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ABSTRACT
In this monograph, we develop a mathematical framework
based on asymptotically good random structured codes, i.e.,
codes possessing algebraic properties, for network informa-
tion theory. We use these codes to propose new strategies
for communication in multi-terminal settings. The proposed
coding strategies are applicable to arbitrary instances of the
multi-terminal communication problems under consideration.
In particular, we consider four fundamental problems which
can be considered as building blocks of networks: distributed
source coding, interference channels, multiple-access chan-
nels with distributed states and multiple description source
coding. We then develop a systematic framework for charac-
terizing the performance limits of these strategies for these
problems from an information-theoretic viewpoint. Lastly,
we identify several examples of the multiterminal communi-
cation problems studied herein, for which structured codes
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attain optimality, and provide strictly better performance
as compared to classical techniques based on unstructured
codes. In summary, we develop an algebraic and probabilistic
framework to demonstrate the fundamental role played by
structured codes in multiterminal communication problems.
This monograph deals exclusively with discrete source and
channel coding problems.
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1
Introduction

1.1 Overview

Many components of modern infrastructure such as transportation
systems, power systems, climate and environment monitoring systems,
education systems and even government are being increasingly intercon-
nected through information networks. Information is playing an ever
bigger role in our lives than just a decade ago. There is a need to gather,
store, process and communicate information across several distributed
devices. These devices continually and simultaneously perform one or
more of these information processing tasks. In doing so, they share
resources, co-ordinate to achieve their objectives, and even at times
overcome individual constraints through the pooling of networked re-
sources. Central to the functioning of current-day information networks
are strategies that facilitate these network information processing ob-
jectives. In this monograph, we address the overarching challenge of
designing efficient information processing strategies from a fundamental
network information theory viewpoint. Specifically, we aim to identify
the broad ideas that enable efficient processing of information in net-
works. Network information theory [1]–[3] is a comprehensive theory of

3
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4 Introduction

information storage, transmission, and processing in networks. The foun-
dation of network information was laid down by the pioneering works of
Ahlswede, Berger, Bergmans, Cover, Csiszar, El Gamal, Gelfand, Han,
Körner, Marton, Pinsker, Shannon, Slepian, Wolf and Wyner, and was
developed by many follow-up works.

In this monograph, we examine several network communication
problems which can be considered as building blocks of networks. We
consider these problems from both the channel coding (data transmis-
sion) as well as the source coding (data storage) perspectives. We have
twin objectives of (a) understanding the basic physics of information cod-
ing and processing strategies for these problems, and (b) developing the
mathematics of characterizing fundamental and optimal performance
limits (called achievable regions) of these strategies as applied to the cor-
responding problems. We look at multiterminal communication setups
under different scenarios of collaboration among the terminals or lack of
it. In particular we consider the following cases: (a) The multiterminal
encoders are distributed: distributed source coding and multiple access
channel with distributed channel state information. (b) The multitermi-
nal decoders are distributed: multiple description coding. (c) Both the
multiterminal encoders and decoders are distributed: communication
over interference channels. In this monograph, we restrict our attention
to the discrete memoryless setting. In particular, we focus on provid-
ing information-theoretic computable inner bounds to the performance
limits by devising structured coding schemes for the finite alphabet
cases of these problems. For each problem, we provide at least one
example where we prove that the structured coding scheme is optimal,
whereas the unstructured coding scheme is strictly suboptimal. We do
not provide outer bounds to the performance limits of these problems.

Toward studying the information-theoretic performance limits in
each of these communication scenarios, in the following, we consider
two key concepts: common information and code structure, uncover a
new fundamental connection between them, and then develop the key
elements of a unified coding framework.

Full text available at: http://dx.doi.org/10.1561/0100000083



1.2. Structure of Codes 5

1.2 Structure of Codes

Characterizations of fundamental performance limits in communication
over networks require devising optimal transmitters and receivers at
distributed network terminals. Mathematically, the operations of trans-
mitters and receivers are characterized using encoding functions and
decoding functions, respectively, also referred to as codes. The image
of an encoding function in channel coding and a decoding function in
source coding is referred to as a codebook. Hence, one of the main
objectives in network information theory is to design optimal codes.
The conventional technique of deriving the performance limits for any
communication problem in information theory is via random coding [2]
involving so-called Independent Identically Distributed (IID) random
codebooks. Since a typical code possesses only single-letter empirical
properties, coding techniques are constrained to exploit only these using
the law of large numbers for enabling efficient communication. Since
random coding does not guarantee any structural properties on the
codebooks other than these single-letter properties, we refer to them
as unstructured code ensembles. A code ensemble is a collection of
codes and a probability distribution defined on the collection. In most
cases, only the average performance of such an ensemble is analytically
tractable using law of large numbers.

