
Raptor Codes

Full text available at: http://dx.doi.org/10.1561/0100000060

Raptor Codes

Amin Shokrollahi

EPFL
Station 14

Lausanne 1015
Switzerland

amin.shokrollahi@epfl.ch

Michael Luby

Qualcomm, Inc.
3195 Kifer Road

Santa Clara, CA 95051
USA

luby@qualcomm.com

Boston – Delft

Full text available at: http://dx.doi.org/10.1561/0100000060

Foundations and Trends R© in
Communications and Information Theory

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
USA
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is A. Shokrollahi and M. Luby, Rap-

tor Codes, Foundations and Trends R© in Communications and Information Theory,
vol 6, nos 3–4, pp 213–322, 2009

ISBN: 978-1-60198-446-3
c© 2011 A. Shokrollahi and M. Luby

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, mechanical, photocopying, recording
or otherwise, without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen-
ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for
internal or personal use, or the internal or personal use of specific clients, is granted by
now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The
‘services’ for users can be found on the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system
of payment has been arranged. Authorization does not extend to other kinds of copy-
ing, such as that for general distribution, for advertising or promotional purposes, for
creating new collective works, or for resale. In the rest of the world: Permission to pho-
tocopy must be obtained from the copyright owner. Please apply to now Publishers Inc.,
PO Box 1024, Hanover, MA 02339, USA; Tel. +1-781-871-0245; www.nowpublishers.com;
sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/0100000060

Foundations and Trends R© in
Communications and Information Theory

Volume 6 Issues 3–4, 2009

Editorial Board

Editor-in-Chief:
Sergio Verdú
Depart of Electrical Engineering
Princeton University
Princeton, New Jersey 08544

Editors

Venkat Anantharam (UC. Berkeley)
Ezio Biglieri (U. Torino)
Giuseppe Caire (U. Southern

California)
Roger Cheng (U. Hong Kong)
K.C. Chen (Taipei)
Daniel Costello (U. Notre Dame)
Thomas Cover (Stanford)
Anthony Ephremides (U. Maryland)
Andrea Goldsmith (Stanford)
Dave Forney (MIT)
Georgios Giannakis (U. Minnesota)
Joachim Hagenauer (TU Munich)
Te Sun Han (Tokyo)
Babak Hassibi (Caltech)
Michael Honig (Northwestern)
Johannes Huber (Erlangen)
Hideki Imai (Tokyo)
Rodney Kennedy (Canberra)
Sanjeev Kulkarni (Princeton)

Amos Lapidoth (ETH Zurich)
Bob McEliece (Caltech)
Neri Merhav (Technion)
David Neuhoff (U. Michigan)
Alon Orlitsky (UC. San Diego)
Vincent Poor (Princeton)
Kannan Ramchandran (UC.

Berkeley)
Bixio Rimoldi (EPFL)
Shlomo Shamai (Technion)
Amin Shokrollahi (EPFL)
Gadiel Seroussi (MSRI)
Wojciech Szpankowski (Purdue)
Vahid Tarokh (Harvard)
David Tse (UC. Berkeley)
Ruediger Urbanke (EPFL)
Steve Wicker (Cornell)
Raymond Yeung (Hong Kong)
Bin Yu (UC. Berkeley)

Full text available at: http://dx.doi.org/10.1561/0100000060

Editorial Scope

Foundations and Trends R© in Communications and Informa-
tion Theory will publish survey and tutorial articles in the following
topics:

• Coded modulation

• Coding theory and practice

• Communication complexity

• Communication system design

• Cryptology and data security

• Data compression

• Data networks

• Demodulation and Equalization

• Denoising

• Detection and estimation

• Information theory and statistics

• Information theory and computer
science

• Joint source/channel coding

• Modulation and signal design

• Multiuser detection

• Multiuser information theory

• Optical communication channels

• Pattern recognition and learning

• Quantization

• Quantum information processing

• Rate-distortion theory

• Shannon theory

• Signal processing for
communications

• Source coding

• Storage and recording codes

• Speech and Image Compression

• Wireless Communications

Information for Librarians
Foundations and Trends R© in Communications and Information Theory, 2009,
Volume 6, 6 issues. ISSN paper version 1567-2190. ISSN online version 1567-
2328. Also available as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/0100000060

Foundations and Trends R© in
Communications and Information Theory

Vol. 6, Nos. 3–4 (2009) 213–322
c© 2011 A. Shokrollahi and M. Luby

DOI: 10.1561/0100000060

Raptor Codes

Amin Shokrollahi1 and Michael Luby2

1 EPFL, Station 14, Lausanne 1015, Switzerland, amin.shokrollahi@epfl.ch
2 Qualcomm, Inc., 3195 Kifer Road, Santa Clara, CA 95051, USA,

luby@qualcomm.com

Abstract

This monograph describes the theory behind Raptor codes, and eluci-
dates elements of the processes behind the design of two of the most
prominent members of this class of codes: R10 and RaptorQ (RQ). R10
has already been adopted by a number of standards’ bodies, and RQ
is in the process of entering various standards at the time of writing of
this monograph.

