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Abstract

This survey reviews fundamental concepts of multi-user information
theory. Starting with typical sequences, the survey builds up knowl-
edge on random coding, binning, superposition coding, and capacity
converses by introducing progressively more sophisticated tools for
a selection of source and channel models. The problems addressed
include: Source Coding; Rate-Distortion and Multiple Descriptions;
Capacity-Cost; The Slepian–Wolf Problem; The Wyner-Ziv Problem;
The Gelfand-Pinsker Problem; The Broadcast Channel; The Multiac-
cess Channel; The Relay Channel; The Multiple Relay Channel; and
The Multiaccess Channel with Generalized Feedback. The survey also
includes a review of basic probability and information theory.
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Notations and Acronyms

We use standard notation for probabilities, random variables, entropy,
mutual information, and so forth. Table 1 lists notation developed in the
appendices of this survey, and we use this without further explanation
in the main body of the survey. We introduce the remaining notation
as we go along. The reader is referred to the appendices for a review of
the relevant probability and information theory concepts.

Table 1 Probability and information theory notation.

Sequences, Vectors, Matrices
xn the finite sequence x1,x2, . . . ,xn

xnym sequence concatenation: x1,x2, . . . ,xn,y1,y2, . . . ,ym

x the vector [x1,x2, . . . ,xn]
H a matrix
|Q| determinant of the matrix Q

(Continued)

1
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2 Notations and Acronyms

Table 1 (Continued)

Probability
Pr[A] probability of the event A
Pr[A|B] probability of event A conditioned on event B
PX(·) probability distribution of the random variable X
PX|Y (·) probability distribution of X conditioned on Y
supp(PX) support of PX

pX(·) probability density of the random variable X
pX|Y (·) probability density of X conditioned on Y
E [X] expectation of the real-valued X
E [X|A] expectation of X conditioned on event A
Var[X] variance of X
QX covariance matrix of X

Information Theory
H(X) entropy of the discrete random variable X
H(X|Y ) entropy of X conditioned on Y
I(X;Y ) mutual information between X and Y
I(X;Y |Z) mutual information between X and Y conditioned on Z
D(PX‖PY ) informational divergence between PX and PY

h(X) differential entropy of X
h(X|Y ) differential entropy of X conditioned on Y
H2(·) binary entropy function
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1

Typical Sequences and Source Coding

1.1 Typical Sequences

Shannon introduced the notion of a “typical sequence” in his 1948 paper
“A Mathematical Theory of Communication” [55]. To illustrate the
idea, consider a discrete memoryless source (DMS), which is a device
that emits symbols from a discrete and finite alphabet X in an inde-
pendent and identically distributed (i.i.d.) manner (see Figure 1.1).
Suppose the source probability distribution is PX(·) where

PX(0) = 2/3 and PX(1) = 1/3. (1.1)

Consider the following experiment: we generated a sequence of
length 18 by using a random number generator with the distribution
(1.1). We write this sequence below along with three other sequences
that we generated artificially.

(a) 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
(b) 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0
(c) 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0
(d) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.

3
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4 Typical Sequences and Source Coding

Fig. 1.1 A discrete memoryless source with distribution PX(·).

If we compute the probabilities that these sequences were emitted by
the source (1.1), we have

(a) (2/3)18 · (1/3)0 ≈ 6.77 · 10−4

(b) (2/3)9 · (1/3)9 ≈ 1.32 · 10−6

(c) (2/3)11 · (1/3)7 ≈ 5.29 · 10−6

(d) (2/3)0 · (1/3)18 ≈ 2.58 · 10−9.

Thus, the first sequence is the most probable one by a large margin.
However, the reader will likely not be surprised to find out that it is
sequence (c) that was actually put out by the random number genera-
tor. Why is this intuition correct? To explain this, we must define more
precisely what one might mean by a “typical” sequence.

