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Abstract

This article is focused on the performance evaluation of linear codes
under optimal maximum-likelihood (ML) decoding. Though the ML
decoding algorithm is prohibitively complex for most practical codes,
their performance analysis under ML decoding allows to predict their
performance without resorting to computer simulations. It also provides
a benchmark for testing the sub-optimality of iterative (or other prac-
tical) decoding algorithms. This analysis also establishes the goodness
of linear codes (or ensembles), determined by the gap between their
achievable rates under optimal ML decoding and information theoreti-
cal limits. In this article, upper and lower bounds on the error probabil-
ity of linear codes under ML decoding are surveyed and applied to codes
and ensembles of codes on graphs. For upper bounds, we discuss various
bounds where focus is put on Gallager bounding techniques and their
relation to a variety of other reported bounds. Within the class of lower
bounds, we address de Caen’s based bounds and their improvements,
and also consider sphere-packing bounds with their recent improve-
ments targeting codes of moderate block lengths.
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1

A Short Overview

Overview : Upper and lower bounds on the error probability of linear
codes under maximum-likelihood (ML) decoding are shortly surveyed
and applied to ensembles of codes on graphs. For upper bounds, we
focus on the Gallager bounding techniques and their relation to a
variety of other known bounds. Within the class of lower bounds, we
address de Caen’s based bounds and their improvements, and sphere-
packing bounds with their recent developments targeting codes of mod-
erate block lengths. This serves as an introductory section, and a
comprehensive overview is provided in the continuation of this tutorial.

1.1 Introduction

Consider the classical coded communication model of transmitting
one of equally likely signals over a communication channel. Since the
error performance of coded communication systems rarely admits exact
expressions, tight analytical upper and lower bounds serve as a useful
theoretical and engineering tool for assessing performance and for gain-
ing insight into the effect of the main system parameters. As specific
good codes are hard to identify, the performance of ensembles of codes

1
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2 A Short Overview

is usually considered. The Fano [71] and Gallager [82] bounds were
introduced as efficient tools to determine the error exponents of the
ensemble of random codes, providing informative results up to the ulti-
mate capacity limit. Since the advent of information theory, the search
for efficient coding systems has motivated the introduction of efficient
bounding techniques tailored to specific codes or some carefully cho-
sen ensembles of codes. A classical example is the adaptation of the
Fano upper bounding technique [71] to specific codes, as reported in
the seminal dissertation by Gallager [81] (to be referred to as the 1961
Gallager-Fano bound). The incentive for introducing and applying such
bounds has strengthened with the introduction of various families of
codes defined on graphs which closely approach the channel capacity
limit with feasible complexity (e.g., turbo codes [23], repeat-accumulate
codes [1, 49], and low-density parity-check (LDPC) codes [124, 156]).
Clearly, the desired bounds must not be subject to the union bound
limitation, since for codes of large enough block lengths, these ensem-
bles of turbo-like codes perform reliably at rates which are considerably
above the cutoff rate (R0) of the channel (recalling that union bounds
for long codes are not informative at the portion of the rate region
above R0, where the performance of these capacity-approaching codes
is most appealing). Although maximum-likelihood (ML) decoding is in
general prohibitively complex for long codes, the derivation of upper
and lower bounds on the ML decoding error probability is of interest,
providing an ultimate indication of the system performance. Further,
the structure of efficient codes is usually not available, necessitating effi-
cient bounds on performance to rely only on basic features, such as the
distance spectrum and the input-output weight enumeration function
(IOWEF) of the examined code (for the evaluation of the block and bit
error probabilities, respectively, of a specific code or ensemble). These
latter features can be found by analytical methods (see e.g., [127]).

In classical treatments, due to the difficulty in the analytic charac-
terization of optimal codes, random codes were introduced ([71], [82],
[83]). This is also the case with modern approaches and practical cod-
ing techniques, where ensembles of codes defined on graphs lend them-
selves to analytical treatment, while this is not necessarily the case for
specifically chosen codes within these families. A desirable feature is to
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1.2. General approach for the derivation of improved upper bounds 3

identify efficient bounding techniques encompassing both specific codes
and ensembles.

