
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A.1 Gaussian random variables

If X is real Gaussian with mean µ and variance σ2, i.e., its pdf is

p(x) =
1√

2πσ2
e−(x−µ)2/2σ2

, (A.5)

then we write X ∼ N(µ, σ2), a notation stressing the fact that the pdf
of X is completely specified by µ and σ2. If the real and imaginary
part of the complex RV Z are independent with the same variance
σ2/2, and µ � E(Z) ∈ C, then we say that Z is circularly-symmetric,
and we write Z ∼ Nc(µ, σ2). Its pdf is the product of those of its real
and imaginary part:

p(z) =
1

πσ2
e−|z−µ|2/σ2

. (A.6)

A.2 Real random vectors

A real random vector is a column vector x = (X1,X2, . . . ,Xn)′ whose
components are real random variables. Its mean value is defined as

µx � (E[X1], E[X2], . . . , E[Xn])′. (A.7)

The expectation of the squared norm of x:

E[‖x‖2] = E[x′x] =
n∑

i=1

E[X2
i ] (A.8)

is often referred to as the energy of x. The covariance matrix of x is
defined as the nonnegative-definite n × n matrix

Rx � E[(x− µx)(x − µx)′] = E[xx′] − µxµ′
x. (A.9)

Notice that the diagonal entries of Rx are the variances of the compo-
nents of x. The n × n matrix

Cx � E[xx′] (A.10)

is called the correlation matrix of x. We observe that the trace of Cx

equals the average energy of x:

E[‖x‖2] = E[x′x] = E[Tr (xx′)] = TrCx. (A.11)
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The cross-covariance matrix of the two random vectors x and y, with
dimensions n and m, respectively, is defined as the n × m matrix

Rx,y � E[(x − µx)(y − µy)′] = E[xy′] − µxµ′
y. (A.12)

A.2.1 Real Gaussian random vectors

A real random vector x = (X1, . . . ,Xn)′ is called Gaussian if its com-
ponents are jointly Gaussian, that is, their joint probability density
function (pdf) is

p(x) = (A.13)

= det(2πRx)−n/2 exp
{
−1

2
(x − µx)′R−1

x (x − µx)
}

= det(2πRx)−n/2 exp
{
−1

2
Tr [R−1

x (x − µx)(x − µx)′]
}

.

We write x ∼ N(µx,Rx), which stresses the fact that the pdf of a real
Gaussian random vector is completely specified by its mean value and
its covariance matrix.

A.3 Complex random vectors

A complex random vector is a column vector z = (Z1, Z2, . . . , Zn)′

whose components are complex random variables. The covariance mat-
rix of z is defined as the nonnegative-definite n × n matrix

Rz � E[(z − µz)(z − µz)
†] = E[zz†] − µzµ

†
z. (A.14)

The diagonal entries of Rz are the variances of the entries of z. If
z = x + jy,

Rz = (Rx + Ry) + j(Ryx − Rxy). (A.15)

Thus, knowledge of Rz does not yield knowledge of Rx, Ry, Ryx,
and Rxy, i.e., of the complete second-order statistics of z. The latter is
completely specified if, in addition to Rz, the pseudo-covariance matrix

R̃z � E[(z− µz)(z − µz)
′]

= (Rx − Ry) + j(Ryx + Rxy) (A.16)
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is also known [79]. We have the following relations:⎧⎪⎪⎪⎨⎪⎪⎪⎩
Rx = 1

2Re (Rz + R̃z)
Ry = 1

2Re (Rz − R̃z)
Rxy = 1

2 Im (Rz − R̃z)
Ryx = 1

2 Im (Rz + R̃z).

(A.17)

Proper complex random vectors endowed with the additional property

R̃z = 0 (A.18)

(see [79] for a justification of the term) are completely specified by Rz

as far as their second-order statistics are concerned.
Similar properties can be derived for the n×n matrix Cz � E[zz†],

which is called the correlation matrix of z.

A.3.1 Complex Gaussian random vectors

A complex random vector z = x+ jy ∈ C
n is called Gaussian if its real

part x and imaginary part y are jointly Gaussian, or, equivalently, if
the real random vector

ž �
[

x
y

]
∈ R

2n

is Gaussian.
Unlike Gaussian real random vectors, their complex counterparts

are not completely specified by their mean values and covariance matri-
ces (the pseudo-covariance matrices are also needed). In fact, to specify
the pdf of z, and hence of ž, we need, in addition to E[z], the covariance
matrix

Rž =
[

Rx Rxy

R′
xy Ry

]
(A.19)

which is completely specified by Rz and R̃z. In order to be able to
uniquely determine Rx, Ry, and Rxy from Rz, we need to restrict
our attention to the subclass of proper Gaussian random vectors, also
called circularly-symmetric. The covariance matrix of ž can be written
as follows:

Rž =
1
2

[
ReRz −ImRz

ImRz ReRz

]
. (A.20)
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Hence, a circularly-symmetric complex Gaussian random vector is char-
acterized by µz and Rz. We write1 z ∼ Nc(µz,Rz). The probability
density function of z is given by

p(z) � p(ž)

= det(2πRž)−1/2 exp
{
−(ž− µž)

†R−1
ž (ž − µž)

}
= det(πRz)−1 exp

{
−(z− µz)

†R−1
z (z − µz)

}
. (A.21)

The following theorem describes important properties of circularly-
symmetric Gaussian random vectors.