1.2 Entropy-Typical Sequences

Let xn be a finite sequence whose ith entry xi takes on values in X .
We write X n for the Cartesian product of the set X with itself n times,
i.e., we have xn ∈ X n. Let N(a|xn) be the number of positions of xn

having the letter a, where a ∈ X .
There are several natural definitions for typical sequences. Shannon

in [55, Sec. 7] chose a definition based on the entropy of a random
variable X. Suppose that Xn is a sequence put out by the DMS PX(·),
which means that PXn(xn) =

∏n
i=1 PX(xi) is the probability that xn

was put out by the DMS PX(·). More generally, we will use the notation

Pn
X(xn) =

n∏
i=1

PX(xi). (1.2)

We further have

Pn
X(xn) =

{∏
a∈supp(PX) PX(a)N(a|xn) if N(a|xn) = 0 whenever PX(a) = 0

0 else
(1.3)

Full text available at: http://dx.doi.org/10.1561/0100000028



1.2 Entropy-Typical Sequences 5

and intuitively one might expect that the letter a occurs about
N(a|xn) ≈ nPX(a) times, so that Pn

X(xn) ≈ Πa∈supp(PX)PX(a)nPX(a) or

− 1
n

log2 Pn
X(xn) ≈

∑
a∈supp(PX)

−PX(a) log2 PX(a).

Shannon therefore defined a sequence xn to be typical with respect to
ε and PX(·) if ∣∣∣∣− log2 Pn

X(xn)
n

− H(X)
∣∣∣∣ < ε (1.4)

for some small positive ε. The sequences satisfying (1.4) are sometimes
called weakly typical sequences or entropy-typical sequences [19, p. 40].
We can equivalently write (1.4) as

2−n[H(X)+ε] < Pn
X(xn) < 2−n[H(X)−ε]. (1.5)

Example 1.1. If PX(·) is uniform then for any xn we have

Pn
X(xn) = |X |−n = 2−n log2 |X | = 2−nH(X) (1.6)

and all sequences in X n are entropy-typical.

Example 1.2. The source (1.1) has H(X) ≈ 0.9183 and the above four
sequences are entropy-typical with respect to PX(·) if

(a) ε > 1/3
(b) ε > 1/6
(c) ε > 1/18
(d) ε > 2/3.

Note that sequence (c) requires the smallest ε.

We remark that entropy typicality applies to continuous random
variables with a density if we replace the probability Pn

X(xn) in (1.4)
with the density value pn

X(xn). In contrast, the next definition can be
used only for discrete random variables.

Full text available at: http://dx.doi.org/10.1561/0100000028



6 Typical Sequences and Source Coding

1.3 Letter-Typical Sequences

A perhaps more natural definition for discrete random variables than
(1.4) is the following. For ε ≥ 0, we say a sequence xn is ε-letter typical
with respect to PX(·) if∣∣∣∣ 1nN(a|xn) − PX(a)

∣∣∣∣ ≤ ε · PX(a) for all a ∈ X (1.7)

The set of xn satisfying (1.7) is called the ε-letter-typical set Tn
ε (PX)

with respect to PX(·). The letter typical xn are thus sequences whose
empirical probability distribution is close to PX(·).

Example 1.3. If PX(·) is uniform then ε-letter typical xn satisfy

(1 − ε)n
|X |

≤ N(a|xn) ≤ (1 + ε)n
|X |

(1.8)

and if ε < |X | − 1, as is usually the case, then not all xn are letter-
typical. The definition (1.7) is then more restrictive than (1.4) (see
Example 1.1).

We will generally rely on letter typicality, since for discrete random
variables it is just as easy to use as entropy typicality, but can give
stronger results.

We remark that one often finds small variations of the conditions
(1.7). For example, for strongly typical sequences one replaces the
εPX(a) on the right-hand side of (1.7) with ε or ε/|X | (see [19, p. 33],
and [18, pp. 288, 358]). One further often adds the condition that
N(a|xn) = 0 if PX(a) = 0 so that typical sequences cannot have zero-
probability letters. Observe, however, that this condition is included in
(1.7). We also remark that the letter-typical sequences are simply called
“typical sequences” in [44] and “robustly typical sequences” in [46]. In
general, by the label “letter-typical” we mean any choice of typicality
where one performs a per-alphabet-letter test on the empirical proba-
bilities. We will focus on the definition (1.7).