The monograph starts with the description of some of the
transmission problems, which inspired the invention of Fountain codes.
Thereafter, Luby transform codes (LT codes) and Raptor codes are
introduced and insights are provided into their design. These codes are
currently the most efficient realizations of Fountain codes. Different
algorithms are introduced for encoding and decoding various versions
of these codes, including their systematic versions. Moreover, a hybrid
decoding algorithm called “inactivation decoding” is introduced, which
is an integral part of all modern implementations of Raptor codes.

The R10 and RQ codes have been continued and will continue to
be adopted into a number of standards and thus there are publicly
available specifications that describe exactly how to implement these

Full text available at: http://dx.doi.org/10.1561/0100000060

codes. However, the standards’ specifications provide no insight into
the rationale for the design choices made. One of the primary purposes
of this document is to provide this design rationale.

We provide results of extensive simulations of R10 and RQ codes
to show the behavior of these codes in many different scenarios.

Full text available at: http://dx.doi.org/10.1561/0100000060

Contents

1 Introduction 1

1.1 Data Transmission 2
1.2 The Transmission Control Protocol 3
1.3 The User Datagram Protocol 4
1.4 Point-to-point Transmission 5
1.5 Point-to-multipoint Transmission 5
1.6 Multipoint-to-point Transmission 6
1.7 Multipoint-to-multipoint Transmission 7
1.8 Fountain Code Overview 8
1.9 Fountain Code Construction Outline 10
1.10 The Random Binary Fountain 12

2 Foundations 15

2.1 LT Codes 15
2.2 Raptor Codes 24
2.3 Systematic Version 28
2.4 Inactivation Decoding 33

3 Standardized Raptor Codes 43

3.1 Standardization 43
3.2 The R10 Code (Raptor 10) 45
3.3 The RQ code 58

ix

Full text available at: http://dx.doi.org/10.1561/0100000060

A Rank of Random Matrices 91

B Failure Probability of R10 and RQ 95

B.1 Methodology 95
B.2 The Failure Probability of R10 99
B.3 The Failure Probability of RQ 102

Acknowledgments 107

References 109

Full text available at: http://dx.doi.org/10.1561/0100000060

1

Introduction

In theory, there is no difference between theory and
practice, but in practice there is.1

This monograph describes the theory, design, and practical realiza-
tion of Raptor codes. Section 2 describes conceptual design and analysis
tools that provide provably good Raptor code designs. Section 3
describes more detailed design and heuristic analysis tools that
provide constructions of practical Raptor codes. Based on their excel-
lent recovery properties and computational complexity, these practical
constructions have been standardized, implemented, and deployed.

In general and as seems to be universally typical, the performance
of the practical constructions far exceed what can be rigorously proven.
Although the theoretical tools and designs provide the big ideas and
insights, it is the more detailed and precise heuristic tools and meth-
ods that have been developed and honed over the years to become
precision instruments that were used to craft the design details of the

1 Written on the interior glass wall of the EPFL cafeteria in the Computer Science Build-

ing BC, just near Place Alan Turing. Wikipedia attributed to Johannes L. A. van de
Snepscheut and also to Yogi Berra.

1

Full text available at: http://dx.doi.org/10.1561/0100000060

2 Introduction

practical Raptor codes, the R10 code and the RaptorQ (RQ) code. For
the R10 and RQ codes, their provable properties are even more real
than a theoretical proof: highly optimized software implementing the
R10 and the RQ codes has been developed, tested, and deployed in mis-
sion critical applications. The R10 and RQ codes decoding properties
have been verified again and again via tens of billions of simulations;
their computational complexity has been verified again and again on
different platforms with all kinds of parameter settings; their real-world
practicality has been demonstrated by their adoption in a variety of
commercial standards and by their deployment in commercial and gov-
ernment/defense markets. Thus, the R10 and RQ codes have achieved
something much more valuable than just a theoretical existence proof:
they have proven to be powerful, efficient, and flexible codes that pro-
vide a lot of practical value to a large variety of data communication
applications.