In Sections 2–4, we present various reported upper bounds on the
ML decoding error probability, and exemplify the improvement in their
tightness as compared to union bounds. These include the bounds of
Berlekamp [22], Divsalar [52], Duman-Salehi [59], Engdahl-Zigangirov
[67], Gallager-Fano 1961 bound [81], Hughes [97], Poltyrev [153], Sason-
Shamai [170], Shulman-Feder [186], Viterbi ([208] and [209]), Yousefi-
Khandani ([223] and [224]) and others. We demonstrate in Sections 3
and 4 the underlying connections that exist between them; the bounds
are based on the distance spectrum or the IOWEFs of the codes. The
focus of this presentation is directed towards the application of efficient
bounding techniques on ML decoding performance, which are not sub-
ject to the deficiencies of the union bounds and therefore provide useful
results at rates reasonably higher than the cut-off rate. In Sections 2–4
and references therein, improved upper bounds are applied to block
codes and turbo-like codes. In addressing the Gallager bounds and their
variations, we focus in [182] (and more extensively in Section 4) on the
Duman and Salehi variation which originates from the standard Gal-
lager bound. A large class of efficient recent bounds (or their Chernoff
versions) is demonstrated to be a special case of the generalized second
version of the Duman and Salehi bounds. Implications and applications
of these observations are addressed in Section 4.

In Sections 5 and 6, we address lower bounds on the ML decoding
error probability and exemplify these bounds on linear block codes.
Here we overview a class of bounds which are based on de Caen’s
bound and its improved version. We also review classical sphere-packing
bounds and recent improvements for finite length codes.

We note that every section is self-contained and consequently, nota-
tions may (slightly) change from one section to another.

1.2 General approach for the derivation of
improved upper bounds

In Sections 3–4, we present many improved upper bounds on the ML
decoding error probability which are tighter than the union bound.

Full text available at: http://dx.doi.org/10.1561/0100000009



4 A Short Overview

The basic concept which is common to the derivation of the upper
bounds within the class discussed in Sections 3 and 4 is the following:

Pr(error) = Pr(error,y ∈ R) + Pr(error,y /∈ R)

≤ Pr(error,y ∈ R) + Pr(y /∈ R) (1.1)

where y is the received signal vector, and R is an arbitrary region
around the transmitted signal point which is interpreted as the “good
region”. The idea is to use the union bound only for the joint event
where the decoder fails to decode correctly, and in addition, the received
signal vector falls inside the region R (i.e., the union bound is used for
upper bounding the first term in the right-hand side (RHS) of (1.1)).
On the other hand, the second term in the RHS of (1.1) represents the
probability of the event where the received signal vector falls outside
the region R, and which is typically the dominant term for very low
SNR, is calculated only one time (and it is not part of the event where
the union bound is used). We note that in the case where the region R
is the whole observation space, the basic approach which is suggested
above provides the union bound. However, since the upper bound in
(1.1) is valid for an arbitrary region R in the observation space, many
improved upper bounds can be derived by an appropriate selection of
this region. These bounds could be therefore interpreted as geometric
bounds (see [52] and [182]). As we will see, the choice of the region R
is very significant in this bounding technique; different choices of this
region have resulted in various different improved upper bounds which
are considered extensively in Sections 3 and 4. For instance, the tan-
gential bound of Berlekamp [22] used the basic inequality in (1.1) to
provide a considerably tighter bound than the union bound at low SNR
values. This was achieved by separating the radial and tangential com-
ponents of the Gaussian noise with a half-space as the underlying region
R. For the derivation of the sphere bound [90], Herzberg and Poltyrev
have chosen the region R in (1.1) to be a sphere around the transmit-
ted signal vector, and optimized the radius of the sphere in order to
get the tightest upper bound within this form. The Divsalar bound [52]
is another simple and tight bound which relies on the basic inequality
(1.1). The geometrical region R in the Divsalar bound was chosen to
be a sphere; in addition to the optimization of the radius of this sphere,
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1.2. General approach for the derivation of improved upper bounds 5

the center of the sphere which does not necessarily coincide with the
transmitted signal vector was optimized too. Finally, the tangential-
sphere bound (TSB) which was proposed for binary linear block codes
by Poltyrev [153] and for M-ary PSK block coded-modulation schemes
by Herzberg and Poltyrev [91] selectedR as a circular cone of half-angle
θ, whose central line passes through the origin and the transmitted sig-
nal. It is one of the tightest upper bounds known to-date for linear codes
whose transmission takes place over a binary-input AWGN channel (see
Fig. 1.1 and [168, 170, 223]).