We next develop the following theorem that describes some of
the most important properties of letter-typical sequences and sets.
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1.3 Letter-Typical Sequences 7

Let µX = minx∈supp(PX) PX(x) and define

δε(n) = 2|X | · e−nε2µX . (1.9)

Observe that δε(n)→ 0 for fixed ε, ε > 0, and n→∞.

Theorem 1.1. Suppose 0 ≤ ε ≤ µX , xn ∈ Tn
ε (PX), and Xn is emitted

by a DMS PX(·). We have

2−n(1+ε)H(X) ≤ Pn
X(xn) ≤ 2−n(1−ε)H(X) (1.10)

(1 − δε(n))2n(1−ε)H(X) ≤ |Tn
ε (PX)| ≤ 2n(1+ε)H(X) (1.11)

1 − δε(n) ≤ Pr[Xn ∈ Tn
ε (PX)] ≤ 1. (1.12)

Proof. Consider (1.10). For xn ∈ Tn
ε (PX), we have

Pn
X(xn) =

∏
a∈supp(PX)

PX(a)N(a|xn)

≤
∏

a∈supp(PX)

PX(a)nPX(a)(1−ε)

= 2
P

a∈supp(PX ) nPX(a)(1−ε) log2 PX(a)

= 2−n(1−ε)H(X), (1.13)

where the inequality follows because, by the definition (1.7), typical
xn satisfy N(a|xn)/n ≥ PX(a)(1 − ε). One can similarly prove the left-
hand side of (1.10).

Next, consider (1.12). In the appendix of this section, we prove the
following result using the Chernoff bound:

Pr
[∣∣∣∣N(a|Xn)

n
− PX(a)

∣∣∣∣ > εPX(a)
]
≤ 2 · e−nε2µX , (1.14)

where 0 ≤ ε ≤ µX . We thus have

Pr[Xn /∈ Tn
ε (PX)] = Pr

[⋃
a∈X

{∣∣∣∣N(a|Xn)
n

− PX(a)
∣∣∣∣ > εPX(a)

}]

≤
∑
a∈X

Pr
[∣∣∣∣N(a|Xn)

n
− PX(a)

∣∣∣∣ > εPX(a)
]

≤ 2|X | · e−nε2µX , (1.15)

Full text available at: http://dx.doi.org/10.1561/0100000028



8 Typical Sequences and Source Coding

where we have used the union bound (see (A.5)) for the second step.
This proves the left-hand side of (1.12).

Finally, for (1.11) observe that

Pr[Xn ∈ Tn
ε (PX)] =

∑
xn∈T n

ε (PX)

Pn
X(xn)

≤ |Tn
ε (PX)|2−n(1−ε)H(X), (1.16)

where the inequality follows by (1.13). Using (1.15) and (1.16), we thus
have

|Tn
ε (PX)| ≥ (1 − δε(n))2n(1−ε)H(X). (1.17)

We similarly derive the right-hand side of (1.11).

1.4 Source Coding

The source coding problem is depicted in Figure 1.2. A DMS PX(·)
emits a sequence xn of symbols that are passed to an encoder. The
source encoder “compresses” xn into an index w and sends w to the
decoder. The decoder reconstructs xn from w as x̂n(w), and is said to
be successful if x̂n(w) = xn.

The source encoding can be done in several ways:

• Fixed-length to fixed-length coding (or block-to-block
coding).

• Fixed-length to variable-length coding (block-to-variable-
length coding).

• Variable-length to fixed-length coding (variable-length-to-
block coding).

• Variable-length to variable-length coding.

Fig. 1.2 The source coding problem.