1.1 Data Transmission

Digital media have become an integral part of modern lives. Whether
surfing the web, making a wireless phone call, watching satellite TV,
or listening to digital music, a large part of our professional and leisure
time is filled with all things digital.

The replacement of analog media by their digital brethren and
the explosion of the Internet use has had a perhaps unintended
consequence. Whereas analog media were previously replaced by
digital media to preserve quality, the existence of high-speed com-
puter networks makes digital media available to potentially anyone,
anywhere, and at any time. This possibility is the basis for modern
scientific and economic developments centered around the distribution
of digital data to a worldwide audience. The success of web sites such
as Apple’s iTunes store or YouTube is rooted in the marriage of digital
data and the Internet.

Reliable transport of digital media to heterogeneous clients becomes
thus a central and at time critical issue. Receivers can be anywhere and
they may be connected to networks with widely differing fidelities.

Full text available at: http://dx.doi.org/10.1561/0100000060

1.2 The Transmission Control Protocol 3

1.2 The Transmission Control Protocol

How are data commonly transported on a network such as the Internet?
The basic transmission protocol used by any Internet transmission is
the Internet Protocol, commonly known as IP [4]. The data to be trans-
mitted are subdivided into packets; these packets are given headers
with information pertaining to their origin and their destination; pretty
much like sending a regular letter, where we put the addresses of the
receiver and that of the sender on the envelope. Routers that take the
role of mail stations inspect these headers and forward the packets to
another router closer to the destination. To do this, they consult reg-
ularly updated routing tables, through which they can determine the
shortest path between them and the destination. Eventually, following
the path from one router to another, packets may be delivered to their
destinations.

In theory, this protocol is sufficient for data delivery; however, the
reality looks different. Routers tend to get overwhelmed at times by
incoming traffic, leading them to drop some of the incoming pack-
ets. These dropped packets will never reach their destination. To over-
come this problem, researchers proposed already in the early days of
the Internet the “Transmission Control Protocol,” commonly known
as TCP [5]. TCP has withstood the test of time, as it remains the
most widely used transmission protocol on the Internet. For example,
http (the protocol ubiquitously used for surfing the web), ssh (used for
establishing a secure connection to a host), sftp (the secure file transfer
protocol), and many other transmission protocols used today utilize
TCP as a basis.

How does TCP work? We give here a very simplified description
which has the advantage of clarifying the main mechanisms behind
the real TCP. In effect, for every packet sent, an acknowledgment
is expected from the receiver. If the acknowledgment is not received
after a prescribed period of time, the packet is considered lost and
counter mechanisms are initiated, with the most basic of these counter
mechanisms consisting of resending the missing packet. The other inte-
gral part of these countermeasures is the reduction of the transmission
rate, which is done in the following way: the real TCP does not await

Full text available at: http://dx.doi.org/10.1561/0100000060

4 Introduction

acknowledgments of individual packets before sending the next one, but
instead has at any time a number of packets in transit. The acknowl-
edgment of a packet is only expected after all the packets sent previous
to the packet have been acknowledged. When a packet is lost, detected
at the server by received acknowledgments of packets sent after the lost
packet, the number of packets allowed to be in transit is reduced, which
effectively reduces the rate at which the packets are sent to the receiver
and provides a rate control mechanism. The reason for this reduction
in rate is the implicit assumption by TCP that losses have occurred
because intermediate routers have been overwhelmed. The reduction
of the sending rate is designed to reduce traffic on the routers and to
alleviate the burden on the network.

1.3 The User Datagram Protocol

Another transmission protocol of interest to us is the “User Datagram
Protocol” (UDP) [18]. Originally, this protocol was envisioned for short
messages without strict reliability requirements. Essentially, it is anal-
ogous to sending mail through the postal service: each UDP packet
contains a source address and a destination address, and the packet is
routed through the network toward its destination without any guar-
antees that it will arrive; the packet may, e.g., be lost enroute due to
a router buffer overflow, or to a wireless transmission error, etc. Fur-
thermore, each UDP packet is sent independently of all other UDP
packets, and a source may send a sequence of UDP packets at an arbi-
trarily high rate that can easily overload the network. Thus, UDP lacks
TCP’s higher-level reliability and rate control mechanisms. Because of
this, delivery protocols that use UDP are sometimes blocked by fire-
walls from entering corporate networks.