Techniques based on IID unstructured code ensembles have been
proven to achieve asymptotic performance limits in certain point-to-
point and multiterminal communication problems in the discrete mem-
oryless setting. Examples include the capacity of point-to-point (PTP)
channels [4], multiple access channels [5]–[9] (MAC) and degraded broad-
cast channels [10]–[12], and the rate-distortion function of PTP source
coding [13], successive refinement source coding [14], [15], and the rate
region of the lossless distributed source coding [16]. A groundbreaking
development in the realm of unstructured coding in network commu-
nications is the concept of random binning: random (unstructured)
partition of codebooks. This, pioneered by Slepian and Wolf [16], led
to the distributed source coding paradigm [17]–[26] which was solved
completely in the lossless case. The next conceptual leap was taken
by Cover and Bergmanns [10], [12], [27], [28], where they introduced a

Full text available at: http://dx.doi.org/10.1561/0100000083



6 Introduction

global structure in the codes. They constructed random superposition
codes toward addressing broadcast channels. This also led to the concept
of the auxiliary random variables that capture this structure [2], [29].
For the case of degraded broadcast channels, they were shown to be
optimal [11], [12]. These codes have a global structure, and the struc-
ture is that of a cloud surrounded by satellites. The auxiliary random
variables characterize the cloud centers of the superposition codes. The
superposition codes were then employed for several other multi-terminal
communication scenarios such as interference channels [30], [31], relay
channels [32], multiple-description coding [33]–[36] and so on. Soon,
random superposition codes were either shown to be optimal or were
achieving the best performance for most scenarios [37]–[39]. Based on
these initial successes, it was widely believed that one can achieve the
performance limits of any network communication problem using IID
superposition codes with random binning.

Stepping beyond these ideas that are based on unstructured code
ensembles, Körner and Marton [40] proposed an ingenious technique
based on statistically correlated codebooks (in particular, identical ran-
dom linear codes) possessing algebraic closure properties, henceforth
referred to as (random) structured code ensembles. They showed that
their proposed scheme outperformed all techniques based on (random)
unstructured code ensembles for the specific problem of distributed com-
putation of modulo-2 sum of binary correlated sources. In other words,
the average performance of the former ensemble is better than that of
the latter. More recently, several examples [41]–[51] in the context of
specific symmetric and additive communication scenarios have employed
structured codes, and devised new coding techniques that outperform
techniques that are based on IID unstructured codes. It appears that
even if computation is a non-issue, algebraic structured codes may be
necessary, in a deeply fundamental way, to achieve optimality in trans-
mission and storage of information in networks. Structured codes appear
to facilitate information cooperation among distributed terminals more
efficiently. What is the fundamental reason behind this?

Full text available at: http://dx.doi.org/10.1561/0100000083
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Figure 1.1: Common information between two correlated sources.

1.3 Common Information and Code Structure: 2 Terminal Case

Toward answering the above question, we appeal to the notion of com-
mon information which we explain through a simple example. Consider a
pair of correlated information sourcesX1 andX2, distributed among two
terminals. Terminal 1 observes only X1 and terminal 2 observes only X2.
The common information [52], [53] (in the sense of Gacs, Körner and
Witsenhausen) between X1 and X2 is the largest amount of common
random bits per sample of the source that can be generated distribu-
tively by the two terminals by processing their respective information
sources (see Figure 1.1). In other words, it is given by the maximum
value of H(W ) such that W = g1(X1) = g2(X2) with probability 1,
where H(·) is the entropy function. We denote the common information
between X1 and X2 as C(X1;X2). Conventionally, common information
has been seen as a measure of degeneracy of the joint probability matrix
of X1 and X2. Rather than viewing common information as a form of
degeneracy, we can look at it optimistically as a form of desirable and
hence useful structure that certain random variables are endowed with.