Fig. 1.1 Various bounds for the ensemble of rate− 1
3

turbo codes whose compo-
nents are recursive systematic convolutional codes with generators G1(D) = G2(D) =[
1, 1+D4

1+D+D2+D3+D4

]
. There is no puncturing of the parity bits, and the uniform inter-

leaver between the two parallel concatenated (component) codes is of length 1000. It is
assumed that the transmission of the codes takes place over a binary-input AWGN channel.
The upper bounds on the bit error probability under optimal ML decoding are compared

with computer simulations of the iterative Log-MAP decoding algorithm with up to 10
iterations.
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6 A Short Overview

We note that the bounds mentioned above are only a sample of
various bounds reported in Section 3; all of these bounds rely on the
inequality (1.1) where the geometric region R characterizes the result-
ing upper bounds on the decoding error probability. After providing the
general approach, we outline some connections between these bounds
and demonstrate a few possible applications.

1.3 On Gallager bounds: Variations and applications

In addressing the Gallager bounding techniques and their variations,
we focus in Section 4 on variations of the Gallager bounds and their
applications.

In the following, we present shortly the 1965 Gallager bound [82].
Suppose an arbitrary codeword xm (of length-N) is transmitted over
a channel. Let y designate the observation vector (of N components),
and pN (y|xm) be the channel transition probability measure. Then, the
conditional ML decoding error probability is given by

Pe|m =
∑

y: {∃ m′ 6=m: pN (y|xm′ )≥pN (y|xm)}
pN (y|xm).

If the observation vector y is such that there exists m′ 6= m so that
pN (y|xm′

) ≥ pN (y|xm), then for arbitrary λ,ρ ≥ 0, the value of the
expression  ∑

m′ 6=m

(
pN (y|xm′

)
pN (y|xm)

)λ
ρ

is clearly lower bounded by 1, and in general, it is always non-negative.
The 1965 Gallager bound [82, 83] therefore states that

Pe|m ≤
∑

y

pN (y|xm)

 ∑
m′ 6=m

(
pN (y|xm′

)
pN (y|xm)

)λ
ρ

, λ, ρ ≥ 0 .

This upper bound is usually not easily evaluated in terms of basic
features of particular codes, except for example, orthogonal codes and
the special case of ρ = 1 and λ = 1

2 (which yields the Bhattacharyya-
union bound).
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1.3. On Gallager bounds: Variations and applications 7

An alternative bounding technique which originates from the 1965
Gallager bound is the second version of the Duman and Salehi (DS2)
bound (see [61, 182]). This bound is calculable in terms of the distance
spectrum, not requiring the fine details of the code structure. A similar
upper bound on the bit error probability is expressible in terms of the
IOWEFs of the codes (or the average IOWEFs of code ensembles). By
generalizing the framework of the DS2 bound, a large class of efficient
bounds (or their Chernoff versions) is demonstrated to follow from this
bound. Implications and applications of these observations are pointed
out in [182], including the fully interleaved fading channel, resorting to
either matched or mismatched decoding. The proposed approach can
be generalized to geometrically uniform non-binary codes, finite state
channels, bit-interleaved coded-modulation systems, parallel channels
[119], and it can be also used for the derivation of upper bounds on
the conditional decoding error probability. In Section 4, we present the
suitability of variations on the Gallager bounds as bounding techniques
for random and deterministic codes, which partially rely on insightful
observations made by Divsalar [52]. Focus is put in [182] on geometric
interpretations of the 1961 Gallager-Fano bound (see [71] and [81]).
The interconnections between many reported upper bounds are illus-
trated in Section 4, where it is shown that the generalized DS2 bound
particularizes to these upper bounds by proper selections of the tilt-
ing measure. Further details, extensions and examples are provided in
Section 4.