Nevertheless, in some situations using UDP can be quite use-
ful. For example, the destination address of a UDP packet can be
a group address instead of an individual receiver address. Thus, any
receiver that is part of the group can receive UDP packets sent to that
group, thus enabling UDP to be used effectively in conjunction with a
broadcast/multicast enabled network in a scalable way. For example,
broadcast file delivery and broadcast streaming applications often use

Full text available at: http://dx.doi.org/10.1561/0100000060

1.4 Point-to-point Transmission 5

UDP because the sent packets can be delivered concurrently to many
receivers in a scalable way. In these types of applications, the packet
sending rate is fixed at the source according to the available capacity
of the network and/or the requirements of the application, e.g., real-
time delivery of a 4 mbps video stream of packets. In these types of
applications, adding a reliability protocol on top of UDP can be quite
valuable, and providing this reliability is one of the main applications
of Raptor codes.

1.4 Point-to-point Transmission

The simplest transmission scenario is point-to-point transmission. Here,
a sender transmits data to one receiver, as described in the following
figure in which a sender S is transmitting data to a receiver R:

If the distance between the sender and the receiver is not too large,
then TCP is a perfect transmission protocol. However, if the distance
is large, then TCP exhibits inefficiencies: during the time in which
acknowledgments are awaited, transmission is in an idle mode and
hence the real capacity of the network may not be achieved. The situ-
ation is compounded when there is loss on the network, i.e., the TCP
transmission rate slows down even more.

1.5 Point-to-multipoint Transmission

The second transmission scenario is the point-to-multipoint transmis-
sion. The situation is described in the figure below, in which a sender S
is transmitting data to receivers R0, . . . ,R7. A typical example is dis-
tributing live video over the Internet. Unless the number of receivers is
small, TCP turns out to have some scaling issues in this setting. The
reason is that the sender needs to keep track of the reception of every
individual receiver, and furthermore that each receiver needs to be sent
a separate stream of data. Therefore, the server load and the network
load increase with the number of receivers, and reliable transmission

Full text available at: http://dx.doi.org/10.1561/0100000060

6 Introduction

becomes more challenging. Ironically, the more popular the content,
the more difficult it becomes to deliver it to all the receivers. This
phenomenon that is typically referred to as the “curse of popularity”
makes it difficult to provide a scalable broadcast service on the Inter-
net. However, in recent years such services have started to be deployed,
based on already deployed http caching server infrastructure.

What are sometimes used for point-to-multipoint are protocols
based on UDP, using the multicast/broadcast capabilities of UDP
to handle the delivery scalability issue when the network is multi-
cast/broadcast enabled, since all receivers in the destination group
can attempt to receive a UDP packet sent to that destination group.
However, as mentioned previously, UDP does not guarantee delivery
of packets; it is a best effort protocol where sent packets may be lost
for a variety of reasons, including wireless transmission noise that cor-
rupts packets beyond repair, or because of packet overflows within the
routers of the network due to intermittent congestion caused by other
sources. Raptor codes can be used to provide reliability in a scalable
way to UDP-based protocols.

1.6 Multipoint-to-point Transmission

Another scenario is multipoint-to-point transmission. Here, a group of
senders, each possessing a copy of the same data, wants to transmit this
copy to one receiver. The following figure shows an example in which
senders S0, . . . ,S7 are transmitting to a common receiver R. In addition
to problems discussed in the case of point-to-point transmission based
on TCP, multipoint-to-point solutions based on TCP leads to enormous

Full text available at: http://dx.doi.org/10.1561/0100000060

1.7 Multipoint-to-multipoint Transmission 7

inefficiencies: the packets received from the various senders may not be
different if the senders are not coordinated. The reception of duplicate
packets is one of the principal sources of inefficient network usage in
this case.

The fountain code properties (described in Section 1.8) make Raptor
codes ideally suited for basing efficient solutions to the multipoint-to-
point transmission protocols, where either UDP or TCP may be the
underlying protocol onto which the usage of Raptor codes is layered.

1.7 Multipoint-to-multipoint Transmission

Another scenario is multipoint-to-multipoint transmission, depicted in
the following figure in which we have a group of senders denoted
S0,S1,S2, each possessing a piece of data, and a group of receivers
R0, . . . ,R5 each of which connects to a subset of the senders and receives
the data:

A good example of this transmission scenario is a peer-to-peer
network. All the problems discussed for the previous three transmis-
sion scenarios are also valid here. These problems are compounded if
senders and receivers are transient, as is the case in a large peer-to-
peer network. The fountain code properties (described in Section 1.8)

Full text available at: http://dx.doi.org/10.1561/0100000060

8 Introduction

make Raptor codes ideally suited for usage in multipoint-to-multipoint
scenarios.