Full text available at: http://dx.doi.org/10.1561/0100000028



1.4 Source Coding 9

We will here consider only the first two approaches. For a block-to-
variable-length scheme, the number of bits transmitted by the encoder
depends on xn. We will consider the case where every source sequence
is assigned a unique index w. Hence, one can reconstruct xn perfectly.
Let L(xn) be the number of bits transmitted for xn. The goal is to
minimize the average rate R = E

[
L(XN )

]
/n.

For a block-to-block encoding scheme, the index w takes on one of
2nR indexes w, w = 1,2, . . . ,2nR, and we assume that 2nR is a positive
integer. The encoder sends exactly nR bits for every source sequence
xn, and the goal is to make R as small as possible. Observe that block-
to-block encoding might require the encoder to send the same w for
two different source sequences.

Suppose first that we permit no error in the reconstruction. We use
the block-to-variable-length encoder, choose an n and an ε, and assign
each sequence in Tn

ε (PX) a unique positive integer w. According to
(1.11), these indexes w can be represented by at most n(1 + ε)H(X) +
1 bits. Next, the encoder collects a sequence xn. If xn ∈ Tn

ε (PX), then
the encoder sends a “0” followed by the n(1 + ε)H(X) + 1 bits that
represent this sequence. If xn /∈ Tn

ε (PX), then the encoder sends a “1”
followed by n log2 |X | + 1 bits that represent xn. The average number
of bits per source symbol is the compression rate R, and it is upper
bounded by

R ≤ Pr[Xn ∈ Tn
ε (PX)] [(1 + ε)H(X) + 2/n]

+ Pr[Xn /∈ Tn
ε (PX)] (log2 |X | + 2/n)

≤ (1 + ε)H(X) + 2/n + δε(n)(log2 |X | + 2/n). (1.18)

But since δε(n)→ 0 as n→∞, we can transmit at any rate above
H(X) bits per source symbol. For example, if the DMS is binary with
PX(0) = 1 − PX(1) = 2/3, then we can transmit the source outputs
in a lossless fashion at any rate above H(X) ≈ 0.9183 bits per source
symbol.

Suppose next that we must use a block-to-block encoder, but that
we permit a small error probability in the reconstruction. Based on the
above discussion, we can transmit at any rate above (1 + ε)H(X) bits

Full text available at: http://dx.doi.org/10.1561/0100000028



10 Typical Sequences and Source Coding

per source symbol with an error probability δε(n). By making n large,
we can make δε(n) as close to zero as desired.

But what about a converse result? Can one compress with a small
error probability, or even zero error probability, at rates below H(X)?
We will prove a converse for block-to-block encoders only, since the
block-to-variable-length case requires somewhat more work.

Consider Fano’s inequality (see Section A.10) which ensures us that

H2(Pe) + Pe log2(|X |n − 1) ≥ H(Xn|X̂n), (1.19)

where Pe = Pr[X̂n 6= Xn]. Recall that there are at most 2nR different
sequences x̂n, and that x̂n is a function of xn. We thus have

nR ≥ H(X̂n)

= H(X̂n) − H(X̂n|Xn)

= I(Xn;X̂n)

= H(Xn) − H(Xn|X̂n)

= nH(X) − H(Xn|X̂n)

≥ n

[
H(X) − H2(Pe)

n
− Pe log2 |X |

]
, (1.20)

where the last step follows by (1.19). Since we require that Pe be zero,
or approach zero with n, we find that R ≥ H(X) for block-to-block
encoders with arbitrarily small positive Pe. This is the desired converse.