Theorem A.1 ([79]). If z ∼ Nc(µz,Rz), then every affine transfor-
mation

y = Az + b

yields a circularly-symmetric complex RV y ∼ Nc(Aµz + b,ARzA†).

1This notation is meant to avoid confusion with the real case, and to remind us that in our
context circular symmetry is a property of Gaussian complex random vectors.
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B

Results from information theory

B.1 A basic inequality

We state and prove a basic entropy inequality which allows the deriva-
tion of the capacity of the Gaussian MIMO channel.

Theorem B.1. Let z be a complex random vector with covariance
matrix Rz. Then, the differential entropy of z satisfies the inequality

h(z) ≤ log det(πeRz) (B.1)

with equality if and only if z ∼ Nc(a,Rz) for any vector a having the
same dimension as z.

Proof. Let zG ∼ Nc(0,Rz) and calculate its differential entropy by
using the pdf (A.21):

h(zG) = E[log det(πRzG
) + z†GR−1

zG
zG log e]

= log det(πRzG
) + E[z†GR−1

zG
zG] log e

= log det(πRzG
) + Tr (R−1

zG
E[zGz†G]) log e

= log det(πeRzG
). (B.2)

117
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Let p(z) and q(z) be the pdf’s of z and zG, respectively. The theorem
follows by

h(z) − h(zG) =
∫

(q(z) log q(z) − p(z) log p(z))dz

=
∫

p(z)(log q(z) − log p(z))dz

=
∫

p(z) log
q(z)
p(z)

dz

≤
∫

p(z)
(

q(z)
p(z)

− 1
)

dz

= 0, (B.3)

where we used the equality E[log q(z)] = E[log q(zG)] and lnu ≤ u − 1
for u > 0 with equality if and only if u = 1.1 Notice that equality holds
if and only if p(z) = q(z), i.e., if and only if z is circularly-symmetric
Gaussian.

B.2 Capacity of the Gaussian MIMO channel

Let the channel input–output relationship be

y = Hx + z, (B.4)

where H is a constant r × t matrix, x is a t-vector, and y and z are r-
vectors. Assume x⊥⊥z and z ∼ Nc(0,Rz). From the mutual information

I(x;y) = h(y) − h(y | x) = h(y) − h(z), (B.5)

we seek the channel capacity under the constraint

Tr (Rx) ≤ P. (B.6)

For a given Rx, the covariance matrix of y is Ry = HRxH† + Rz and
h(y) is maximum for y ∼ Nc(0,Ry) (Theorem B.1). Moreover, the
maximum mutual information is given by

I(Rx) = log det(Ir + RxH†R−1
z H). (B.7)

1 Consider the function f(u) � lnu − u + 1. Its derivative f ′(u) = u−1 − 1 is positive for
0 < u < 1 and negative for u > 1. Hence, it has a maximum in u = 1, i.e., f(u) ≤ f(1) = 0,
which proves the statement.
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The channel capacity can be calculated according to different assump-
tions:

(a) The receiver has perfect CSI and the transmitter has no CSI.
(b) The receiver and the transmitter have perfect CSI.

With assumption (a), the transmitter divides the available power uni-
formly among the transmit antennas and the capacity is then

Crx = log det
(
Ir +

P

t
H†R−1

z H
)

. (B.8)

With assumption (b), the capacity can be written as

Ctx/rx = max
Rx≥0,TrRx≤P

log det(Ir + RxH†R−1
z H). (B.9)

From Hadamard’s inequality2 [32, Th. 16.8.2] and the orthogonal diag-
onalization H†R−1

z H = UDU† (where U is unitary and D diagonal)
we have

log det(Ir + RxH†R−1
z H) = log det(Ir + R̃D)

≤
∑

(D)i,i>0

log(1 + (R̃)i,i(D)i,i), (B.10)

where R̃ � U†RxU, with equality if and only if R̃ is diagonal. Since the
constraint (B.6) translates into Tr (R̃) ≤ P , the maximization problem
admits the “water-filling” solution [32]:

(R̃)i,i =
(
µ − (D)−1

i,i

)
+

(B.11)

with µ obtained as the solution of∑
(D)i,i>0

(
µ − (D)−1

i,i

)
+

= P. (B.12)

The channel input pdf achieving capacity is

Nc(0,Udiag((µ − (D)−1
i,i )+)U†).

2 For every nonnegative definite matrix K, detK ≤ Q
i(K)ii with equality iff K is diagonal.
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B.3 Ergodic capacity

Consider the separately correlated fading channel described in Sec-
tion 3.4 with channel matrix given by (3.25), additive white Gaussian
noise z ∼ N0(0, N0Ir), and fast, frequency-nonselective fading (see Sec-
tion 3.3). Assume that the receiver has perfect CSI but the transmitter
has no CSI. Here we calculate the average capacity under the power
constraint E[‖x‖2] ≤ P = ρN0 in the case of T = It. This deriva-
tion follows the guidelines of [106] for the case of R = Ir and [86] in
the more general setting of R �= Ir, although we restrict ourselves to
consideration of iid, Nc(0, 1) entries of Hu.