If the sources can be expressed as X1 = (W, X̃1) and X2 = (W, X̃2)
for a non-trivial random variable W , then the common information
between them is non-zero. This concept plays a fundamental role in
network information theory. To see its significance, for example, consider
a peer-to-peer interference network where there are two pairs of encoder–
decoder terminals. Each encoder wishes to transmit some information
(that is independent of that of the other) reliably to its decoder. The
encoders do not communicate with each other, nor do the decoders.

Full text available at: http://dx.doi.org/10.1561/0100000083



8 Introduction

Let X1 and X2 denote the signals transmitted by the transmitters 1
and 2, respectively, taking values in a common alphabet X. The signal
X1 meant for decoder 1 interferes with the signal X2 that is meant for
decoder 2. What should be their communication strategy to maximize
the system throughput? One approach that has been studied extensively
involves partial interference decoding using random superposition codes.
In this approach, each receiver decodes a part of the signal meant for
the other, and then decodes the signal meant for it. A simpler version
of this approach is illustrated as follows. Decoder 1 decodes a univariate
function U2 = g2(X2) of the interfering signal X2, before decoding X1,
where g2: X → U, and U is an auxiliary alphabet. Similarly decoder
2 decodes U1 = g1(X1) before decoding X2, where g1: X → U. So
after decoding, the information available at the receivers are given by
(U2, U1, X1), and (U1, U2, X2). Hence they have non-trivial common
information given by (U1, U2) (with high probability). Although, U1
(respectively U2) is not needed to be decoded at decoder 2 (respectively
at decoder 1), the overall system throughput increases by doing so,
thus inducing non-trivial common information between the decoder
terminals. To facilitate such communication, the codes employed by
the terminals should have a global structure that reflects the relations
characterized by the univariate functions gi.

In the conventional random superposition codes studied in in-
formation theory this is manifest as described below. For example,
for the code associated with Encoder i, there are cloud center code-
words {Uni (1), . . . , Uni (Mi1)}, generated IID from a distribution PUi .
For each codeword, Uni (j), there are satellite codewords {Xn

i (j, 1), . . . ,
Xn
i (j,Mi2)}, generated IID from PXi |Ui conditioned on Uni (j), where

Mi1 and Mi2 determine the rate of transmission, and n denotes the
block-length. It can be argued that the superposition codes—with a
cloud and satellite structure—have such a global structure, where the
cloud center is associated with the random variable Ui and the satellite
is associated with the random variable Xi. The structure of the super-
position code associated with the ith encoder–decoder pair is that it is
closed under the univariate function gi, for i = 1, 2. In other words, if an
n-length word Xn

i is a codeword, then the vector obtained by applying
gi on each component of Xn

i is also a codeword. The thesis is that the

Full text available at: http://dx.doi.org/10.1561/0100000083



1.4. Common Information and Code Structure: 3 Terminal Case 9

functional characterization of common information be reflected in the
global structure of the code. It is this thesis that we plan to extend to
the case of more than two terminals.

1.4 Common Information and Code Structure: 3 Terminal Case

Next we argue why algebraic structure emerges naturally from the
perspective of common information for a system with more than two
terminals. At the heart of an algebraic code such as a linear code or a
group code [54], [55], there is an abstract group, and at the heart of it,
there is a bivariate function [56]. This bivariate function is the addition
operation associated with the group. For instance consider a linear code
constructed over the ternary field F3 = {0, 1, 2}. The corresponding
bivariate function in this example is addition modulo-3.

Recall that common information between two random variables
is captured via a pair of univariate functions g1 and g2. What is the
common information among three information sources, say X1, X2
and X3? We answer this question, by noting that common informa-
tion is a vector consisting of common information between every pair
of sources, i.e., C(X1;X2), C(X2;X3), C(X1;X3), and the informa-
tion that is common to all three, C(X1;X2;X3), where C(X1;X2;X3)
is given by the maximum value of H(W ) such that W = g1(X1) =
g2(X2) = g3(X3), with probability one. For example, consider X1 =
{U1, U2, U3}, X2 = {U1, U4}, and X3 = {U1, U2, U3 ⊕2 U4}, where the
Ui’s are IID binary symmetric random variables, and ⊕2 denotes ad-
dition modulo-2. We have C(X1;X2) = H(U1), C(X2;X3) = H(U1),
C(X1;X3) = H(U1, U2), and C(X1;X2;X3) = H(U1). All these four
components are captured via univariate functions. Is that it? What
about common information between the pair (X1, X2) and X3? A mo-
ment’s thought reveals that this structure in the joint probability matrix
captured by C(X1, X2;X3) must be included in the common informa-
tion among the three. For the above example, the random variable
U3⊕2 U4 is a bivariate function of (X1, X2) and a univariate function of
X3. Hence, the common information between (X1, X2) and X3 is given
by H(U1, U2, U3 ⊕2 U4).