1.5 Jointly and Conditionally Typical Sequences

Let N(a,b|xn,yn) be the number of times the pair (a,b) occurs in the
sequence of pairs (x1,y1),(x2,y2), . . . ,(xn,yn). The jointly typical set
with respect to PXY (·) is simply

Tn
ε (PXY ) =

{
(xn,yn) :

∣∣∣∣ 1nN(a,b|xn,yn) − PXY (a,b)
∣∣∣∣

≤ ε · PXY (a,b) for all (a,b) ∈ X × Y} . (1.21)

The reader can easily check that (xn,yn) ∈ Tn
ε (PXY ) implies both

xn ∈ Tn
ε (PX) and yn ∈ Tn

ε (PY ).
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1.5 Jointly and Conditionally Typical Sequences 11

Consider the conditional distribution PY |X(·) and define

Pn
Y |X(yn|xn) =

n∏
i=1

PY |X(yi|xi) (1.22)

Tn
ε (PXY |xn) = {yn : (xn,yn) ∈ Tn

ε (PXY )} . (1.23)

Observe that Tn
ε (PXY |xn) = ∅ if xn is not in Tn

ε (PX). We shall further
need the following counterpart of δε(n) in (1.9):

δε1,ε2(n) = 2|X ||Y|exp
(
−n · (ε2 − ε1)2

1 + ε1
· µXY

)
, (1.24)

where µXY = min(a,b)∈supp(PXY ) PXY (a,b) and 0 ≤ ε1 < ε2 ≤ 1. Note
that δε1,ε2(n)→ 0 as n→∞. In the Appendix, we prove the following
theorem that generalizes Theorem 1.1 to include conditioning.

Theorem 1.2. Suppose 0 ≤ ε1 < ε2 ≤ µXY , (xn,yn) ∈ Tn
ε1(PXY ), and

(Xn,Y n) was emitted by the DMS PXY (·). We have

2−nH(Y |X)(1+ε1) ≤ Pn
Y |X(yn|xn) ≤ 2−nH(Y |X)(1−ε1) (1.25)

(1 − δε1,ε2(n))2nH(Y |X)(1−ε2) ≤ |Tn
ε2(PXY |xn)| ≤ 2nH(Y |X)(1+ε2)(1.26)

1 − δε1,ε2(n) ≤ Pr
[
Y n ∈ Tn

ε2(PXY |xn) |Xn = xn
]
≤ 1. (1.27)

The following result follows easily from Theorem 1.2 and will be
extremely useful to us.

Theorem 1.3. Consider a joint distribution PXY (·) and suppose
0 ≤ ε1 < ε2 ≤ µXY , Y n is emitted by a DMS PY (·), and xn ∈ Tn

ε1(PX).
We have

(1 − δε1,ε2(n)) 2−n[I(X;Y )+2ε2H(Y )]

≤ Pr
[
Y n ∈ Tn

ε2(PXY |xn)
]
≤ 2−n[I(X;Y )−2ε2H(Y )]. (1.28)
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12 Typical Sequences and Source Coding

Proof. The upper bound follows by (1.25) and (1.26):

Pr
[
Y n ∈ Tn

ε2(PXY |xn)
]

=
∑

yn∈Tε2 (PXY |xn)

Pn
Y (yn)

≤ 2nH(Y |X)(1+ε2) 2−nH(Y )(1−ε2)

≤ 2−n[I(X;Y )−2ε2H(Y )]. (1.29)

The lower bound also follows from (1.25) and (1.26).

For small ε1 and ε2, large n, typical (xn,yn), and (Xn,Y n) emitted
by a DMS PXY (·), we thus have

Pn
Y |X(yn|xn) ≈ 2−nH(Y |X) (1.30)

|Tn
ε2(PXY |xn)| ≈ 2nH(Y |X) (1.31)

Pr
[
Y n ∈ Tn

ε2(PXY |xn) |Xn = xn
]
≈ 1 (1.32)

Pr
[
Y n ∈ Tn

ε2(PXY |xn)
]
≈ 2−nI(X;Y ). (1.33)

We remark that the probabilities in (1.27) and (1.28) (or (1.32) and
(1.33)) differ only in whether or not one conditions on Xn = xn.

Example 1.4. Suppose X and Y are independent, in which case the
approximations (1.32) and (1.33) both give

Pr
[
Y n ∈ Tn

ε2(PXY |xn)
]
≈ 1. (1.34)

Note, however, that the precise version (1.28) of (1.33) is trivial for large
n. This example shows that one must exercise caution when working
with the approximations (1.30)–(1.33).