From the expression of the mutual information (B.5), capacity is
given by

C = max
Rx≥0,TrRx≤P

E[log det(Ir + HRxH†/N0)]. (B.13)

Using the orthogonal diagonalization Rx = UDU† (with matrix U
unitary and D diagonal) we notice that capacity can also be obtained
as follows

C = max
D≥0,TrD≤ρ

E[log det(Ir + HDH†)], (B.14)

where the maximum is sought over the set of diagonal matrices with
nonnegative diagonal entries and trace upper bounded by ρ. The equiv-
alence derives from the fact that Hu and HuU (and hence H and HU)
have the same joint pdf. Let us write

Ψ(D) � E[log det(Ir + HDH†)]. (B.15)

Since the log-det function is concave [32, Th. 16.8.1], we have, for every
vector (αi) such that αi ≥ 0 and

∑
i αi = 1,

Ψ
(∑

i

αiDi

)
= E

[
log det

(∑
i

αi(Ir + HDiH†)
)]

≥
∑

i

αiE[log det(Ir + HDiH†)]

=
∑

i

αiΨ(Di). (B.16)

Full text available at: http://dx.doi.org/10.1561/0100000002



B.3. Ergodic capacity 121

Now, let Pi denote the ith permutation matrix (i = 1, . . . , t!). For a
given matrix D such that TrD = ρ, define Di � PiDP′

i, i.e., the diag-
onal matrix obtained by applying the ith permutation on the diagonal
elements. We notice that

(1) Ψ(Di) = Ψ(D) since

E[log det(Ir + HPiDP′
iH

†)] = E[log det(Ir + HDH†)],

as H and HPi have the same joint pdf.3

(2)
∑

i Di/t! = (ρ/t)It since every diagonal entry of D appears
the same number of times at each position of the matrix sum.

Hence, we have

Ψ((ρ/t)It) ≥ 1
t!

∑
i

Ψ(Di) = Ψ(D), (B.17)

which proves that the maximum Ψ(D), i.e. capacity, is attained for
D = (ρ/t)It, i.e., uniform power allocation.

3 This point is not stated explicitly in [106]. It is implicit in the fact that H is unitarily
invariant in distribution.
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C

Random matrices

A random matrix is a matrix whose entries are random variables. Con-
sequently, a random matrix is described by assigning the joint prob-
ability density function (pdf) of its entries, which is especially easy
when these are independent. For example, an m×n matrix A, m ≤ n,
whose entries are independent identically distributed N(0, 1) real RVs,
has pdf [36]

(2π)−mn/2etr (−AA′/2). (C.1)

An m×n matrix B, m ≤ n, with iid complex Gaussian Nc(0, 1) entries
has pdf [36]

π−mnetr (−BB†). (C.2)

We have the following theorem [65].

Theorem C.1. If A is a given m × m Hermitian matrix such that
Im +A > 0 and B is an m×n matrix whose entries are iid as Nc(0, 1),
then

E[etr (−ABB†)] = det(Im + A)−n. (C.3)

123
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Proof. Splitting B as (b1, . . . ,bn) we have

E[etr (−ABB†)] = π−mn

∫
etr (−(Im + A)BB†)dB

=
{

π−m

∫
etr (−(Im + A)bb†)db

}n

= det(Im + A)−n (C.4)

since the Jacobian of the transformation b = (Im+A)−1/2c is det(Im+
A)−1. �

The eigenvalues of a random matrix are random variables, and hence
even these can be described by their joint probability density function.
An important case occurs with the complex Wishart matrix, that is,
a random complex Hermitian square m × m matrix W � BB†, with
B as in (C.2). The pdf of the ordered eigenvalues λ = (λ1, . . . , λm),
0 ≤ λ1 ≤ . . . ≤ λm, of W is given by [36]

pord(λ) =
1

Γm(m)Γm(n)

m∏
i=1

e−λiλn−m
i

∏
i<j

(λi − λj)2, (C.5)

where Γm(a) �
∏m−1

i=0 Γ(a − i). The joint pdf of the unordered eigen-
values is obtained from (C.5) by dividing it by m!.

It is interesting to observe the limiting distribution of the eigen-
values of a Wishart matrix as its dimensions grow to infinity. To do
this, we define the empirical distribution of the eigenvalues of an n×n

random matrix A as the function F (λ) which yields the fraction of
eigenvalues of A not exceeding λ, i.e.,

F (λ) � 1
n
|{λi(A) : λi(A) < λ}|. (C.6)

The empirical distribution is generally a random process. However, un-
der certain mild technical conditions [97], as n → ∞ the empirical
distribution converges to a nonrandom cumulative distribution func-
tion. For a Wishart matrix we have the following theorem, a classic in
random-matrix theory [4, 36,66]:
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Theorem C.2. Consider the sequence of n × m matrices An, with
iid entries having variances 1/n; moreover, let m = m(n), with
limn→∞ m(n)/n = c > 0 and finite. Next, let Bn � AnA

†
n. As n → ∞,

the empirical eigenvalue distribution of Bn tends to a function F (λ)
whose derivative is

(1 − c)+ δ(λ) +
1

2πλ

√
(λ − λ−)+(λ+ − λ)+ (C.7)

with λ± � (
√

c ± 1)2.

The theorem that follows describes an important asymptotic prop-
erty of a class of matrices. This is a special case of a general theory
described in [63] (see also [109]).

