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Abstract

The purpose of this monograph is to introduce up-to-date capacity

theorems for the two-user Gaussian interference channel, including both

single-antenna and multiple-antenna cases.

The monograph starts with the single antenna case and introduces

the Han and Kobayashi achievable rate region and its various subre-

gions. Several capacity outer bounds are then presented; these outer

bounds, together with the achievable rate region, yield several capac-

ity results for the single-antenna Gaussian interference channel. They

include the capacity region for strong interference and the sum-rate

capacity for Z interference, noisy interference, mixed interference, and

degraded interference.

For the more complex multiple-antenna case, the interference state

is no longer determined solely by the interference strength, as is the

case for the single-antenna Gaussian interference channel. Instead, the

structure of the interference in different multi-dimensional subspaces

plays an equally important role. As a result of this multiple-dimensional

signaling, new interference states, including generally strong, generally

noisy, and generally mixed interference, are introduced to obtain ca-

pacity theorems that generalize those for the single-antenna case.

X. Shang and B. Chen. Two-User Gaussian Interference Channels: An

Information Theoretic Point of View. Foundations and Trends R© in
Communications and Information Theory, vol. 10, no. 3, pp. 247–378, 2013.

DOI: 10.1561/0100000071.
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Notations and Acronyms

Scalars, vectors and matrices

X scalar X

xxx vector xxx

X matrices X

xxxn xxxn = {xxx1,xxx2, . . . ,xxxn}, a sequence of vectors xxxi,

i = 1, . . . , n

I identity matrix

I(k) k × k identity matrix

0 all-zero vector or matrix

0(k) k × k all-zero matrix

0k×r a k × r all-zero matrix

xxxT or XT transpose of vector xxx or matrix X

xxxH or XH conjugate transpose of vector xxx or matrix X

X−1 inverse of matrix X

‖xxx‖ Euclidean vector norm of xxx, i.e., ‖xxx‖2 = xxxTxxx

|X| determinant of matrix X

tr(X) trace of matrix X

rank(X) rank of matrix X

Vec(X) vectorization of matrix X

radius(X) numerical radius of matrix X

A⊗B Kronecker product of matrices A and B

A � B matrices A, B, and A−B are all symmetric and

2
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Notations and Acronyms 3

positive semi-definite.

Probability

p(x) probability density function of random variable X

p(x|y) conditional density function of X given Y

xxx ∼ N (0, Σ) xxx has a Gaussian distribution with zero mean and

covariance matrix Σ

E[X] expectation of random variable X

Var(X) variance of random variable X

Cov(xxx) covariance matrix of random vector xxx

Cov(xxx,yyy) cross covariance matrix of random vectors xxx and yyy

Information theory

H(X) entropy of discrete random variable X

h(X) differential entropy of random variable X

I(X; Y ) mutual information between X and Y

Other

abs(X) absolute value of X

atan(x) arctangent function

log(x) loge(x)

sign(x) sign(x) = 1 if x ≥ 0 and −1 if x < 0

Full text available at: http://dx.doi.org/10.1561/0100000071



1

Introduction

Interference commonly exists in multi-user wireless networks in which

all the users share the same communication medium. While sending

information to its intended receiver, each transmitter generates inter-

ference to all other receivers. The existence of interference may heavily

degrade the overall performance of the system. Therefore, each user

has to choose prudently its transmission strategy in order to optimize

the performance of the entire network. Substantial effort has been de-

voted to understanding the impact of interference and to looking for

capacity-achieving schemes of dealing with interference.

The scope of this monograph is limited to the study of a two-user

Gaussian interference channel with a static setting, i.e., the channel

state is assumed fixed and known to both the transmitters and the

receivers. There have been significant efforts in studying more complex

interference channel models, including that of multiple users and/or

with fading channels. Our focus on the simple two-user Gaussian inter-

ference channel allows us to explore some of the subtle yet potentially

fundamental aspects of interference in more details. It is not unreason-

able to state that our understanding for such a simple channel model

is still rather limited especially in some important parameter regimes

4
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1.1. Interference Channel Model 5

that are of practical significance.