Full text available at: http://dx.doi.org/10.1561/0100000083
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Similarly, the common information between (X1, X3) and X2 and
that between (X2, X3) and X1 must be included in the common infor-
mation among X1, X2 and X3 as well. So rather than a 4-dimensional
vector, the common information is more like a 7-dimensional vector.
The last three components are fundamentally different from the first
four, because, in the latter, there is conferencing between a pair of
sources. For example, to characterize C(X1, X2;X3), we need to eval-
uate the common randomness generated distributively by X3 and by
a “conference” between X1 and X2. The conference happens via a “bi-
variate” function, say, g12(X1, X2). So, the last three components of the
common information are captured via bivariate functions. We call this
conferencing common information. Common information has also been
looked at from related but different perspectives in [57]–[59].

This structure cannot be manifested through univariate common
information. The next question that comes up is can all these compo-
nents be exploited in a multiterminal communication problem involving
three or more transmitters, or receivers or both. The answer is yes. It
turns out that to exploit these components of common information, we
need codes which are closed under the corresponding bivariate function.
This is the fundamental connection between common information and
algebraic structured codes. This is the thesis which the present mono-
graph is woven around. Let us revisit the interference network example,
now with three pairs of encoder–decoder terminals. The signals X2
and X3 meant for Decoder 2 and 3 interfere with X1. Suppose that
the interference is characterized as g12(U2, U3), where Ui = gi(Xi) for
i = 2, 3. Then Decoder 1 may wish to decode g12(U2, U3), instead of the
pair (U2, U3), before decoding X1. To facilitate such a decoding, the
codes associated with Encoder 2 and 3 need to be closed with respect to
g12(·, ·). This induces a conferencing common information between the
messages decoded at Decoder 1 that decoded at Decoder 2 and 3. This
global structure of the codes need to reflect the function characterizing
the conferencing common information. A code may be called structured
if it is closed with respect to a bivariate function.

To see this more clearly, let us assume that the bivariate function
is given by the addition operation corresponding to a finite abelian
group (which is defined formally in Section 2). It is well known [60]
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1.4. Common Information and Code Structure: 3 Terminal Case 11

that primary cyclic groups form the building blocks of all finite abelian
groups. A primary cyclic group Zpr is given by the set {0, 1, 2, . . . , pr−1}
with addition modulo-pr, and p is a prime number. The primary cyclic
group Zpr has a natural ring structure with multiplication modulo-pr.
When r = 1, we get a primary finite field, Fp. Consider a code C of
block-length n built on the alphabet Zpr . Let us suppose that the code C
is a coset of a subgroup of the n-product group Znpr , i.e., C−Bn ≤ Znpr ,
for some vector Bn ∈ Znpr . Note that the size of sum of C and C is
equal to that of C, i.e., |C + C| = |C|. In contrast, if C were a random
subset of Znpr , then, with high probability, we have |C + C| ≈ |C|2.
The algebraic structure helps in containing the size of |C + C|. Hence
decoding in C + C is much easier than decoding in C× C.

This concept has also been studied in additive number theory and
additive combinatorics [61], [62], where estimates of sums of subsets of
integers such as A+B = {x+ y: x ∈ A, y ∈ B} are characterized. One
should be able to exploit the powerful results available in this area to
develop a theory of asymptotically good structured codes. For example,
one of the most fundamental results in this area is the Davenport-
Cauchy theorem which provides a lower bound on the sum of two
subsets of a prime finite field: for any A,B ⊂ Fp, we have |A + B| ≥
min{|A| + |B| − 1, p}. Another important result is Freiman theorem,
a version [63] of which states that if A is a binary code of length n,
i.e., A ⊂ Fn

2 , and |A + A| ≤ K|A|, then A is contained in a coset of
a subspace of size no larger than K222K2−2|A|. One could use these
results toward deriving outer bounds to the achievable rate regions in
multiterminal networks.

