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ABSTRACT
This survey provides an exposition of a suite of techniques
based on the theory of polynomials, collectively referred to
as polynomial methods, which have recently been applied to
address several challenging problems in statistical inference
successfully. Topics including polynomial approximation,
polynomial interpolation and majorization, moment space
and positive polynomials, orthogonal polynomials and Gaus-
sian quadrature are discussed, with their major probabilistic
and statistical applications in property estimation on large
domains and learning mixture models. These techniques pro-
vide useful tools not only for the design of highly practical
algorithms with provable optimality, but also for establishing
the fundamental limits of the inference problems through the
method of moment matching. The effectiveness of the poly-
nomial method is demonstrated in concrete problems such
as entropy and support size estimation, distinct elements
problem, and learning Gaussian mixture models.

Yihong Wu and Pengkun Yang (2020), “Polynomial Methods in Statistical Inference:
Theory and Practice”, Foundations and TrendsR© in Communications and Information
Theory: Vol. 17, No. 4, pp 402–585. DOI: 10.1561/0100000095.
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1
Introduction

Modern data-analytic applications frequently involve complex and high-
dimensional statistical models. For example, applications such as natural
language processing, genetics, and neuroscience deal with datasets natu-
rally viewed as being sampled from probability distributions over a large
domain. A number of real-world signal processing and machine learning
tasks rest upon data-driven procedures for estimating distributional
properties (functionals of the data-generating distribution), including
entropy for understanding the neural coding [7, 9, 65, 112, 141, 168,
183], mutual information for image registration in fMRI [118, 157, 187,
188] and learning graphical models [40, 99], etc. For these tasks, the key
challenge is to accurately estimate the property even when the domain
size far exceeds the sample size and the distribution itself is impossible
to learn.

Another prominent example of complex statistical models deals
with mixture models, which are useful to model the effects of latent
variables and form the basis of many clustering algorithms. The simplest
mixture models is perhaps the Gaussian mixture model, introduced
by Pearson in 1894 to model the presence of hidden subpopulations
within an overall population. Despite the seemingly innocuous nature

2
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1.1. Background on Polynomial Methods 3

of the Gaussian mixture models, many difficult challenges arise, such as
the vanishing Fisher information leading to nonparametric rates, the
nonexistence of maximum likelihood estimator in location-scale mixtures,
etc. For this reason, it proves to be a fertile ground for innovations
in statistical methodologies, including the method of moments [151],
the Expectation-Maximization (EM) algorithm [49], the Generalized
Method of Moments [82], etc. Despite the vast literature and recent
breakthroughs, many problems as basic as optimal estimation rates
remain open in finite mixture models.

Recently, several challenging problems in property estimation and
mixture models have been successfully resolved using methods based
on the theory of polynomials, in particular, polynomial approximation,
interpolation, as well as moments and positive polynomials. They pro-
vide useful tools not only for the design of algorithms that are both
statistically optimal and computationally efficient, but also in estab-
lishing the fundamental limits of the inference problems. This survey
aims to provide an exposition of these techniques, which are collectively
referred to as the polynomial method, as well as their application in
statistical inference.

1.1 Background on Polynomial Methods

The theory of polynomials is a rich subject in mathematics of both
algebraic and analytic flavor. It forms the foundation of and has diverse
applications in many subjects including optimization, combinatorics,
coding theory, control theory, digital signal processing, game theory,
statistics and machine learning, etc, leading to many deep theoretical
results and highly practical algorithms. In this survey, we mainly focus
on polynomial approximation, interpolation, and positive polynomials
that will be introduced below.

Polynomial Approximation and Interpolation. One of the most well-
understood subjects in approximation theory, polynomial approximation
aims at approximating a given complicated function, in either a local or
global sense, using algebraic or trigonometric polynomials of a certain de-
gree. For instance, the Taylor expansion characterizes the local behavior

Full text available at: http://dx.doi.org/10.1561/0100000095



4 Introduction

of a smooth function and provide the foundation for optimization tech-
niques such as gradient descent and the Newton-Raphson method [136]
and kernel-based methods in statistical inference [83, 190]; trigonomet-
ric polynomials represent functions in the frequency domain through
Fourier analysis, which are the theoretical underpinnings for digital
signal processing and wireless transmission [144, 189]. A closely related
topic is polynomial interpolation, which can be viewed as achieving zero
approximation error on a discrete set of points.

In property estimation, the functional to be estimated can be highly
nonsmooth and classical methods requires a large sample size in order
to be accurate. In such settings, polynomial approximation and interpo-
lation provide a useful primitive for constructing better estimates by
first approximating the original functional by a polynomial and then
estimate the polynomial approximant. Besides the approximation error
which is the primary concern in approximation theory, other properties
of the polynomial approximant such as the magnitude of its coefficients
are also crucial for bounding the statistical error.