Example 1.5. Suppose that X = Y so that (1.33) gives

Pr
[
Y n ∈ Tn

ε2(PXY |xn)
]
≈ 2−nH(X). (1.35)

This result should not be surprising because |Tn
ε2(PX)| ≈ 2nH(X) and

we are computing the probability of the event Xn = xn for some xn ∈
Tn

ε1(PXY ) (the fact that ε2 is larger than ε1 does not play a role for
large n).

Full text available at: http://dx.doi.org/10.1561/0100000028



1.6 Appendix: Proofs 13

1.6 Appendix: Proofs

Proof of Inequality (1.14)

We prove the bound (1.14). Consider first PX(a) = 0 for which we have

Pr
[
N(a|Xn)

n
> PX(a)(1 + ε)

]
= 0. (1.36)

Next, suppose that PX(a) > 0. Using the Chernoff bound, we have

Pr
[
N(a|Xn)

n
> PX(a)(1 + ε)

]
≤ Pr

[
N(a|Xn)

n
≥ PX(a)(1 + ε)

]
≤ E

[
eνN(a|Xn)/n

]
e−νPX(a)(1+ε)

=

[
n∑

m=0

Pr[N(a|Xn) = m]eνm/n

]
e−νPX(a)(1+ε)

=

[
n∑

m=0

(
n

m

)
PX(a)m(1 − PX(a))n−meνm/n

]
e−νPX(a)(1+ε)

=
[
(1 − PX(a)) + PX(a)eν/n

]n
e−νPX(a)(1+ε). (1.37)

(1.38)

Optimizing (1.38) with respect to ν, we find that

ν =∞ if PX(a)(1 + ε) ≥ 1
eν/n = (1−PX(a))(1+ε)

1−PX(a)(1+ε) if PX(a)(1 + ε) < 1.
(1.39)

In fact, the Chernoff bound correctly identifies the probabilities to be
0 and PX(a)n for the cases PX(a)(1 + ε) > 1 and PX(a)(1 + ε) = 1,
respectively. More interestingly, for PX(a)(1 + ε) < 1 we insert (1.39)
into (1.38) and obtain

Pr
[
N(a|Xn)

n
≥ PX(a)(1 + ε)

]
≤ 2−nD(PB‖PA), (1.40)

where A and B are binary random variables with

PA(0) = 1 − PA(1) = PX(a)

PB(0) = 1 − PB(1) = PX(a)(1 + ε). (1.41)
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14 Typical Sequences and Source Coding

We can write PB(0) = PA(0)(1 + ε) and hence

D (PB‖PA) = PA(0)(1 + ε) log2(1 + ε)

+ [1 − PA(0)(1 + ε)] log2

(
1 − PA(0)(1 + ε)

1 − PA(0)

)
. (1.42)

We wish to further simplify (1.42). The first two derivatives of (1.42)
with respect to ε are

dD (PB‖PA)
dε

= PA(0) log2

(
(1 − PA(0))(1 + ε)
(1 − PA(0))(1 + ε)

)
(1.43)

d2D (PB‖PA)
dε2

=
PA(0) log2(e)

(1 + ε)[1 − PA(0)(1 + ε)]
. (1.44)

We find that (1.43) is zero for ε = 0 and we can lower bound (1.44) by
PX(a) log2(e) for 0 ≤ ε ≤ µX . The second derivative of D(PB‖PA) with
respect to ε is thus larger than PX(a) log2(e) and so we have

D (PB‖PA) ≥ ε2 · PA(0) log2(e) (1.45)

for 0 ≤ ε ≤ µX . Combining (1.40) and (1.45) we arrive at

Pr
[
N(a|Xn)

n
≥ PX(a)(1 + ε)

]
≤ e−nε2PX(a). (1.46)

One can similarly bound

Pr
[
N(a|Xn)

n
≤ PX(a)(1 − ε)

]
≤ e−nε2PX(a). (1.47)

Note that (1.46) and (1.47) are valid for all a ∈ X including a with
PX(a) = 0. However, the event in (1.14) has a strict inequality so we
can improve the above bounds for the case PX(a) = 0 (see (1.36)). This
observation lets us replace PX(a) in (1.46) and (1.47) with µX and the
result is (1.14).