What is the information-theoretic cost of endowing a code C with the
algebraic structure of a subgroup for the task of packing and covering?
Put in a different way, what is the capacity of a point-to-point channel
if one is restricted to use a code which is a subgroup of Znpr? Toward
answering this question, first consider a discrete memoryless symmetric
channel with input alphabet Zpr , where the capacity-achieving input dis-
tribution is uniform. From standard random coding arguments (see [64]),
we know that any code ensemble where (i) the distribution of each code-
word is uniform over Znpr , and (ii) the codewords in the code ensemble
are pairwise independent achieves the capacity. For the algebraic codes,
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consider first the case where r = 1. In this case, Zp is a simple group
i.e., the group does not contain non-trivial subgroups, and hence a finite
field Fp. Furthermore, any subgroup of Fnp is endowed with a vector
space structure with a generator matrix G of size k × n for some k ≤ n
[54], [65]. Consider a code ensemble (called coset code ensemble) where
a random structured code is constructed by choosing the generator
matrix G and the shift vector Bn randomly and uniformly. For any four
fixed vectors uk1, uk2 ∈ Fkp, xn1 , xn2 ∈ Fnp , and uk1 6= uk2, we see that

P (uk1G+Bn = xn1 , u
k
2G+Bn = xn2 )

= P ((uk1 − uk2)G = xn1 − xn2 , uk1G+Bn = xn1 ) (1.1)
(a)= P (ukG = xn) 1

pn
(1.2)

(b)= P

(
k∑
i=1

uig
n
i = xn

)
1
pn

(1.3)

(c)= P

(
gnj = u−1

j

(
xn −

∑
i6=j

uig
n
i

))
1
pn

(1.4)

= 1
pn

1
pn
, (1.5)

where (a) follows by defining uk := uk1−uk2, and xn := xn1−xn2 , (b) follows
by denoting the ith row of G as gni , and (c) follows because there exists
an index j such that uj 6= 0. Thus the two properties given above-
uniformity and pairwise independence – are satisfied, and hence the
coset code ensemble achieves the capacity. Similarly, one can show that
coset code ensemble achieves the Shannon rate-distortion function of a
symmetric source with additive distortion function. In this sense, the
finite field structure comes for free.

Now consider the case when r > 1. In this case, Zpr is not a finite
field because of the presence of non-trivial subgroups, and hence zero
divisors, non-zero elements which do not have multiplicative inverses.
For example piZpr is a non-trivial subgroup for any 0 < i < r. It can be
noted that subgroups of Znpr have the structure of a module instead of
a vector space. Although there are many details, to see the big picture,
consider a simple code ensemble with a generator matrix G of dimension
k × n and a shift vector Bn chosen independently and uniformly. Let
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us evaluate P (ukG = xn), for uk 6= 0, where the multiplication is
modulo-pr. First consider the case when at least one component of uk
is invertible, i.e., uk 6∈ pZkpr . Then as in the case of finite fields, the
equation ukG = xn has p(k−1)rn solutions, i.e., except one row, all the
elements can be G chosen arbitrarily. Hence P (ukG = xn) = 1

prn . There
are prk−p(r−1)k such vectors uk. Next consider the case when uk ∈ pZkpr ,
and uk 6∈ p2Zkpr . Then the equation ukG = xn has pn times as many
solutions as before if xn ∈ pZnpr , and no solutions otherwise. Because,
all but one row can be chosen arbitrarily, and the remaining row has
pn solutions. Hence P (ukG = xn) = pn

prn . Continuing similarly, one can
see that

P (ukG = xn) =


1

p(r−i)n if uk ∈ piZkpr\pi+1Zkpr , xn ∈ piZnpr

0 ≤ i < r

1 if uk ∈ prZkpr , xn ∈ prZnpr .