Theorem C.3 ([12]). Let (Hn(s))s∈S be an independent family of n×
n matrices whose entries are iid complex Gaussian random variables
with independent, equally-distributed real and imaginary parts. Let
An(s) � f(Hn(s)†Hn(s)), where f is a real continuous function on R.
Let (Bn(t))t∈T be a family of deterministic matrices with eigenvalues
λ1(n, t), . . . , λn(n, t) such that for all t ∈ T

sup
n

max
i

λi(n, t) < ∞

and (Bn(t),B†
n(t))t∈T has a limit distribution. Then, An(s) converges

in distribution almost surely to a compactly supported probability mea-
sure on R for each s ∈ S and, almost surely as n → ∞,

1
n

Tr (AnBn) → 1
n

E[Tr (An)] · 1
n

E[Tr (Bn)]. (C.8)
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D

Numerical calculation of error probabilities

Consider the evaluation of the probability P � P(ν > x), where ν and x

are independent random variables whose moment-generating functions

Φν(s) � E[exp(−sν)] and Φx(s) � E[exp(−sx)]

are known. Defining ∆ � x− ν, we have P = P(∆ < 0). We describe a
method for computing the value of P based on numerical integration.
Assume that the moment-generating function of ∆, which due to the
independence of ν and x can be written as

Φ∆(s) � E[exp(−s∆)] = Φx(s)Φν(−s), (D.1)

is analytically known. Using the Laplace inversion formula we obtain

P(∆ < 0) =
1

2πj

∫ c+j∞

c−j∞

Φ∆(s)
s

ds, (D.2)

where we assume that c is in the region of convergence (ROC) of Φ∆(s).
This is given by the intersection of the ROC of Φx(s) and the ROC of
Φν(−s). Integral (D.2) can be computed exactly by using the method of
residues [27,110]. This method works well when the integrand exhibits
simple poles, but becomes long and intricate when multiple poles or

127
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essential singularities are present. Here we describe a general approach
based on numerical calculation of the integral.

Now, expand the real and imaginary parts in (D.2). We have the
following result:

P(∆ < 0)

=
1
2π

∫ ∞

−∞

Φ∆(c + jω)
c + jω

dω

=
1
2π

∫ ∞

−∞

cRe {Φ∆(c + jω)} + ωIm {Φ∆(c + jω)}
c2 + ω2

dω.

The change of variables ω = c
√

1 − x2/x yields

1
2π

∫ 1

−1

{
Re

[
Φ∆

(
c + jc

√
1 − x2

x

)]

+
√

1 − x2

x
Im

[
Φ∆

(
c + jc

√
1 − x2

x

)]}
dx√

1 − x2
(D.3)

and this integral can be approximated numerically by using a Gauss–
Chebyshev numerical quadrature rule with L nodes [101]. We have

P(∆ < 0) (D.4)

=
1

2L

L∑
k=1

{
Re [Φ∆(c(1 + jτk))] + τk Im [Φ∆(c(1 + jτk))]

}
+ EL,

where τk � tan((k − 1/2)π/L) and EL → 0 as L → ∞. In numerical
calculations, a rule-of-thumb choice yields L = 64.

Example D.1. As a special case of the above, consider the calculation
of the expectation

P � E[Q(
√

ξ)], (D.5)

where Q(y) is the Gaussian tail function, i.e., Q(y) � P(ν > y) with
ν ∼ N(0, 1), and ξ a nonnegative random variable. Defining ∆ � ξ−ν2,
we have P = (1/2)P[∆ < 0]. Thus,

Φ∆(s) = Φξ(s)Φν2(−s) = Φξ(s)(1 − 2s)−1/2.
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Here the ROC of Φ∆(s) includes the complex region defined by {0 <

Re (s) < 1/2}. Therefore, we can safely assume 0 < c < 1/2: a good
choice is c = 1/4, corresponding to an integration line in the middle
of the minimal ROC of Φ∆(s). The latter integral can be evaluated
numerically by using (D.4).

D.1 Application: MIMO channel

Here we apply the general technique outlined above to calculate pair-
wise error probabilities for MIMO channels affected by fading.

D.1.1 Independent-fading channel with coding

The discrete-time lowpass equivalent channel equation can be written
as

yi = Hixi + zi i = 1, . . . , N (D.6)

where N is the code block length, Hi ∈ C
rt is the ith channel gain

matrix, xi ∈ C
t is the ith transmitted symbol vector (each entry trans-

mitted from a different antenna), yi ∈ C
r is the ith received sample

vector (each entry received from a different antenna), and zi ∈ C
r is the

ith received noise sample vector (each entry received from a different
antenna). We assume that the channel gain matrices Hi are element-
wise independent and independent of each other with [Hi]jk ∼ Nc(0, 1).
Also, the noise samples are independent with [z]i ∼ Nc(0, N0).

It is straightforward to obtain the PEP associated with the two code
words X = (x1, . . . ,xN ) and X̂ = (x̂1, . . . , x̂N ) as follows:

P (X → X̂)

= P

(
N∑

i=1

{‖yi − Hix̂i‖2 − ‖yi − Hixi‖2} < 0

)

= P

(
N∑

i=1

{‖Hi(xi − x̂i) + zi‖2 − ‖zi‖2} < 0

)

= E

⎡⎣Q

⎛⎝
√√√√ 1

2N0

N∑
i=1

‖Hi(xi − x̂i)‖2

⎞⎠⎤⎦ . (D.7)
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Setting

ξ � 1
2N0

N∑
i=1

‖Hi(xi − x̂i)‖2, (D.8)

a straightforward computation yields

Φξ(s) =
N∏

i=1

[1 + s‖xi − x̂i‖2/(2N0)]−r (D.9)

and the result of Example D.1 applies.