1.1 Interference Channel Model

The two-user interference channel (IC) was first introduced by Shannon

[55]. This model consists of two pairs of transceivers, in which each

transmitter communicates with its intended receiver while generating

interference at the other receiver. The channel model and its related

encoding decoding functions are defined as follows, for user i, i = 1, 2:

Message set : Mi = {1, 2, · · · , 2nRi}
Encoding function : Eni : ki → Xn

i (ki), ki ∈Mi

Channel statistics : p(yn
1 yn

2 |xn
1 xn

2 ) =
n∏

j=1

p (y1jy2j|x1jx2j)

Decoding function : Dei : Y n
i → k̂i

Error probability :
1

2n(R1+R2)

2nR1∑
k1=1

2nR2∑
k2=1

Pr

{ (
k̂1, k̂2

)
	= (k1, k2)

∣∣∣
(k1, k2) sent

}
where n is the block length, Xn

i = {Xi1, · · · , Xin} and Y n
i =

{Yi1, · · · , Yin} are respectively the transmitted and received signal se-

quences, ki is the message index and k̂i is its estimate, and Ri is the

transmission rate.

If for a given (R1, R2) pair, there exist encoding and decoding func-

tions such that the error probability is arbitrarily small when n →∞,

then the rate pair (R1, R2) is achievable. The closure of the collection

of all achievable rate pairs is the capacity region of this IC.

1.1.1 Capacity and Channel Transition Probabilities

Though the channel statistics of an IC is characterized by joint chan-

nel transition probability p(y1y2|x1x2), the capacity is often determined

by marginal channel transition probabilities p(y1|x1x2) and p(y2|x1x2).

The reason is that decoding is performed individually at each receiver.

Therefore, dependence between Y1 and Y2 for a given pair of X1 and X2

Full text available at: http://dx.doi.org/10.1561/0100000071



6 Introduction

does not have impact on the decoding performance. For a GIC, depen-

dence between Y1 and Y2 given X1 and X2 can be introduced through,

and controlled by, the correlation between the additive noises at the

two receivers. Any two GICs with different transition probabilities still

have the same capacity as long as their respective marginal transition

probabilities are identical.

1.1.2 Single-Antenna Gaussian Interference Channel

Specializing to the Gaussian case, the received signals can be written

as

Y1 = h1X1 + f2X2 + σz1Z1 (1.1a)

Y2 = h2X2 + f1X1 + σz2Z2 (1.1b)

where for i = 1, 2, hi and fi are channel coefficients known at both

transmitters and receivers, Zi is zero-mean Gaussian noise with unit

variance, σzi is a positive constant, and the transmitted signal Xi is

subject to an average power constraint:

n∑
j=1

E
(
X2

ij

)
≤ nP̄i. (1.2)

It is easy to show that the capacity region of the Gaussian interference

channel (GIC) defined in (1.1) is equivalent to that of the GIC in the

standard form [11]:

Y1 = X1 + a2X2 + Z1 (1.3a)

Y2 = X2 + a1X1 + Z2 (1.3b)

where

a1 =
f2σz2

h2σz1
(1.4a)

a2 =
f1σz1

h1σz2
(1.4b)

Pi =
h2

i

σ2
zi

P̄i. (1.4c)

The GIC in the standard form is shown in Figure 1.1 where the transmit

signals are subject to respective power constraints P1 and P2.

Full text available at: http://dx.doi.org/10.1561/0100000071



1.2. Existing Results for Gaussian Interference Channels 7

X1

X2

Y1

Y2

Z1

Z2

+

+

1

a1

a2

1

Figure 1.1: The two-user GIC model.

1.2 Existing Results for Gaussian Interference Channels

The IC model was first introduced by Shannon [55]. Alshwede [2] de-

rived a limit expression for the capacity region:

⋃
⎧⎪⎪⎪⎨⎪⎪⎪⎩(R1, R2)

∣∣∣∣∣∣∣∣∣
R1 ≤ lim

n→∞

1

n
I (Xn

1 ; Y n
1 )

R2 ≤ lim
n→∞

1

n
I (Xn

2 ; Y n
2 )

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (1.5)

However, the practical significance of the above limit expression for

the capacity region is not clear. Attempting to directly evaluate the

limit expression of channel capacity is known to be a fruitless exercise

[13]. Even for the simple case of the Gaussian multiple access channel,

calculating the capacity using the limit expression was shown to yield

a rate region that is strictly smaller than the capacity region when

the input is limited to multivariate Gaussian distributions. This is de-

spite the fact that Gaussian input achieves the single-letter expressed

capacity region of the Gaussian multiple access channel. For two-user

GIC, except for the noisy-interference case, multivariate Gaussian in-

put distribution was also shown to be sum-rate sub-optimal using the

limit expressions [1], even though Gaussian input distribution indeed

achieves the sum-rate capacity for strong interference. As such, one

can not expect that the limit expression for the GIC capacity region

collapses into a single-letter expression that is easy to evaluate, and

provides insight to capacity achieving coding schemes.