(1.6)

Hence, pairwise independence is lost, and this results in an information-
theoretic penalty. In some cases, it can be shown that the capacity of
the channel cannot be achieved with such a code ensemble. Similarly,
there is an asymptotic performance loss in source coding with a fidelity
criterion. In other words, there is an information-theoretic cost for
endowing the code with an algebraic structure of a module. Even then,
in certain multiterminal communication problems, such a code ensemble
performs better than the random code ensemble in terms of the overall
system performance because of the property |C + C| = |C|. Although
in this monograph we restrict ourselves to the case r = 1 for simplicity,
we give a brief overview of the performance limits for general case r > 1
in Section 7. We also look at the case when the group is not abelian.

For the more general nonsymmetric discrete memoryless channels
where the capacity achieving input distribution is not symmetric, the
coset code ensemble may not achieve the capacity. In such cases, we use
either random binning of a coset code or unionizing of coset codes to
achieve the capacity which is discussed in the next subsection.

For more than three terminals, we expect trivariate functions or more
generally higher-order multivariate functions [66] to play significant roles.
Examples include triple product a · (b× c) used to define the volume of
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a parallelepiped [67], and the operation (a⊗ b) + c used to define planar
ternary rings with applications in projective geometries [68].

In spite of the several works that show that structured codes perform
better than unstructured codes in several communication problems,
there are still many questions remaining.

(i) Firstly, in contrast to the rich theory [1], [3] based on IID unstruc-
tured codebooks, structured codes have been studied only in the
context of particular additive and symmetric channels, and we
do not have a framework to treat general channels and sources.
There is a lack of a general theory for arbitrary instances of the
multi-terminal channels or multi-terminal sources. Linear codes
and group codes [69] have been studied extensively toward achiev-
ing known performance limits in information theory [64], [70]–[81].
How does one reconcile an apparent contradiction between the
negative result that linear codes cannot achieve the capacity of ar-
bitrary point-to-point channels [82]–[85] and ingenious techniques
of Körner and Marton based on linear codes.

(ii) Secondly, the lack of wider applicability of structured codes to
diverse communication scenarios has been a cause for concern.
One of the appealing aspects of the theory based on IID codebooks
is the ability to appropriately stitch together current known cod-
ing techniques – superposition [10], [27], binning [16], correlated
quantization [33], block Markov superposition [86], [87] – to effect
enhanced throughput and derive new achievable rate regions for
any multi-terminal communication scenario. How does one stitch
together current techniques based on structured codes to exploit
algebraic closure properties over an arbitrary instance of a generic
communication scenario?

(iii) Thirdly, there is a lack of a rich set of examples, beyond particular
symmetric additive examples for which structured codes outper-
form current known techniques based on IID codes. Today, the
question of whether structured codes are needed for non-additive
problems is yet to be answered satisfactorily. To address these

Full text available at: http://dx.doi.org/10.1561/0100000083



1.5. Key Elements of the Framework 15

issues, we aim to develop a unified algebraic and probabilistic
framework for network information theory.

1.5 Key Elements of the Framework

Firstly, we propose two new ensembles of coset codes (shifted linear
codes): (i) partitioned coset codes (PCC), and (ii) unionized coset codes
(UCC). These codes possess both the empirical properties present in
unstructured codes [88] as well as algebraic closure properties. A PCC
is a coset code that is randomly partitioned into bins. This means that
each codeword in the shifted linear code is assigned a bin number chosen
randomly and uniformly among a predetermined number of bins. Absent
such partitioning, linear codes can only achieve a very limited set of
empirical distributions (e.g., uniform distributions). As will be described
in the subsequent sections, the partitioning ensures each bin possesses
codewords with a specified empirical distribution and thereby achieves
rates corresponding to non-uniform distributions. The overall code being
a coset code possess (algebraic) closure properties (see Figure 1.2(a)).
Alternatively, linear codes followed by nonlinear mapping have been
used to achieve performance limits in point-to-point communication
[64], [77]. We will not pursue this idea in this monograph.