1.8 Fountain Code Overview

At the very core of our solution lies the concept of a fountain code.
We introduce the general use case for a fountain code, describe ideal
abstract properties of a fountain code, describe its application to the
scenarios described in the previous sections, and outline a randomized
approach for constructing codes that lead toward the realization of
practical fountain codes.

Suppose we have a block of data, hereafter called a source block,
that are to be reliably transmitted over a packet network. The source
block is typically partitioned into equal sized portions of data, hereafter
called source symbols, that are typically sized to fit into a packet. In
the following, we let k be the number of source symbols in the source
block.

An effective approach to reliably transmitting the source block is to
use an encoder at senders to generate encoded symbols from the source
symbols of the source block and then to use decoders at receivers to decode
the source symbols of the source block from received encoded symbols,
where typically each encoded symbol is the same size as a source sym-
bol. The basic idea is for senders to send encoded symbols in packets,
and then a receiver can use the encoded symbols received in packets to
try and decode the original source block even if some of the packets are
not received. There are a variety of reasons a receiver may not receive
some of the packets, examples of which include transmission over a wire-
less network that intermittently experiences enough interference or noise
to cause unrecoverable errors in packets that are then discarded at the
receiver, packet losses due to intermittent congestion that causes packet
buffer overflows in routers, the receiver being only intermittently sub-
scribed to the sessions in which packets are transmitted, and packets that
arrive too late at the receiver to be useful when there are time constraints
on consumption of the data in the source block.

Fountain codes in particular are especially effective codes that can
be used to provide reliable transmission. The ideal abstract properties

Full text available at: http://dx.doi.org/10.1561/0100000060

1.8 Fountain Code Overview 9

of a fountain code are as follows [3]:

(1) A sender should be able to use a fountain encoder to gen-
erate as many encoded symbols as required from a source
block.

(2) A receiver that receives any subset of k encoded symbols
should (in most of the cases2) be able to use a fountain
decoder to decode an exact copy of the original source block,
independent of which subset of the generated encoded sym-
bols is received and independent of whether the subset was
generated by one sender or generated by more than one
sender from the original block of source data.

(3) The computation time for encoding and decoding should be
linear, i.e., the time to generate each encoded symbol should
be linearly proportional to its size, and similarly the time
to decode an original source block from encoded symbols
should be linearly proportional to the original source block
size.

These properties bring to mind a “fountain”: When filling a bucket
from a fountain of water, which particular drops fill the bucket doesn’t
matter, only the amount of water in the bucket matters. Similarly, with
a fountain code, which particular encoded symbols are received doesn’t
matter, only the number of encoded symbols received matters.

From this description, it should be clear that fountain codes with
these properties are very effective at providing reliable transmission
over packet networks for any of the scenarios described in previous
section. We now describe how fountain codes can be applied to these
scenarios in a bit more detail.

In the point-to-point scenario, the sender can generate encoded
symbols using a fountain encoder rom the source block and place the
encoded symbols into packets, which are transmitted via the UDP pro-
tocol, for example. In a real-time application, the packets can be sent
at any rate that is below the rate at which encoded symbols can be

2 It is easily seen that a fountain code over a finite alphabet will not allow decoding from k
received symbols in all the cases.

Full text available at: http://dx.doi.org/10.1561/0100000060

10 Introduction

generated by the fountain encoder. Provided that this rate is very high,
there will essentially be no limit on the transmission speed. Reliabil-
ity of this transmission method is provided by the fountain property:
as soon as the receiver collects k encoded symbols, it can decode the
source symbols of the original source block. As k encoded symbols are
the absolute bare minimum the receiver needs to collect to be able to
decode the k source symbols, the transmission is optimal from an infor-
mation point of view. The question of rate control remains, and in some
cases it can be elegantly solved exploiting the fountain property [10, 11].

In the case of point-to-multipoint transmission, the sender generates
encoded symbols and places them into packets and transmits the pack-
ets via, for example, broadcast or multicast. The fundamental prop-
erties of the fountain code guarantee that each receiver is capable of
decoding the original data from reception of the minimal amount of
data possible. Thus, one sender is capable of efficiently and reliably
delivering to a potentially limitless number of receivers.

In the case of multipoint-to-point transmission, the various senders
use fountain encoders applied to the common copy of the source block
they each possess. The receiver collects encoded symbols from the var-
ious senders; by the properties of the fountain code, from the point of
view of the receiver the mix of senders from which it receives encoded
symbols does not matter. As soon as the receiver has collected k

encoded symbols from the combined set of encoded symbols from the
various senders, the original source block can be decoded.