The TSB [153] happens often to be the tightest reported upper
bound for block codes which are transmitted over the binary-input
additive white Gaussian noise (AWGN) channel and ML decoded (see
e.g., [168] and [170]). However, in the random coding setting, it fails
to reproduce the random coding error exponent (see [153]), while the
DS2 bound does. In fact, also the Shulman-Feder bound [186] which is
a special case of the latter bound achieves capacity for the ensemble
of fully random block codes. This substantiates the claim that there is
no uniformly best bound. However, we note that the loosened version
of the TSB [52] (which involves the Chernoff inequality) maintains the
asymptotic (i.e., for infinite block length) exponential tightness of the
TSB of Poltyrev [153], and it is a special case of the DS2 bound.
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8 A Short Overview

In the following, we exemplify the use of the DS2 bounding tech-
nique for fully interleaved fading channels with faulty measurements of
the fading samples.

Example 1.1. The Generalized DS2 bound for the Mismatched
Regime. In [182], we apply the generalized DS2 bound to study the
robustness of a mismatched decoding that is based on ML decoding
with respect to the faulty channel measurements. We examine here the
robustness of the decoder in case that a BPSK modulated signal is
transmitted through a fully interleaved Rayleigh fading channel. For
simplicity, the bounds are applied to the case of perfect phase estima-
tion of the i.i.d fading samples (in essence reducing the problem to a
real channel). We also assume here that the estimated and real mag-
nitudes of the Rayleigh fading samples have a joint distribution of two
correlated bivariate Rayleigh variables with an average power of unity.

The bounds in Fig. 1.2 refer to the ensemble of uniformly interleaved
rate −1

3 turbo codes whose components are recursive systematic con-

volutional codes: G1(D) = G2(D) =
[
1, 1+D4

1+D+D2+D3+D4

]
without punc-

turing of parity bits, and an interleaver length of N = 1000. Since for a
fully interleaved Rayleigh fading channel with perfect side information
on the fading samples, the matched channel cutoff rate corresponds to
Eb
N0

= 3.23 dB then, according to the upper bounds depicted in Fig. 1.2,
the ensemble performance of these turbo codes (associated with the ML
decoding) is sufficiently robust in case of mismatched decoding, even in
a portion of the rate region exceeding the channel matched cutoff rate.
The proposed upper bounds depicted here were efficiently implemented
in software, thus indicating their feasible computational complexity.

1.4 Lower bounds on the decoding error probability

1.4.1 De Caen inequality and variations

D. de Caen [45] suggested a lower bound on the probability of a finite
union of events. While an elementary result (essentially, the Cauchy-
Schwartz inequality), it was used to compute lower bounds on the
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1.4. Lower bounds on the decoding error probability 9

Fig. 1.2 A comparison between upper bounds on the bit error probability for the ensemble

of turbo codes considered in Example 1.1 where the transmission of these codes takes place
over a fully interleaved Rayleigh fading channel with mismatched decoding. The bounds

are based on the combination of the generalized DS2 bound and the tight form of the union

bound applied to every constant Hamming-weight subcode. These bounds are plotted for
Eb
N0

= 2.50,2.75,3.00 and 3.25 dB, as a function of the correlation coefficient between the

actual i.i.d Rayleigh fading samples and their Rayleigh distributed estimations.

decoding error probability of linear block codes via their distance
distribution (see [108] for the binary symmetric channel (BSC), and
[181] for the Gaussian channel). In [39], Cohen and Merhav improved
de Caen’s inequality by introducing an arbitrary non-negative weight-
ing function which is subject to optimization. The concept of this
improved bound is presented in the following statement and, like de
Caen’s inequality, it follows from the Cauchy-Schwartz inequality.