On the other hand, a UCC is a collection of arbitrary cosets compris-
ing a code (see Figure 1.2(b)). Similar to the binning operation in PCCs,
the unionizing operation in UCCs allows them to achieve non-uniform
empirical distributions. In many multiterminal communication systems,
we see that both covering codes and packing codes are necessary in
order to achieve the optimal performance. Moreover, they are used such
that either a packing code is partitioned into covering codes or the
other way around. In other words, we have nested codes with a denser
code (packing/covering) containing a sparser code (covering/packing).
As we have seen one can endow asymptotically optimal codes with the
algebraic structure associated with a finite field with no cost. In other
words, finite field structure comes for free. However, as we loosen the
algebraic structure from that of a finite field to that of an arbitrary
group, we have to pay a price for endowing a code with a group structure
[89], [90] (see Section 7 for an example). So in PCC, we endow the
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Figure 1.2: (a) A depiction of PCC: The shaded circles denote the coset code. The
circles belonging to a given color form a bin. Within the typical set (big circle), there
is only one codeword with a given bin (color). (b) A depiction of UCC: The circles
belonging to a given color form a bin. Each bin is a coset code. Within the typical
set, there is only one codeword with a given bin (color).

denser code with an algebraic structure, whereas in UCC we endow the
sparser code with an algebraic structure.

Secondly, in this monograph, we build upon the technique of typi-
cality set encoding and decoding [2] to generalize coding techniques to
arbitrary sources and channels. This approach has also been looked at in
[91]. It can be noted that the theory developed in this framework can be
further generalized to continuous-valued sources and channels [92], and
in particular Gaussian multi-terminal channels and sources. Lattices
have been studied extensively for source coding and channel coding in
the linear quadratic Gaussian setting both in the point-to-point and
multiterminal settings [93]–[106]. In particular, a framework involving
lattice codes for communicating over real-valued channels can be ob-
tained by mapping coset codes to lattice codes. These findings indicate
that coset codes built over finite fields described here are only the first
step in exploiting algebraic closure properties. Furthermore, it turns out
that [73], [89], [90], [107]–[109], a framework based on codes built over
groups can be employed to derive even larger achievable rate regions.

Thirdly, we develop new information-theoretic techniques to analyze
performance of jointly related coset codes. The proposed algebraic
framework develops all necessary tools to exploit algebraic closure
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properties in diverse communication scenarios. We believe that a good
understanding of this framework will lead to a spurt of research activity
in multi-terminal information theory and enable researchers develop
new coding techniques based on coset codes for diverse communication
scenarios.

Fourthly, the use of algebraic closure properties for enhanced through-
put unfolds a new paradigm in communication. In practice, most com-
munication systems employ structured codes and exploit structure in
efficient encoding and decoding operations. Findings in information
theory that involve structured codes indicate that structure can be ex-
ploited for enhanced throughput. This is a welcome sign for researchers
aiming to build efficient communication systems.

The monograph is organized as follows. We apply the coding tech-
niques to three network topologies: (a) many-to-one communication,
(b) one-to-many communication and (c) many-to-many communication,
from perspectives of source coding and channel coding. We choose the
following problems for exposition as example scenarios for four different
cases of the use of PCC and UCC for source coding and channel coding
(see Figure 1.3). Section 2 will introduce the reader to these ensembles of
codes and prove two fundamental results – UCC and PCC achieve both
the capacity of arbitrary point-to-point channels and the rate-distortion
function of an arbitrary source. These two results essentially establish
the packing and covering properties of UCC and PCC. We address the
following four specific multiterminal problems with distributed encoders
and decoders. In Section 3, we consider the distributed source coding
problem (many-to-one) where we use UCC with the covering code being
partitioned into packing codes. The algebraic structure of the sparser
packing code is exploited for efficient binning in this problem. Then we
focus on the interference channel (many-to-many) in Section 4, where
we use PCC with packing code being partitioned into covering codes.
The algebraic structure of the denser packing code is exploited for
interference alignment in this problem. Then we move on to the prob-
lem of multiple-access channels with distributed states (many-to-one)
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Figure 1.3: Four basic building blocks of networks: Distributed encoders: DSC
(distributed source coding), MACS (multiple-access channel with states). Distributed
Decoders: MDC (multiple description coding), IC (interference channel). Systems
involving distributed encoders use UCC (unionized coset codes). Systems involving
distributed decoders use PCC (partitioned coset codes). In source coding problems,
covering codes are partitioned into packing codes. In channel coding problems,
packing codes are partitioned into covering codes.

available at the encoders1 in Section 5. In this problem, we use UCC
with packing codes being partitioned into covering codes, where the
algebraic structure of the sparser covering code is exploited for efficient
side information covering. Finally, it is the multiple description problem
(one-to-many) in Section 6, where we will be using PCC with covering
codes being partitioned into packing codes. For this scenario, we exploit
the algebraic properties of the denser covering codes for efficient multi-
ple covering of the source. These observations also bring out a duality
connections between source coding and channel coding problems. Our
objective is to study both source coding and channel coding problems to
get deep insights into the inner workings of network information theory.
Duality between source coding and channel coding problems have been
studied extensively in the literature [1], [13], [110]–[116].