Full text available at: http://dx.doi.org/10.1561/0100000028



1.6 Appendix: Proofs 15

Proof of Theorem 1.2

Suppose that (xn,yn) ∈ Tn
ε1(PXY ). We prove (1.25) by bounding

Pn
Y |X(yn|xn) =

∏
(a,b)∈supp(PXY )

PY |X(b|a)N(a,b|xn,yn)

≤
∏

(a,b)∈supp(PXY )

PY |X(b|a)nPXY (a,b)(1−ε1)

= 2n(1−ε1)
P

(a,b)∈supp(PXY ) PXY (a,b) log2 PY |X(b|a)

= 2−n(1−ε1)H(Y |X). (1.48)

This gives the lower bound in (1.25) and the upper bound is proved
similarly.

Next, suppose that (xn,yn) ∈ Tn
ε (PXY ) and (Xn,Y n) was emitted

by the DMS PXY (·). We prove (1.27) as follows.
Consider first PXY (a,b) = 0 for which we have

Pr
[
N(a,b|Xn,Y n)

n
> PXY (a,b)(1 + ε)

]
= 0. (1.49)

Now consider PXY (a,b) > 0. If N(a|xn) = 0, then N(a,b|xn,yn) = 0
and

Pr
[

N(a,b|Xn,Y n)
n

> PXY (a,b)(1 + ε)
∣∣∣∣Xn = xn

]
= 0. (1.50)

More interestingly, if N(a|xn) > 0 then the Chernoff bound gives

Pr
[

N(a,b|Xn,Y n)
n

> PXY (a,b)(1 + ε)
∣∣∣∣Xn = xn

]
≤ Pr

[
N(a,b|Xn,Y n)

n
≥ PXY (a,b)(1 + ε)

∣∣∣∣Xn = xn

]
= Pr

[
N(a,b|Xn,Y n)

N(a|xn)
≥ PXY (a,b)

N(a|xn)/n
(1 + ε)

∣∣∣∣Xn = xn

]
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≤ E
[
eνN(a,b|Xn,Y n)/N(a|xn)

∣∣∣Xn = xn
]
e
−ν

PXY (a,b)(1+ε)

N(a|xn)/n

=

N(a|xn)∑
m=0

(
N(a|xn)

m

)
PY |X(b|a)m(1 − PY |X(b|a))N(a|xn)−m

eνm/N(a|xn)
]
e
−ν

PXY (a,b)(1+ε)

N(a|xn)/n

=
[
(1 − PY |X(b|a)) + PY |X(b|a)eν/N(a|xn)

]N(a|xn)
e
−ν

PXY (a,b)(1+ε)

N(a|xn)/n .

(1.51)

Minimizing (1.51) with respect to ν, we find that

ν =∞ if PXY (a,b)(1 + ε) ≥ N(a|xn)/n

eν/N(a|xn) = PX(a)(1−PY |X(b|a))(1+ε)

N(a|xn)/n−PXY (a,b)(1+ε) if PXY (a,b)(1 + ε) < N(a|xn)/n.

(1.52)

Again, the Chernoff bound correctly identifies the probabilities to
be 0 and PY |X(b|a)n for the cases PXY (a,b)(1 + ε) > N(a|xn)/n

and PXY (a,b)(1 + ε) = N(a|xn)/n, respectively. More interestingly, for
PXY (a,b)(1 + ε) < N(a|xn)/n we insert (1.52) into (1.51) and obtain

Pr
[

N(a,b|Xn)
n

≥ PXY (a,b)(1 + ε)
∣∣∣∣Xn = xn

]
≤ 2−N(a|xn)D(PB‖PA),

(1.53)
where A and B are binary random variables with

PA(0) = 1 − PA(1) = PY |X(b|a)