D.1.2 Block-fading channel with coding

Here we assume that the channel gain matrices Hi are independent of
the time index i and are equal to H: under this assumption the channel
equation is

Y = HX + Z, (D.10)
where H ∈ C

rt, X = (x1, . . . ,xN ) ∈ C
tN , Y ∈ C

rN , and Z ∈ C
rN . We

assume iid entries [H]ij ∼ Nc(0, 1) and iid [Z]ij ∼ Nc(0, N0). We obtain

P(X → X̂) = E

[
Q

(‖H∆‖√
2N0

)]
, (D.11)

where ∆ � X− X̂.
Setting

ξ � ‖H∆‖2

2N0
, (D.12)

we can evaluate the PEP by resorting to (D.5). In order to do so,
we obtain the analytic expression of the moment-generating function
(MGF). For the independent Rayleigh fading channel, straightforward
computations yield

Φξ(s) =
N∏

i=1

[1 + s‖xi − x̂i‖2/(2N0)]−r. (D.13)

Now, apply Theorem C.1. First, notice that ξ can be written in the
form

ξ =
1

2N0

r∑
i=1

hi∆∆†h†
i

=
1

2N0
[h1, . . . ,hr][Ir ⊗ (∆∆†)][h1, . . . ,hr]†, (D.14)
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where hi denotes the ith row of matrix H. Setting z = [h1, . . . ,hr]†,
we have µ = 0 and Σ = E[zz†] = Irt. Finally, setting A = [Ir ⊗
(∆∆†)]/(2N0) in (C.3), we obtain

Φξ(s) � E[exp(−sξ)] = E[exp(−sz†Az)]

= det(I + sΣA)−1

= det
[
It + s∆∆†/2N0

]−r
. (D.15)
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E

Two proofs

E.1 Proof of (4.23)

Observe again (4.20), and define the m × m matrix

W �
{

HH†, r < t

H†H, t ≤ r,
(E.1)

where again m � min{t, r}. This is a nonnegative definite random mat-
rix, and thus has real, nonnegative random eigenvalues. The joint pdf
of the ordered eigenvalues of W is known (see (C.5)). The expecta-
tion to be computed can be expressed in terms of one of the unordered
eigenvalues of W (say, λ1) as follows:

C = E log
m∏

i=1

(
1 +

ρ

t
λi

)
= E

m∑
i=1

log
(
1 +

ρ

t
λi

)
=

m∑
i=1

E log
(
1 +

ρ

t
λi

)
= m E log(1 +

ρ

t
λ1). (E.2)

133
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To compute the marginal pdf of λ1, use

p(λ1) =
∫

· · ·
∫

p(λ1, λ2, · · · , λm) dλ2 · · · dλm. (E.3)

To perform this computation, we resort to an orthogonalization of the
power sequence 1, λ, λ2, . . . , λm−1 in the Hilbert space of real functions
defined in (0,∞) with inner product

(f, g) �
∫ ∞

0
f(λ)g(λ)λn−me−λ dλ. (E.4)

Explicitly, we express the pdf (E.3) in terms of the polynomials

φk+1(λ) �
√

k!
(k + n − m)!

Ln−m
k (λ). (E.5)

Here, Lα
k (λ) is an associated Laguerre polynomial [101], defined as

Lα
k (λ) =

1
k!

eλλ−α dk

dλk
(e−λλk+α)

=
k∑

�=0

(−1)�
(

k + α

k − 


)
λ�


!
. (E.6)

The polynomials φi(λ) satisfy the orthonormality relation∫ ∞

0
φi(λ)φj(λ)λn−me−λ dλ = δij . (E.7)

In order to calculate (E.3), we first observe that the term
∏m

j=i+1(λi −
λj) appearing in (C.5) can be expressed as the determinant of the
Vandermonde matrix

D(λ1, λ2, . . . , λm) �

⎡⎢⎢⎢⎣
1 · · · 1
λ1 · · · λm
...

...
λm−1

1 · · · λm−1
m

⎤⎥⎥⎥⎦ , (E.8)

so that we can write

p(λ1, λ2, . . . , λm) =
1

Γm(m)Γm(n)
det[D(λ1, λ2, . . . , λm)]2

m∏
i=1

λn−m
i e−λi

(E.9)
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with Γm(a) �
∏m−1

i=0 Γ(a− i). Next, with row operations we transform
matrix D(λ1, λ2, . . . , λm) into

D̃(λ1, λ2, . . . , λm) �

⎡⎢⎣ φ1(λ1) · · · φ1(λm)
...

...
φm(λ1) · · · φm(λm)

⎤⎥⎦ (E.10)

so that the determinant of D equals (apart from multiplicative con-
stants generated by the row operations) the determinant of D̃, that
is,

det D̃(λ1, . . . , λm) =
∑
α

(−1)π(α)
m∏

i=1

φαi(λi), (E.11)

where the summation is over all permutations of {1, . . . ,m}, and

π(α) =
{

0, α is an even permutation
1, otherwise.

Thus, with c(m,n) a normalization constant, we have

p(λ1, . . . , λm) = c(m,n)
∑
α,β

(−1)π(α)+π(β)
∏

i

φαi(λi)φβi
(λi)λn−m

i e−λi ,

(E.12)
and, integrating over λ2, . . . , λm, we obtain

p(λ1) = c(m,n)
∑
α,β

(−1)π(α)+π(β)φα1(λ1)φβ1(λ1)λn−m
1 e−λ1

m∏
i=2

δαiβi

= c(m,n)(m − 1)!
m∑

i=1

φ2
i (λ1)λn−m

1 e−λ1

=
1
m

m∑
i=1

φ2
i (λ1)λn−m

1 e−λ1 , (E.13)

where the second equality follows from the fact that, if αi = βi for
i ≥ 2, then also α1 = β1 (since both α and β are permutations of the
same set) and thus α = β. The last equality follows from the fact that
φ2

i (λ1)λn−m
1 e−λ1 integrates to unity, which entails c(m,n) = 1/m!. In
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conclusion, the capacity is given by

C =
∫ ∞

0
log
(

1 +
ρ

t
λ

)m−1∑
k=0

k!
(k + n − m)!

