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1

Introduction

Elementary number theory was the basis of the development of error
correcting codes in the early years of coding theory. Finite fields were
the key tool in the design of powerful binary codes and gradually en-
tered in the general mathematical background of communications engi-
neers. Thanks to the technological developments and increased process-
ing power available in digital receivers, attention moved to the design
of signal space codes in the framework of coded modulation systems.
Here, the theory of Euclidean lattices became of great interest for the
design of dense signal constellations well suited for transmission over
the Additive White Gaussian Noise (AWGN) channel.

More recently, the incredible boom of wireless communications
forced coding theorists to deal with fading channels. New code de-
sign criteria had to be considered in order to improve the poor per-
formance of wireless transmission systems. The need for bandwidth-
efficient coded modulation became even more important due to scarce
availability of radio bands. Algebraic number theory was shown to be
a very useful mathematical tool that enables the design of good coding
schemes for fading channels.

These codes are constructed as multidimensional lattice signal sets
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2 Introduction

(or constellations) with particular geometric properties. Most of the
coding gain is obtained by introducing the so-called modulation di-
versity (or signal space diversity) in the signal set, which results in a
particular type of bandwidth-efficient diversity technique.

Two approaches were proposed to construct high modulation diver-
sity constellations. The first was based on the design of intrinsic high
diversity algebraic lattices, obtained by applying the canonical embed-
ding of an algebraic number field to its ring of integers. Only later it
was realized that high modulation diversity could also be achieved by
applying a particular rotation to a multidimensional QAM signal con-
stellation in such a way that any two points achieve the maximum
number of distinct components. Still, these rotations giving diversity
can be designed using algebraic number theory.

An attractive feature of this diversity technique is that a significant
improvement in error performance is obtained without requiring the
use of any conventional channel coding. This can always be added later
if required.

Finally, dealing with lattice constellations has also the key advan-
tage that an efficient decoding algorithm is available, known as the
Sphere Decoder.

Research on coded modulation schemes obtained from lattice
constellations with high diversity began more than ten years ago, and
extensive work has been done to improve the performance of these
lattice codes. The goal of this work is to give both a unified point of
view on the constructions obtained so far, and a tutorial on algebraic
number theory methods useful for the design of algebraic lattice codes
for the Rayleigh fading channel.

This paper is organized as follows. Chapter 2 is dedicated to the
communication problem. All the assumptions on the system model and
the code design criteria are detailed there. We motivate the choice of
lattice codes for this model.

Since some basic knowledge of lattices is required for the code con-
structions, Chapter 3 recalls elementary definitions and properties of
lattices.

A very important feature to consider when designing codes is
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3

their decoding. Application of arbitrary lattice codes became attractive
thanks to the Sphere Decoder, a universal lattice decoding algorithm,
described in Chapter 4 in its original form.

Chapter 5 is a self-contained short introduction to algebraic number
theory. It starts from the very elementary definitions, and focuses on
the construction of algebraic lattices.

Chapter 6 introduces the key notion of ideal lattice, which gives
a unifying context for understanding algebraic lattice codes. It allows
the construction of close form expressions for the key performance para-
meters of lattice codes in terms of algebraic properties of the underlying
number field.

At this point, we have all the mathematical tools to build efficient
lattice codes. Some explicit constructions are given and their perfor-
mance is shown in Chapter 7. Once again, the algebraic properties of
the lattice will help us in deriving a bound on the performance, which
we will use to show that known lattices codes are almost optimal, and
that no significant further improvement can be achieved.

In Chapter 8, we give a brief overview of other applications of the
theory of algebraic lattice codes; for instance, complex lattice codes can
be used similarly to the real ones in the case where we assume complex
fading coefficients. Finally, we give an example of algebraic space–time
block code, to illustrate how this theory can be generalized and used
in the context of cyclic division algebras for designing codes for MIMO
channels. This last application is a promising area of research, and we
give here an example to motivate further investigations.

For readers interested in implementing the constructions of alge-
braic lattice codes, we add at the end of Chapters 5 and 7 some com-
mands in KASH/KANT, a computational algebra software tool. In such
a programming language, all the elementary algorithms for number field
computations are readily available.

Full text available at: http://dx.doi.org/10.1561/0100000003



References

[1] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, “Closest point search in lat-
tices,” IEEE Transactions on Information Theory, vol. 48, n. 8, pp. 2201–2214,
2002.

[2] C. Batut, K. Belabas, D. Bernardi, H. Cohen, and M. Olivier, “PARI/GP
– a software package for computer-aided number theory,”. Available at
http://www.math.u-psud.fr/̃ belabas/pari/.

[3] E. Bayer-Fluckiger, “Lattices and number fields,” Contemporary Mathematics,
vol. 241, pp. 69–84, 1999.

[4] E. Bayer-Fluckiger, F. Oggier, and E. Viterbo, “New algebraic constructions
of rotated Zn–lattice constellations for the Rayleigh fading channel,” IEEE
Transactions on Information Theory, vol. 50, n. 4, pp. 702–714, 2004.

[5] E. Bayer-Fluckiger, F. Oggier, and E. Viterbo, “Algebraic lattice constellations:
Bounds on performance,” submitted to IEEE Transactions on Information The-
ory, April 2004.

[6] E. Bayer-Fluckiger, F. Oggier, and E. Viterbo, “Bounds on the performance of
rotated lattice constellations,” Proceedings of the IEEE International Sympo-
sium on Information Theory, April 2004.

[7] J.-C. Belfiore and G. Rekaya, “Quaternionic lattices for space-time coding,”
Proceedings of ITW2003, Paris, April 2003.

[8] J.-C. Belfiore, G. Rekaya, and E. Viterbo, “The Golden code: A 2x2 full-rate
space-time code with non-vanishing determinants,” Proceedings of the IEEE
International Symposium on Information Theory, 2004.
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