Moments and Positive Polynomials. The theory of moments plays
a key role in the developments of analysis, probability, statistics, and
optimization. We refer the readers to the classics [106, 117, 177] and
the more recent monographs [120, 174] for a detailed treatment. In
statistical inference, the method of moments was originally introduced
by Pearson [151] for mixture models, which constructs estimates by
solving polynomial equations. Due to its conceptual simplicity and
flexibility, especially in models without the complete specification of
the joint distribution of data, method of moments and its extensions
have been widely applied in practice, for instance, to analyze economic
and financial data [76]. In probability and optimization literature, the
classical moment problem refers to determining whether a probability
distribution is determined by all of its moments. Solution to the moment
problem requires understanding the moment space, which is the convex
set formed by moments of probability distributions. The moment space
satisfies many geometric properties (such as the Cauchy-Schwarz and
Hölder inequalities) and a complete description can be phrased in terms
of positive polynomials, which are further related to sums of squares

Full text available at: http://dx.doi.org/10.1561/0100000095



1.2. Polynomial Methods for Designing Estimators 5

and semidefinite programming. Together with techniques based on
polynomial interpolation, this structural information can be leveraged
to design moment-based methods for learning mixture models that
are statistically optimal, robust to model misspecification, and highly
practical.

1.2 Polynomial Methods for Designing Estimators

We will apply the above polynomial methods to the tasks of estimating
distributional properties and learning mixture models with the goal of
constructing estimators with good statistical performance.

Estimating Distributional Properties on Large Domains. Given sam-
ples drawn from an unknown distribution P on a large domain, the
goal is to estimate a specific property of that distribution, such as
various information measures including the Shannon entropy, Rényi
entropy, and the support size. This falls under the category of functional
estimation [164], where we are not interested in directly estimating the
high-dimensional parameter (the data-generating distribution P ) per se,
but rather a function thereof. Estimating a distributional functional has
been intensively studied in nonparametric statistics, including estimat-
ing a scalar function of a regression function or density such as linear
functionals [55, 181], quadratic functionals [33, 121], Lq norm [123], etc.

To estimate a functional, perhaps the most natural idea is the “plug-
in” approach, namely, first estimate the parameter and then substitute
into the function. As frequently observed in the functional estimation
literature, the plug-in estimator can suffer from severe bias (see [21, 60]
and the references therein). Indeed, although the plug-in estimate is
typically asymptotically efficient and minimax (cf., e.g., [199, Sections 8.7
and 8.9]) for fixed domain size, it can be highly suboptimal in high
dimensions, where, due to the large alphabet and resource constraints,
we are constantly contending with the difficulty of undersampling in
applications such as

• Natural language processing: The vast vocabulary size of natu-
ral languages, compounded by the frequent use of bigrams and
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6 Introduction

trigrams in practice [131], leads to an effective alphabet size far
exceeding the sample size. A well-known example from corpus
linguistics is that about half of the words in the Shakespearean
canon only appeared once [59];

• Neuroscience: in analyzing neural spike trains, natural stimuli
generate neural responses of high timing precision resulting in a
massive space of meaningful responses [22, 130, 172];

• Network traffic analysis: many customers or website users are only
seen a small number of times [20].

Statistical inference on large domains has a rich history in informa-
tion theory, statistics and computer science, with early contributions
dating back to Fisher, Good and Turing, Efron and Thisted, etc. [59,
62, 73, 185] and recent renewed interests on compression, prediction,
classification and estimation on large alphabets [23, 109, 145, 198, 204];
however, none of the aforementioned results allows a general understand-
ing of the fundamental limits of estimating information quantities of
large distributions. While there exists a vast literature on information-
theoretic approaches to the statistical inference of high-dimensional
parameters [24, 93, 122, 155, 216, 217], a systematic theory for estimat-
ing their low-dimensional functionals remains severely under-developed,
especially in the sublinear regime where the sample size is far less than
the domain size so that the underlying distribution is impossible to
learn but certain low-dimensional features can nevertheless be estimated
accurately.

In this survey, we will investigate a few prototypical problems in
estimating distributional properties such as the Shannon entropy and
the support size. These properties can be easily estimated if the sample
size far exceeds the support size of the underlying distribution, but how
can it be done if the observations are relatively scarce, especially in
the sublinear regime where the sample size is far less than the domain
size? It turns out the theory of polynomial approximation provides a
principled approach to construct an optimal estimator. To illustrate this
program let us consider the problem of estimating a function f(p) based
on n independent observations drawn from Bernoulli distribution with

Full text available at: http://dx.doi.org/10.1561/0100000095



1.2. Polynomial Methods for Designing Estimators 7

mean p, or equivalently, the sufficient statistic N ∼ Binomial(n, p). This
simple setting forms the basis of designing estimators for distributional
properties in Sections 3–5. Given any estimator f̂(N), its mean is
given by