[Ln−m
k (λ)]2λn−me−λ dλ,

(E.14)
where m � min{t, r}, n � max{t, r}.

Eq. (E.14) was derived in [106]. More recently, in [93] the integral
in (E.14) was given the closed form

C = log2(e)e
t/ρ

m−1∑
i=0

i∑
j=0

2j∑
�=0

{
(−1)�(2j)!(n − m + 
)!
22i−�j!
!(n − m + j)!

·
(

2i − 2j
i − j

)(
2j + 2n − 2m

2j − 


) n−m+�∑
k=0

Ek+1

(
t

ρ

)}
(E.15)

which involves a quadruple summation. Using a different approach,
described below, a simpler expression can be obtained, resulting into a
triple summation.

Consider the Christoffel–Darboux identity for orthonormal poly-
nomials [101]:

m∑
k=1

φk(x)φk(y) =
Am

Am+1

φm+1(x)φm(y) − φm(x)φm+1(y)
x − y

, (E.16)

where Ak denotes the coefficient of xk−1 in φk(x). Taking the limit as
y → x, the above identity yields

m∑
k=1

φk(x)2 =
Am

Am+1
[φm(x)φ′

m+1(x) − φm+1(x)φ′
m(x)]. (E.17)

When specialized to associated Laguerre polynomials, Eq. (E.5) and
(E.6) yield

Ak =
(−1)k−1√

(k − 1)!(k − 1 + α)!
so that

m∑
k=1

φk(x)2 =
m!

(m + α)!
[Lα

m(x)(Lα
m−1(x))′ − Lα

m−1(x)(Lα
m(x))′]

=
m!

(m + α)!
[Lα

m−1(x)Lα+1
m−1(x) − Lα+1

m−2(x)Lα
m(x)] (E.18)
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where we used the relation [Lα
k (x)]′ = Lα+1

k−1 (x) [101]. Then, we can
rewrite Eq. (E.14) as [48,49]:

C =
m!

(n − 1)!

∫ ∞

0
[Ln−m

m−1 (λ)Ln−m+1
m−1 (λ) − Ln−m+1

m−2 (λ)Ln−m
m (λ)]

log
(
1 +

ρ

t
λ
)

λn−me−λ dλ (E.19)

and further expand it using (E.6) as follows:

C =
m!

(n − 1)!

m−1∑
�=0

m∑
µ=0

(−1)�+µ


!µ!

∫ ∞

0
log
(
1 +

ρ

t
λ
)

λ�+µ+n−me−λ dλ[(
n − 1

m − 1 − 


)(
n

m − 1 − µ

)
−
(

n − 1
m − 2 − 


)(
n

m − µ

)]
.(E.20)

Finally, using a result in [93]:∫ ∞

0
ln(1 + ρλ)λµe−λ dλ = µ!e1/ρ

µ∑
p=0

Ep+1(1/ρ), (E.21)

we obtain:

C = log(e)
m!

(n − 1)!

m−1∑
�=0

m∑
µ=0

�+µ+n−m∑
p=0

(−1)�+µ(
 + µ + n − m)!

!µ!

et/ρEp+1(t/ρ)[(
n − 1

m − 1 − 


)(
n

m − 1 − µ

)
−
(

n − 1
m − 2 − 


)(
n

m − µ

)]
.

Notice that the number of terms added in (4.23) is approximately nm2

against approximately m3(n−m/2)/3 required in the capacity formula
derived in [93].

E.2 Proof of (4.51)

For the proof we need the following general result:

Theorem E.1 ([38]). Given a square matrix A ∈ C
n×n, the improper

integral ∫
Cn

exp(−πx†Ax) dx (E.22)
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exists, in the Lebesgue sense, if and only if all eigenvalues of A have
positive real parts. In this case,∫

Cn

exp(−πx†Ax) dx = detA−1. (E.23)

We now write the determinant in (4.49) as follows:

det
(

Ir j
√

ρ/t H
j
√

ρ/t H† It

)
= det

(
Ir +

ρ

t
HH†

)
. (E.24)

Then, applying Theorem E.1, we have:

det
(
Ir +

ρ

t
HH†

)−1

=
∫

Cr

∫
Ct

exp
[
−π(x†,y†)

(
Ir j

√
ρ/t H

j
√

ρ/t H† It

)(
x
y

)]
dx dy

=
∫

Cr

∫
Ct

exp
[
−π(x†x + y†y) + jπ

√
ρ/t (x†Hy + y†H†x)

]
dx dy.