Many efforts have thus been devoted to the design of various coding

Full text available at: http://dx.doi.org/10.1561/0100000071



8 Introduction

schemes that lead to achievable regions with single-letter expressions.

The best inner bound was obtained by Han and Kobayashi [24] using

superposition encoding and joint decoding. This region was later sim-

plified by Chong, Motani, Garg and El Gamal in [14] and by Kramer

in [29]. Early outer bounds on the capacity region can be found in

[37],[38],[12]. Cooperation and genie-aided outer bounds can be found

in [28], [22], [51], [34], [3]. Etkin, Tse, and Wang showed that the Han

and Kobayashi achievable region is within a half bit per user of the

capacity region [22].

The first capacity region of the GIC was obtained by Carleial in [10]

for the very strong interference case, in which the capacity is achieved

by decoding and subtracting interference before decoding the useful

signals. This result was extended to the strong interference case in

[24] and [39], in which receivers jointly decode the interference and the

useful signal to achieve capacity. The sum-rate capacity of the degraded

GIC was obtained in [38]. It was shown in [15] that the capacity region

of a Gaussian Z interference channel (GZIC) is equivalent to that of a

degraded GIC. Therefore, the sum-rate capacity of a GZIC is obtained

directly from [38] (see [36, Theorem 2]). Recently, it was shown in

[51], [34], and [3] that the sum-rate capacity is achieved by treating

interference as noise if the GIC satisfies a simple condition. This kind

of GIC is said to have noisy interference. The sum-rate capacity for

GICs with mixed interference was determined in [34] and [61].

On the study of the capacity for the multiple-input multiple-output

(MIMO) GIC and its two special cases, namely, the multiple-input

single-output (MISO) GIC and single-input multiple-output (SIMO)

GIC, Telatar and Tse [58] showed that the Han-Kobayashi region is

within a half bit per user and per receive antenna of the capacity re-

gion. Vishwanath and Jafar [60] determined the capacity region for the

SIMO GIC with strong interference. Recent work in [45] and [47] de-

rived the capacity region of a MIMO GIC for the strong interference

case, and the sum-rate capacity for strong Z interference, weak Z inter-

ference, noisy interference and mixed interference. Other noisy inter-

ference conditions were obtained in [4] for MIMO GIC with full-rank

optimal input covariance matrices and symmetric MISO and SIMO

Full text available at: http://dx.doi.org/10.1561/0100000071



1.3. Outline of Monograph 9

GICs, and in [48] for parallel GICs (diagonal channel matrices). The

noisy interference sum-rate capacity in [45],[47], [4], and [48] was later

generalized in [54]. Realizing the fact that very strong interference is

not necessarily a special case of strong interference for a MIMO GIC

(a sharp contrast to the single-antenna GIC) [47], [46], a new category

of interference type, referred to as generally strong interference, which

includes both strong and very strong interferences as special cases, was

introduced in [53]. The capacity region of the MIMO GIC with gener-

ally strong interference is achieved by jointly decoding the signal and

interference. This new generally strong interference condition can de-

termine the capacity region of MIMO GICs that cannot be determined

by the traditional strong interference condition (e.g., MISO GICs).

1.3 Outline of Monograph

In this chapter, we have introduced the system model and the standard

form for the single-antenna GIC. A brief summary of existing capacity

results for GIC has also been given.

In Chapter 2, we present the Han-Kobayashi (H-K) achievable rate

region and some of its subregions. Several important results, including

the role of time sharing, the equivalence in capacity region between the

GZIC and the degraded GIC, the so-called ‘noiseberg’ approach for the

GZICs [31], are discussed in details.

In Chapter 3, we introduce several outer bounds on the capacity

region. These outer bounds lead to the bounded gap between the H-

K region and the capacity region, as well as various capacity results,

including the capacity region for strong and very strong interference,

the sum-rate capacity for noisy interference, Z interference, and mixed

interference.

In Chapter 4, we introduce the standard form channel model for

MIMO GICs and an effective way to compute the H-K region for

MISO GICs. Subsequently, we extend all the capacity results for single-

antenna GICs to multiple-antenna GICs. These include the capacity

region for strong interference and very strong interference, and the

sum-rate capacity for noisy interference. In addition, we introduce a

Full text available at: http://dx.doi.org/10.1561/0100000071



10 Introduction

new concept called generally strong interference, which generalizes the

notion of strong interference, and obtain the capacity region under such

conditions. The generally strong interference also allows us to obtain

the sum-rate capacity for mixed interference. We also determine part

of the capacity boundary for the MIMO GIC with weak Z interference

and mixed interference.

Full text available at: http://dx.doi.org/10.1561/0100000071
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