Theorem 1.2. [39, Theorem 2.1] Let {Ai}i∈I be an arbitrary set of
events in a probability space (Ω,F ,P ), then the probability of the union
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10 A Short Overview

of these events is lower bounded by

P

(⋃
i∈I

Ai

)
≥
∑
i∈I



(∑
x∈Ai

p(x)mi(x)

)2

∑
j∈I

∑
x∈Ai∩Aj

p(x)mi(x)2


where mi is an arbitrary non-negative function on Ω such that the sums
in the RHS converge. Further, equality is achieved when

mi(x) = m∗(x) ,
1

deg(x)
, ∀ i ∈ I

where for each x ∈ Ω

deg(x) , |{i ∈ I | x ∈ Ai}|.

The lower bound on the union of events in Theorem 1.2 particular-
izes to de Caen’s inequality by the particular choice of the weighting
functions mi(x) = 1 for all i ∈ I, which then gives

P

(⋃
i∈I

Ai

)
≥
∑
i∈I

P (Ai)2∑
j∈I

P (Ai ∩ Aj)
.

Cohen and Merhav relied on Theorem 1.2 for the derivation of improved
lower bounds on the decoding error probability of linear codes under
optimal ML decoding. They exemplified their bounds for BPSK mod-
ulated signals which are equally likely to be transmitted among M

signals, and the examined communication channels were a BSC and
an AWGN channel. In this context, the element x in Theorem 1.2 is
replaced by the received vector y at the output of the communication
channel, and Ai (where i = 1,2, . . . ,M − 1) consists of all the vectors
which are closer in the Euclidean sense to the signal si rather than
the transmitted signal s0. Following [181], the bounds in [39] get (after
some loosening in their tightness) final forms which solely depend on
the distance spectrum of the code. Recently, two lower bounds on the
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1.4. Lower bounds on the decoding error probability 11

ML decoding error probability of linear binary block codes were derived
by Behnamfar et al. [16] for BPSK-modulated AWGN channels. These
bounds are easier for numerical calculation, but are looser than Cohen-
Merhav bounds for low to moderate SNRs.

Note that de Caen’s based lower bounds on the decoding error prob-
ability (see [16], [39], [108] and [181]) are applicable for specific codes
but not for ensembles; this restriction is due to the fact that Jensen’s
inequality does not allow to replace the distance spectrum of a linear
code in these bounds by the average distance spectrum of ensembles.

1.4.2 Sphere-packing bounds revisited for
moderate block lengths

In the asymptotic case where the block length of a code tends to infinity,
the best known lower bound on the decoding error probability for dis-
crete memoryless channels (DMCs) with high levels of noise is the 1967
sphere-packing (SP67) bound [184]. Like the random coding bound of
Gallager [82], the sphere-packing bound decreases exponentially with
the block length. Further, the error exponent of the SP67 bound is
a convex function of the rate which is known to be tight at the por-
tion of the rate region between the critical rate (Rc) and the channel
capacity; for this important rate region, the error exponent of the SP67
bound coincides with the error exponent of the random coding bound
[184, Part 1]. For the AWGN channel, the 1959 sphere-packing (SP59)
bound was derived by Shannon [183] by showing that the error prob-
ability of any code whose codewords lie on a sphere must be greater
than the error probability of a code of the same length and rate whose
codewords are uniformly distributed over that sphere.

The reason that the SP67 bound fails to provide useful results for
codes of small to moderate block length is due to the original focus
in [184] on asymptotic analysis. In their paper [203], Valembois and
Fossorier have recently revisited the SP67 bound in order to make it
applicable for codes of moderate block lengths, and also to extend its
field of application to continuous output channels (e.g., the AWGN
channel which is the communication channel model of the SP59 bound
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12 A Short Overview

of Shannon [183]). The motivation for the study in [203] was strength-
ened due to the outstanding performance of codes defined on graphs
with moderate block length. The remarkable improvement in the tight-
ness of the SP67 was exemplified in [203] for the case of the AWGN
channel with BPSK signaling, and it was shown that in some cases, the
improved version of the SP67 presents an interesting alternative to the
SP59 bound [183].
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