(E.25)

Then, for integer s, we can write the sth power of the above LHS by
“replicating” the integral s times with different integration variables to
obtain

det
(
Ir +

ρ

t
HH†

)−s

=
s∏

a=1

{∫
Cr

∫
Ct

exp
[
−π(x†

axa + y†
aya)

+jπ
√

ρ/t (x†
aHya + y†

aH
†xa)

]
dxa dya

}
. (E.26)

Averaging the result with respect to H, we obtain

ΦC(s) � E[exp(−sC)]

=
∫

Cr×t

π−rt exp(−‖H‖2) dH
s∏

a=1

∫
Cr

∫
Ct

exp
[
− π(xa

†xa + ya
†ya) + jπ

√
ρ/t (xa

†Hya + ya
†H†xa)

]
dxa dya
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=
∫

Cr×t

π−rt dH
∫

Cr×s

∫
Ct×s

etr [−π(X†X + Y†Y)]

etr
[
jπ
√

ρ/t (HYX† + XY†H†) − HH†
]
dX dY, (E.27)

where X � (x1, . . . ,xs) and Y � (y1, . . . ,ys). Due to the fact that the
integrand is bounded and continuous in all its variables, the integration
order can be exchanged, and we integrate first over H. Defining A �
π
√

ρ/tXY†, we have:∫
Cr×t

π−rtetr
[
j(AH† + HA†) − HH†

]
dH

=
r∏

i=1

t∏
k=1

π−1

∫
C

exp
[
2 j
(
Re (A)i,kRe (H)i,k + Im (A)i,kIm (H)i,k

)
−(Re (H)i,k)2 − (Im (H)i,k)2

]
d(H)i,k

=
r∏

i=1

t∏
k=1

π−1

·
∫

R

exp
[
−
(
Re (H)i,k − jRe (A)i,k

)2 − (Re (A)i,k)2
]
d(Re (H)i,k)

·
∫

R

exp
[
−
(
Im (H)i,k − jIm (A)i,k

)2 − (Im (A)i,k)2
]
d(Im (H)i,k)

=
r∏

i=1

t∏
k=1

exp
[
− |(A)i,k)|2

]
.

Inserting (E.28) into (E.27) we obtain

ΦC(s) =
∫

Cr×s

∫
Ct×s

etr
[
− π(X†X + Y†Y) − π2 ρ

t
X†XY†Y

]
dX dY.

(E.28)
From the equality

1
j2π

∫ q0+j∞

q0−j∞
dq

∫ r0+∞

r0−∞
exp
{

q(γr−x)−ry
}

dr =
exp(−xy/γ)

γ
(E.29)

holding for any x, y, γ, q0, r0 ∈ C, we have

ΦC(s) =
∫

Cr×s

∫
Cr×s

etr
[
− π(X†X + Y†Y)

]
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s∏
a,b=1

exp
[
− π2 ρ

t
(X†X)a,b(Y†Y)b,a

]
dX dY

=
∫

Cr×s

∫
Cr×s

etr
[
− π(X†X + Y†Y)

]
dX dY

s∏
a,b=1

1
j2π

∫ qb,a+j∞

qb,a−j∞
d(Q)b,a

∫ ra,b+∞

ra,b−∞

t exp
[
(Q)b,a

(
t(R)a,b − π

√
ρ(X†X)a,b

)
− (R)a,bπ

√
ρ(Y†Y)b,a

]
d(R)a,b

= ts
2

∫
Cr×s

∫
Cr×s

etr
[
− π(X†X + Y†Y)

]
dX dY

(j2π)−s2

∫
Q0+(jR)s×s

dQ
∫
R0+Rs×s

etr
[
tQR− Q π

√
ρX†X− R π

√
ρY†Y

]
dR

=
(

t

j2π

)s2 ∫
Q0+(jR)s×s

dQ
∫
R0+Rs×s

(E.30)

exp
[
t Tr (Q R) − t ln det(Is + Q

√
ρ) − r ln det(Is + R

√
ρ)
]
dR.

Here, Q0 and R0 are arbitrary s×s complex matrices that can be chosen
to simplify the evaluation of the integral. Notice that the integration
domain in the last integral is the Cartesian product of one-dimensional
paths in C. Now, we resort to multidimensional saddle-point integra-
tion [15] to calculate the integral asymptotically as t, r → ∞ with
t/r → α. First, we define

ϕ(Q,R) � Tr (Q R) − ln det(wIs + Q) − β ln det(wIs + R) (E.31)

with β � r/t and w �
√

1/ρ. Expanding the second-order variation of
(E.31),

δϕ(Q,R) = Tr
{

[R − (wIs + Q)−1]δQ + [Q − β(wIs + R)−1]δR

+
1
2
[(wIs + Q)−1δQ]2 + δQδR +

1
2
β[(wIs + R)−1δR]2

}
, (E.32)
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we obtain the following critical points:

R = (wIs + Q)−1 Q = β(wIs + R)−1 (E.33)

At any critical point we have

δϕ(Q,R) =
1
2
Tr
{

(RδQ)2 + 2 δQδR + β−1(QδR)2
}

(E.34)

We now assume that the absolute maximum of Re {ϕ(Q,R)} occurs in
correspondence of two scalar matrices Q0 = q̌Is and R0 = řIs.1 This
leads to the following pair of equations:

ř =
1

w + q̌
q̌ =

β

w + ř
(E.35)

and the corresponding second-order expansion:

ϕ(q̌Is + δQ, řIs + δR) = (E.36)

ϕ(q̌Is, řIs) +
1
2
Tr
{
ř2(δQ)2 + 2 δQδR + β−1q̌2(δR)2

}
.

