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Abstract

Multiple antennas at both the transmitter and receiver ends of a wire-
less digital transmission channel may increase both data rate and reli-
ability. Reliable high rate transmission over such channels can only
be achieved through Space–Time coding. Rank and determinant code
design criteria have been proposed to enhance diversity and coding
gain. The special case of full-diversity criterion requires that the differ-
ence of any two distinct codewords has full rank.

Extensive work has been done on Space–Time coding, aiming at
finding fully diverse codes with high rate. Division algebras have been
proposed as a new tool for constructing Space–Time codes, since they
are non-commutative algebras that naturally yield linear fully diverse
codes. Their algebraic properties can thus be further exploited to
improve the design of good codes.
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The aim of this work is to provide a tutorial introduction to the
algebraic tools involved in the design of codes based on cyclic divi-
sion algebras. The different design criteria involved will be illustrated,
including the constellation shaping, the information lossless property,
the non-vanishing determinant property, and the diversity multiplexing
trade-off. The final target is to give the complete mathematical back-
ground underlying the construction of the Golden code and the other
Perfect Space–Time block codes.

Keywords: Cyclic algebras; division algebras; full diversity; golden
code; non-vanishing determinant; perfect space–time
codes; space–time coding.
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1

Introduction

Algebraic coding has played an important role since the early age of
coding theory. Error correcting codes for the binary symmetric chan-
nel were designed using finite fields and codes for the additive white
Gaussian channel were designed using Euclidean lattices.

The introduction of wireless communication required new coding
techniques to combat the effect of fading channels. Modulation schemes
based on algebraic number theory and the theory of algebraic lattices
were proposed for single antenna Rayleigh fading channels thanks to
their intrinsic modulation diversity.

New advances in wireless communications led to consider systems
with multiple antennas at both the transmitter and receiver ends, in
order to increase the data rates. The coding problem became more
complex and the code design criteria for such scenarios showed that
the challenge was to construct fully-diverse codes, i.e., sets of matri-
ces such that the difference of any two distinct matrices is full rank.
This required new tools, and from the algebraic side, division algebras
quickly became prominent.

1
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2 Introduction

1.1 Division Algebra Based Codes

Division algebras are non-commutative algebras that naturally yield
families of fully-diverse codes, thus enabling to design high rate, highly
reliable Space–Time codes, which are characterized by many optimal
features, deeply relying on the algebraic structures of the underlying
algebra.

The idea of using division algebras was first introduced in [51], where
so-called Brauer algebras were presented, and in [50], where it was
shown that the acclaimed Alamouti code [1] can actually be built from a
simple example of division algebras, namely the Hamilton quaternions.
Quaternion algebras were more generally used in [6], where the notion
of non-vanishing determinant was introduced.

Different code constructions appeared then in [52], based on field
extensions and cyclic algebras. In [7, 44] and then in [21], perfect codes
were presented as division algebra codes which furthermore satisfy a
shaping property and have a non-vanishing determinant. In [53], infor-
mation lossless codes from crossed product algebras, a new family of
division algebras, are presented. In [31], codes from maximal orders
of division algebras are investigated. In [39] some non-cubic shaping,
non-vanishing determinant codes are proposed based on cyclic division
algebras.

In parallel, in [7, 15, 33, 63], the first 2 × 2 codes achieving the
diversity-multiplexing gain trade-off of Zheng and Tse [64] were found.
It was furthermore shown [63] that a necessary condition to achieve the
trade-off for a 2 × 2 code is actually to have a non-vanishing determi-
nant (though not stated with this terminology). In [7], it was shown
that the algebraic structure of cyclic division algebras was the key for
constructing 2 × 2 non-vanishing determinant codes. In [20], it was
shown more generally that division algebra codes are a class of codes
that achieve the trade-off, thanks to the non-vanishing determinant.

All the notions mentioned in the above short history of division alge-
bra based codes will be explained in this work. We will focus on cyclic
division algebras, a particular family of division algebras. These will be
built over number fields, with base field Q(i) or Q(j), with i2 = −1 and
j3 = 1, which are suitable to describe QAM or HEX constellations.
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1.2 Organization 3

The notion of constellation shaping will be explained, thanks to an
underlying lattice structure. We will show how this is related to the
information lossless property. Furthermore, having Q(i) or Q(j) as a
base field will allow us to get the so-called non-vanishing determinant
property, which will be shown to be a sufficient condition to reach the
diversity-multiplexing trade-off.

1.2 Organization

This paper is organized as follows. Chapter 2 details the channel model
considered. It recalls the two main code design criteria derived from
the pairwise probability of error, namely: the rank criterion and the
determinant criterion. It then discusses the modulations used, QAM
and HEX constellations. Decoding is furthermore considered, which
also enlightens the importance of the constellation shaping in the code
performance.

In Chapter 3, performance of the code is considered from an infor-
mation theoretic perspective. The goal is to explain the role of the
diversity-multiplexing gain trade-off, as well as the information lossless
property, which guarantees that a coded system will have the same
capacity as an uncoded one assuming QAM input symbols.

Chapters 2 and 3 give a characterization of the properties a Space–
Time code should achieve to be efficient. Codes based on cyclic division
algebras have been shown to fulfill those properties. Their construc-
tion is however involved, and it is the goal of Chapter 4 to introduce
the algebra background necessary to construct those codes. No alge-
bra background is required to read this chapter. Division algebras are
introduced, as well as number fields. We also define concepts such as
algebraic norm and algebraic trace, that will be important for the code
construction.

Once the algebra background is set, Chapter 5 explains the con-
struction of the Golden code and some other Perfect Space–Time block
codes for small number of antennas, namely up to six.

The last chapter briefly presents future applications of those tech-
niques, toward coding for wireless networks, and trellis/block coded
modulations.
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