1The performance limits of multiple-access channel with arbitrary number of
transmitters and without states have been characterized using IID unstructured code
ensembles.
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One can obtain very interesting and deep insights into the structure
of algebraic codes which give improved performance (over unstructured
codes) for the problems which are building blocks of networks. (i) It
turns out that systems with distributed encoders benefit from the use
of UCC, and (ii) systems with distributed decoders benefit from the use
of PCC. (iii) In source coding problems, covering code is partitioned
into packing codes, and (iv) in channel coding problems, packing code
is partitioned into covering codes. A brief summary of these finding is
illustrated in Figure 1.3 for four basic multi-terminal networks.

1.6 Notation

We employ notation that has now been widely accepted in the informa-
tion theory literature [1]–[3] supplemented with that given in Table 1.1.
Upper case letters X,Y, Z denote random variables, and smaller case
letters x, y, z denote the values taken by the random variables. All the
random variables considered in this monograph are finite valued. The
probability distribution of a triple of random variables (X,Y, Z) (XY Z
for short) is denoted as PXY Z .

In this monograph, we need to define multiple objects, mostly triples,
of the same type. In order to reduce clutter, we use an underline to
denote aggregates of objects of similar type. For example, (i) if Y1,Y2,Y3
denote (finite) sets, we let Y either denote the Cartesian product Y1 ×
Y2 × Y3 or abbreviate the collection (Y1,Y2,Y3) of sets, the particular
reference being clear from context, (ii) if yk ∈ Yk: k = 1, 2, 3, we let
y ∈ Y abbreviate (y1, y2, y3) ∈ Y (iii) if dk: Ynk → Mk: k = 1, 2, 3 denote
(decoding) maps, then we let d(yn) denote (d1(yn1 ), d2(yn2 ), d3(yn3 )).

We write αM to express the vector (α1, α2, . . . , αm) where M =
{1, 2, . . . ,m}. A collection whose elements are sets is called a family of
sets and is denoted by the calligraphic typeface M . For a given family of
sets M we define a set M̃ =

⋃
M∈M M as the set formed by the elements

of the sets in M . The family of sets containing all subsets of M is denoted
by 2M. A collection whose elements are families of sets is denoted by
the bold typeface M. The collection of families of sets {A1,A2, . . .Am}
is also represented by AM. In some case, random variables are indexed
by families of sets as in UM . For the purposes of brevity we will write
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Table 1.1: Description of symbols used in the monograph

Symbol Meaning

cl(A) Closure of A ⊆ Rk
cocl(A) Closure of convex hull of A ⊆ Rk
hb(x) Binary entropy function −x log x− (1− x) log(1− x)
[K] The set {1, 2, . . . ,K}
P The set of all prime numbers
Fp Finite field of size p with addition ⊕p (also denoted as +)
F+
p Fp\{0}
a	q b a⊕q (−b) for a, b ∈ Fq
a ∗ b Binary convolution a(1− b) + b(1− a)
� Absolutely continuous
X,Y Finite alphabets of sources and channels
C The capacity region of a channel
R Rate-distortion region of a source
Ri Inner bound to capacity/rate-distortion region
M A Message set or an index set
P A set of probability distributions
d A distortion function d: X × X̂→ R+

κ A cost function κ: X→ R+

τ Expected cost
ξ Probability of decoding error
A

(n)
ε (Q) Frequency typical set of a random variable Q with parameter ε

E(·) Expectation operation

UM1,M2,...,Mn instead of UM where M = {M1,M2, . . . ,Mn} wherever the
notation doesn’t cause ambiguity. UnM denotes a vector of length n of
random variables, each distributed according to the distribution PUM

.
Definitions of basic information measures and key results regarding
typicality are collected in the Appendix.
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