The case of multipoint-to-multipoint transmission is solved in sim-
ilar fashion and we will not elaborate further.

1.9 Fountain Code Construction Outline

Now that we know that fountain codes provide an elegant solution to
various reliable transmission problem, we need to understand how to
construct them. We now outline an approach that eventually leads
to realizing almost ideal fountain codes. For a given vector (x1, . . . ,xk)
of source symbols, a fountain encoder produces a potentially limitless
stream of encoded symbols y1,y2, Here, a symbol refers to a bit or a
sequence of bits. In many applications, symbols are of the same size as

Full text available at: http://dx.doi.org/10.1561/0100000060

1.9 Fountain Code Construction Outline 11

the payload of the transmitted packets, though this is not necessarily
the case. In general, the size of the symbols is often dictated by the
underlying application and requirements.

The fountain codes that we initially describe operate on 1-bit sym-
bols. Note that codes for larger symbols can be obtained using simple
parallel concatenation, i.e., to generate a code that operates on t-bit
symbols simply perform the same operations as would be performed on
1-bit symbols to each of the t positions of t-bit symbols in parallel.

These fountain codes are governed by a probability distribution D
on the vector space Fk2. The encoding procedure for generating encoded
symbol yj is as follows:

(1) Sample D to obtain a vector (a1, . . . ,ak) ∈ Fk2.
(2) Calculate yj =

∑
iaixi.

The samplings of the fountain encoder are independent from encoded
symbol to encoded symbol; this is extremely important as it induces
a uniformity property on the encoded symbols generated and ensures
that the code has the fountain properties. Note that when the encoded
symbols are placed into packets for transmission, typically (but not
always) an identifier is also placed in the header of each packet, called
an ESI (encoded symbol identifier), that uniquely identifies the encoded
symbols contained in that packet. The ESI is used by the decoder to
determine the vector (a1, . . . ,ak) corresponding to each encoded symbol
in the received packet.

The average computational cost for generating an encoded symbol is
simply the average weight of the vector (a1, . . . ,ak) ∈ Fk2 when sampled
from D multiplied by the computational cost of adding two symbols
together. Thus, it will be important to keep the average weight as
small as possible.

Decoding algorithms will be described later; however, for now it is
important to note that the following decoder performance metrics are
key, and in particular the design of the probability distribution D has
a large influence on these decoder performance metrics.

An important property we require of a fountain code is that it should
be possible to decode the source symbols with little reception overhead
with high probability. We say that the overhead is o if k + o encoded

Full text available at: http://dx.doi.org/10.1561/0100000060

12 Introduction

symbols are used when decoding is attempted, and if the overhead is
written as a percent, i.e., x%, then it is the overhead as a percent of
the number of source symbols, i.e., x = 100 · o/k.

The fountain code constructions we provide all have the property
that encoded symbols are generated independently of one another. In
addition, we will assume that the set of received encoded symbols
is independent of the values of the encoded symbols in that set, an
assumption that is often true in practice. These assumptions imply
that for a given value of k, the probability of decoding failure is inde-
pendent of the pattern of which encoded symbols are received and only
depends on how many encoded symbols are received, i.e., the probabil-
ity of decoding failure depends only on the overhead. Thus, we define
the failure probability f(o) to be the probability that decoding fails at
a specified overhead o, i.e., the failure probability is a function of the
overhead, and typically the failure probability should decrease quickly
with increasing overhead. We call the set of pairs {(o,f(o)):o = 0,1, . . .}
the overhead-failure curve.

Often we analyze the failure probability at a small overhead of inter-
est as a function of k, i.e., for an overhead of ε(k) we provide upper
bounds on f(ε(k)), where both ε(k)/k and f(ε(k)) go to zero as k goes
to infinity. For example, it might be the case that ε(k) = ε · k for some
constant ε, 0 < ε� 1, and f(ε · k) = 1/kc for some positive constant c,
where preferably c > 1. In practice, what is important is that the failure
probability decreases as quickly as possible as a function of increasing
overhead, i.e., the overhead-failure curve is steep.

Equally important, the decoder should be computationally very
efficient.

1.10 The Random Binary Fountain

A natural fountain code to consider is the “random binary fountain
code,” where the distributionD is the uniform distribution on Fk2, where
k is the number of 1-bit (binary) source symbols in the source block. As
described previously, this can be extended to symbols of arbitrary size.