Equations (E.34) have two possible solutions:

q̌1,2 =
β − 1 − w2 ±√(β − 1 − w2)2 + 4w2β

2w
(E.37)

ř1,2 =
1 − β − w2 ±

√
(1 − β − w2)2 + 4w2

2w
. (E.38)

For the solution (q0, r0) we have

ϕ(q0Is + δQ, r0Is + δR) = (E.39)

ϕ(q0Is, r0Is) +
1
2
Tr
{

r2
0(δQ)2 + 2 δQδR + β−1q2

0(δR)2
}

so that

w−ts(β+1)ΦC(s) = (E.40)(
t

j2π

)s2 ∫
Dq

dQ̌
∫

Dr

exp[tϕ(q0Is + Q̌, r0Is + Ř)] dŘ

1 The assumption of certain symmetries in the solution in order to avoid local minima,
called the Replica Symmetry Ansatz in the statistical mechanics literature, lacks a general
rigorous justification.
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→
(

t

j2π

)s2

exp[tϕ(q0Is, r0Is)]
s∏

a=1

s∏
b=1

∫
Dq

a,b

d(Q̌)a,b

∫
Dr

a,b

d(Ř)a,b

exp
[

t

2

(
r2
0(Q̌)a,b(Q̌)b,a + 2 (Q̌)a,b(Ř)b,a + β−1q2

0(Ř)a,b(Ř)b,a
)]

,

where the integration domains Dq and Dr are chosen as the paths
of steepest descent from the maximum in order to let the integrals
converge [15]. These domains are the Cartesian products of D

q
a,b and

Dr
a,b, respectively, for a, b = 1 . . . , s. It can be shown that this condition

requires that q2
0r

2
0 > β and then⎧⎪⎪⎨⎪⎪⎩

q0 =
β − 1 − w2 +

√
(β − 1 − w2)2 + 4w2β

2w

r0 =
1 − β − w2 +

√
(1 − β − w2)2 + 4w2

2w
.

(E.41)

Finally, we obtain

ΦC(s) → wst(1+β) exp[st(q0r0 + ln r0 + β ln(q0/β))](1 − q2
0r

2
0/β)−s2/2.

(E.42)
This result, which is a key ingredient of the Replica Method, confirms
that the pdf of C(H) approaches asymptotically the Gaussian distri-
bution [46,58,91,77]. It is valid provided that we are allowed to extend
the range of s from nonnegative integers to the whole complex plane
Re s > 0. More precisely, we assume that the expression (E.42) obtained
for nonnegative integer values of s can be extended to a compact neigh-
borhood of s = 0+, and that the derivative with respect to s can be
exchanged with the limit as t → ∞. Then, as t → ∞ and t/r → α, we
can derive the asymptotic mean and variance as follows:

E[C]
t

=
1
t

d

ds
ln ΦC(s)

∣∣∣∣
s=0

→ −
{
(1 + β) ln w + q0r0 + ln r0 + β ln(q0/β)

}
V[C] =

d2

ds2
ln ΦC(s)

∣∣∣∣
s=0

→ − ln(1 − q2
0r

2
0/β)

expressed in nat/dimension pair and (nat/dimension pair)2, respec-
tively. The expectation E[C] is the ergodic capacity discussed in Sec-
tion 4.2. In spite of the visual difference, this expression is equivalent
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to (4.32). The variance V[C] was evaluated independently in the form
of an integral for finite r and t in [98] and [115] (the latter reference
actually derives the moment-generating function of C(H), and hence
all of its moments).
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[111] S. Verdú, Multiuser Detection. Cambridge, UK: Cambridge Univ. Press, 1998.
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Notations and Acronyms

� Equal by definition
(·)+ � max(0, ·)
1{A} � 1if A is true and 0 otherwise

(indicator function)
Γ(x) �

R ∞
0

ux−1e−u du, The Gamma
function

A+ (Moore–Penrose)
pseudoinverse of matrix A

A′ Transpose of matrix A
A† Conjugate (or Hermitian)

transpose of matrix A
(A,B) � ReTr (AB†), scalar matrix

product
‖A‖2 � (A,A), squared Frobenius

norm of matrix A
A ≥ B means that A − B is

nonnegative definite
a.s. Almost surely
AWGN Additive white Gaussian

noise
C The set of complex numbers
CSI Channel state information
E[X] Expectation of the random

variable X

etr (·) � exp(Tr (·))
FER Frame-error rate
In The n × n identity matrix
iid Independent and identically

distributed
Im Imaginary part
LHS Left-hand side
ln Natural logarithm
log Logarithm in base 2
MGF Moment-generating function
MIMO Multiple-input,

multiple-output
ML Maximum-likelihood
MMSE Minimum mean-square error
MSE Mean-square error
pdf Probability density function
PEP Pairwise error probability
Q(x) � (2π)−1/2

R ∞
x

exp(−z2/2) dz,
the Gaussian tail function

R The set of real numbers
Re Real part
RHS Right-hand side
ROC Region of convergence
RV Random variable
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158 Notations and Acronyms

SISO Single-input, single-output
SNR Signal-to-noise ratio
TCM Trellis-coded modulation
TrA Trace of the matrix A
vec(A) the column vector obtained

by stacking the columns of A
on top of each other

V[X] Variance of the random
variable X

X ∼ N(µ, σ2), X is a real Gaussian

RV with mean µ and
variance σ2

X ∼ Nc(µ, σ2), X is a
circularly-symmetric complex
Gaussian random variable
with mean µ and variance
V(X) = σ2

X⊥⊥Y the RVs X and Y are
statistically independent
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