PB(0) = 1 − PB(1) =
PXY (a,b)
N(a|xn)/n

(1 + ε). (1.54)

We would like to have the form PB(0) = PA(0)(1 + ε̃) and compute

ε̃ =
PX(a)

N(a|xn)/n
(1 + ε) − 1. (1.55)

We can now use (1.41)–(1.46) to arrive at

Pr
[

N(a,b|Xn,Y n)
n

≥ PXY (a,b)(1 + ε)
∣∣∣∣Xn = xn

]
≤ e−N(a|xn)ε̃2PY |X(b|a) (1.56)
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as long as ε ≤minb:(a,b)∈supp(PXY ) PY |X(b|a). Now to guarantee that ε̃2

is positive, we must require that xn is “more than” ε-letter typical, i.e.,
we must choose xn ∈ Tε1(PX), where 0 ≤ ε1 < ε. Inserting N(a|xn)/n ≥
(1 + ε1)PX(a) into (1.56), we have

Pr
[

N(a,b|Xn,Y n)
n

≥ PXY (a,b)(1 + ε)
∣∣∣∣Xn = xn

]
≤ e

−n
(ε−ε1)2

1+ε1
PXY (a,b) (1.57)

for 0 ≤ ε1 < ε ≤ µXY (we could allow ε to be up to minb:(a,b)∈supp(PXY )

PY |X(b|a) but we ignore this subtlety). One can similarly bound

Pr
[

N(a,b|Xn,Y n)
n

≤ PXY (a,b)(1 − ε)
∣∣∣∣Xn = xn

]
≤ e

−n
(ε−ε1)2

1+ε1
PXY (a,b)

. (1.58)

As for the unconditioned case, note that (1.57) and (1.58) are valid for
all (a,b) including (a,b) with PXY (a,b) = 0. However, the event we are
interested in has a strict inequality so that we can improve the above
bounds for the case PXY (a,b) = 0 (see (1.49)). We can thus replace
PXY (a,b) in (1.57) and (1.58) with µXY and the result is

Pr
[∣∣∣∣N(a,b|Xn,Y n)

n
− PXY (a,b)

∣∣∣∣ > εPXY (a,b)
∣∣∣∣Xn = xn

]
≤ 2 · e−n

(ε−ε1)2

1+ε1
µXY . (1.59)

for 0 ≤ ε1 < ε ≤ µXY (we could allow ε to be up to µY |X =
min(a,b)∈supp(PXY ) PY |X(b|a) but, again, we ignore this subtlety). We
thus have

Pr[Y n /∈ Tn
ε (PXY |xn)|Xn = xn]

= Pr

⋃
a,b

{∣∣∣∣N(a,b|Xn)
n

− PXY (a,b)
∣∣∣∣ > εPXY (a,b)

}∣∣∣∣∣∣Xn = xn
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18 Typical Sequences and Source Coding

≤
∑
a,b

Pr
[∣∣∣∣N(a,b|Xn,Y n)

n
− PXY (a,b)

∣∣∣∣ > εPXY (a,b)
∣∣∣∣Xn = xn

]

≤ 2|X ||Y| · e−n
(ε−ε1)2

1+ε1
µXY , (1.60)

where we have used the union bound for the last inequality. The result
is the left-hand side of (1.27).

Finally, for xn ∈ Tn
ε1(PX) and 0 ≤ ε1 < ε ≤ µXY we have

Pr[Y n ∈ Tn
ε (PXY |xn)|Xn = xn] =

∑
yn∈T n

ε (PXY |xn)

Pn
Y |X(yn|xn)

≤ |Tn
ε (PXY |xn)|2−n(1−ε)H(Y |X),

(1.61)

where the inequality follows by (1.48). We thus have

|Tn
ε (PXY |xn)| ≥ (1 − δε1,ε(n))2n(1−ε)H(Y |X). (1.62)

We similarly have

|Tn
ε (PXY |xn)| ≤ 2n(1+ε)H(Y |X). (1.63)
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