Let us give a qualitative analysis of a random binary fountain code.
The receiver collects N = k + o encoded symbols y1,y2, . . . ,yN . Each

Full text available at: http://dx.doi.org/10.1561/0100000060

1.10 The Random Binary Fountain 13

of these symbols is a uniform random linear combination of the source
symbols x1, . . . ,xk. The relationship between the source and the col-
lected encoded symbols is described by a matrix, A ∈ FN×k2 , as

A ·

x1
...
xk

 =


y1

y2
...
yN

.
This matrix A is chosen uniformly at random from the set of binary
N × k matrices.

Recovery of the source symbols is possible iff the rank of A is k. A
simple analysis [20, Proposition 2] shows the following result:

Proposition 1.1. For a random binary fountain code operating on a
source block with k source symbols, the overhead-failure curve is point-
wise majorized by {(o,2−o):o = 0,1, . . .} with respect to the maximum-
likelihood decoder.

For example, at an overhead of c- log2(k), the failure probability is
1/kc. In fact, one can show that for not too small values of o, f(o) is
roughly 2−o.

As the above proposition describes, a random binary fountain code
has a quickly decreasing failure probability as a function of overhead,
i.e., the failure probability decreases by almost exactly a factor of two
for each increase by one in the overhead. For example, a failure proba-
bility of 10−10 can be achieved with an overhead of around 30 symbols,
regardless of k. For moderate values of k, say in the low thousands, this
overhead relative to k is smaller than 0.3%.

However, random binary fountain codes suffer from a large encod-
ing and decoding computational complexity. To assess this complexity,
we will distinguish between “symbol operations” and “bit operations.”
The former corresponds to XORs of symbols, whereas the latter corre-
sponds to XORs of bits. When the symbol size is large, a symbol size
operation may be significantly more computationally expensive than a
bit operation.

Full text available at: http://dx.doi.org/10.1561/0100000060

14 Introduction

On average, every encoded symbol will be the XOR of around half
the source symbols; hence, take around k/2 symbol operations to be
created.3

The decoding takes O(k3) bit operations and O(k2) symbol opera-
tions. To prove this, we proceed as follows: first, we determine a k × k-
submatrix B of A, which is invertible over F2, and we determine its
inverse B−1. This can be done using the Gaussian elimination, and
requires O(k3) bit operations.4 The matrix B is determined by k rows
of A, say rows 1, . . . ,k. Next, we multiply B−1 with the vector consist-
ing of y1, . . . ,yk. As B−1 has O(k2) entries equal to 1, the number of
symbol operations is O(k2).

Summarizing, the random binary fountain code achieves a good
overhead-failure curve; however, both encoding and decoding are com-
putationally complex. What we would like instead is a fountain code
that achieves similar or even an improved overhead-failure curve and
has computationally efficient encoding and decoding algorithms.

For future use in Section 3.3.1, we mention that the concept of a
random fountain is not limited to the field F2. More generally, we talk
about a “q-ary random fountain code,” or a “fountain code over Fq” if
the distribution D is chosen to be uniform over Fkq .

3 This is not full proof; it is conceivable that a faster algorithm is available than simply

XORing all the corresponding source symbols. Because of the random structure of the

random binary fountain code, this seems highly unlikely though.
4 There are faster algorithms based on fast matrix multiplication; however, they are not

practically relevant.

Full text available at: http://dx.doi.org/10.1561/0100000060

References

[1] 3GPP TS 26.346 V6.1.0, “Technical Specification Group Services and System
Aspects; Multimedia Broadcast/Multicast Service; Protocols and Codecs,” June,
2005.

[2] J. R. Bitner, G. Ehrlich, and E. M. Reingold, “Efficient generation of the binary
reflected Gray code and its applications,” Communications of the ACM, vol. 19,
no. 9, pp. 517–521, 1976.

[3] J. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A digital fountain approach
to reliable distribution of bulk data,” in Proceedings of ACM SIGCOMM ’98,
1998.

[4] DARPA Internet Program, “Internet protocol,” September 1981, Internet
Engineering Task Force, RFC 791. Available at http://www.ietf.org/rfc/
rfc0793.txt?number=791.

[5] DARPA Internet Program, “Transmission control protocol,” September 1981,
Internet Engineering Task Force, RFC 793. Available at http://www.ietf.org/
rfc/rfc0793.txt?number=793.

[6] ETSI TS 102 472 v1.2.1, “IP Datacast over DVB-H: Content Delivery Proto-
cols,” March 2006, Technical Specification. Available at http://www.dvb-h.org.

[7] R. G. Gallager, Low Density Parity-Check Codes. Cambridge, MA: MIT Press,
1963.

[8] B. A. Lamacchia and A. M. Odlyzko, “Solving large sparse linear systems over
finite fields,” in Proceedings CRYPTO’90, pp. 109–133, Springer, 1991.

[9] M. Luby, “LT-codes,” in Proceedings of the 43rd Annual IEEE Symposium on
the Foundations of Computer Science (FOCS), pp. 271–280, 2002.

109

Full text available at: http://dx.doi.org/10.1561/0100000060

110 References

[10] M. Luby and V. Goyal, “Wave and equation based rate control,”
April 2004, Internet Engineering Task Force, RFC 3738. Available at
http://tools.ietf.org/html/rfc3738.

[11] M. Luby, V. Goyal, S. Skaria, and G. Horn, “Wave and equation based rate
control,” in Proceedings of SIGCOMM, pp. 191–204, 2002.

[12] M. Luby, M. Mitzenmacher, and A. Shokrollahi, “Analysis of random processes
via and-or tree evaluation,” in Proceedings of the 9th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 364–373, 1998.

[13] M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman, “Efficient erasure
correcting codes,” IEEE Transactions Information Theory, vol. 47, pp. 569–584,
2001.

[14] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, and V. Stemann,
“Practical loss-resilient codes,” in Proceedings of the 29th Annual ACM Sym-
posium on Theory of Computing, pp. 150–159, 1997.

[15] M. Luby, A. Shokrollahi, M. Watson, and T. Stockhammer, “Raptor forward
error correction scheme for object delivery,” September 2007, Internet Engi-
neering Task Force, RFC 5053. Available at http://tools.ietf.org/html/rfc5053.

[16] M. Luby, A. Shokrollahi, M. Watson, T. Stockhammer, and L. Minder, “Rap-
torQ forward error correction scheme for object delivery,” August 2010, Internet
Engineering Task Force. Available at http://tools.ietf.org/html/draft-ietf-rmt-
bb-fec-raptorq-03.

[17] C. Pomerance and J. W. Smith, “Reduction of huge, sparse matrices over finite
fields via created catastrophes,” Experimental Math, vol. 1, pp. 89–94, 1992.

[18] J. Postel, “User datagram protocol,” August 1980,Internet Engineering
Task Force, RFC 768. Available at http://www.ietf.org/rfc/rfc0768.txt?
number=768.

[19] T. Richardson and R. Urbanke, “Efficient encoding of low-density parity-check
codes,” IEEE Transactions Information Theory, vol. 47, pp. 638–656, 2001.

[20] A. Shokrollahi, “Raptor codes,” IEEE Transactions Information Theory,
vol. 52, no. 6, pp. 2551–2567, 2006.

[21] A. Shokrollahi, “Theory and applications of raptor codes,” in Proceedings of
MathKnow, pp. 59–89, 2009.

[22] A. Shokrollahi, S. Lassen, and R. Karp, “Systems and processes for decod-
ing chain reaction codes through inactivation,” U.S. Patent number 6,856,263.
February 15, 2005.

[23] A. Shokrollahi, S. Lassen, and M. Luby, “Multi-stage code generator and
decoder for communication systems,” U.S. Patent 7,068,729. June 27, 2006.

[24] A. Shokrollahi and M. Luby, “Systematic encoding and decoding of chain reac-
tion codes,” U.S. Patent 6 909 383. June 21, 2005.

[25] V. V. Zyablov and M. S. Pinsker, “Decoding complexity of low-density codes
for transmission in a channel with erasures,” Probl. Information Transmission,
vol. 10, 1974.

Full text available at: http://dx.doi.org/10.1561/0100000060

	Introduction
	Data Transmission
	The Transmission Control Protocol
	The User Datagram Protocol
	Point-to-point Transmission
	Point-to-multipoint Transmission
	Multipoint-to-point Transmission
	Multipoint-to-multipoint Transmission
	Fountain Code Overview
	Fountain Code Construction Outline
	The Random Binary Fountain

	Foundations
	LT Codes
	Raptor Codes
	Systematic Version
	Inactivation Decoding

	Standardized Raptor Codes
	Standardization
	The R10 Code (Raptor 10)
	The RQ code

	Rank of Random Matrices
	Failure Probability of R10 and RQ
	Methodology
	The Failure Probability of R10
	The Failure Probability of RQ

	Acknowledgments
	References