E[f̂(N)] =
n∑
j=0

f(j)
(
n

j

)
pj(1− p)n−j ,

which is a degree-n polynomial in p. Consequently, unless the function
f is a polynomial, there exists no unbiased estimator for f(p). Con-
versely, given any degree-n polynomial f̃ , we can always construct an
unbiased estimator for f̃(p) by combining the unbiased estimator of
each monomial (see, e.g., (3.9) in Subsection 3.2). These observations
suggest that, for the purpose of reducing the bias, we should first find a
polynomial f̃ of degree at most n such that the approximation error
|f(p)− f̃(p)| is small for every possible values of p, and then construct
an unbiased estimator f̂(N) for f̃(p). Fixing L ≤ n, the best degree-L
polynomial f̃ that minimizes the worst-case approximation error can
be found by solving the following optimization problem:

inf
λ0,...,λL

sup
p

∣∣∣∣∣f(p)−
n∑
i=0

λip
i

∣∣∣∣∣ ; (1.1)

this is known as the best uniform polynomial approximation problem
which will be discussed at length in Subsection 2.1. Although the approx-
imation error decays with the degree, typically we cannot choose it to be
as large as n since the estimation error of monomials grows rapidly with
the degree. Therefore, the degree L must be chosen appropriately (often
logarithmic in the sample size n) so as to balance the approximation
error and the estimation error (the bias-variance tradeoff). This method
was pioneered by Lepski et al. [123] for nonparametric regression and
further developed in Cai and Low [34] for the Gaussian sequence model.
We will elaborate on the high-level ideas in Section 3 and illustrate the
effectiveness of this approach in Sections 4 and 5 for specific problems.

Learning Gaussian Mixtures. Sampling from a mixture model can be
viewed as being a two-step process: first draw a latent parameter θ ∼ ν;
then draw an observation X ∼ Pθ. The marginal distribution of each

Full text available at: http://dx.doi.org/10.1561/0100000095



8 Introduction

sample is
πν =

∫
Pθdν(θ). (1.2)

We refer to ν as the mixing distribution and πν as the mixture distribu-
tion. A finite mixture model has a discrete mixing distribution of finite
support and a mixture distribution of the form

∑
iwiPθi . The key ques-

tion in mixture model is the following: If we are only given unlabeled
data from the mixture model, can we reconstruct the parameters in
each component accurately and efficiently? Furthermore, in the regime
where it is impossible to learn the labels with small misclassification
rate, is it still possible to learn the mixing distribution and the mixture
distribution accurately?

In the special case that each Pθ is a Gaussian distribution, this is the
problem of learning Gaussian mixtures, a classical problem in statistics
dating back to the work of Pearson [151]. In addition, methods for
learning Gaussian mixtures are widely used as part of the core machine
learning toolkit, such as the popular scikit-learn package in Python [152],
Google’s Tensorflow [1], and Spark’s MLlib [133]; however, few provable
guarantees are available. It is only recently proved in [104, 138] that a
mixture of constant number of components can be learned in polynomial
time using a polynomial number of observations. The optimal rate for
learning finite Gaussian location mixtures is recently determined in [56,
86, 211] and for location-scale mixture only for the special case of two
components [84]. Is there a systematic way to obtain the sharp error
rates and how to efficiently and optimally learn a Gaussian mixture?
We will investigate the moment methods for the optimal estimation of
Gaussian mixtures, where we learn a discrete mixing distribution by
learning its moments. The key observation is that as opposed to the
vanilla method of solving moment equations, the moment estimates
should be first denoised based on the geometry of the moment space,
and the denoising step can be efficiently carried out through convex
optimization (semidefinite programming). The learned moments can be
then converted to a discrete distribution by the efficient algorithm of
Gaussian quadrature. This approach will be presented in Sections 6–7.

Full text available at: http://dx.doi.org/10.1561/0100000095



1.3. Polynomial Methods for Determining Theoretical Limits 9

1.3 Polynomial Methods for Determining Theoretical Limits

Another focus of this survey is to investigate the fundamental limits of
statistical inference, that is, the optimal estimation error among all es-
timators regardless of computational costs. While the use of polynomial
methods on the constructive side is admittedly natural, the fact that it
also arises in the optimal lower bound is perhaps surprising.

To give a precise definition of the fundamental limits, we begin
with an account of the general framework for statistical inference. We
assume that the sampleX1, . . . , Xn are independently generated from an
unknown distribution P that belongs to a collection of distributions P.
The goal is to estimate a certain property T (P ) of the distribution P .

In this survey we consider the following two types of problems:

• Estimating distributional properties: T (P ) is a functional of the un-
known discrete distribution P = (p1, p2, . . .), such as the Shannon
entropy

H(P ) =
∑
i

pi log 1
pi

(1.3)

and the support size

S(P ) =
∑
i

1{pi>0}. (1.4)

• Learning Gaussian mixtures: P is a Gaussian mixture and T (P )
represents the parameters, including the mean, variance, and the
mixing weights, of each Gaussian component. Equivalently, T (P )
can be viewed as the mixing distribution of the mixture model
(see Section 6).

Given a loss function `(T̂ , T (P )) that measures the accuracy of an
estimator T̂ , the decision-theoretic fundamental limit is defined as the
minimax risk

R∗n , inf
T̂

sup
P∈P

EP [`(T̂ , T (P ))], (1.5)

where the infimum is taken over all estimators T̂ measurable with
respect to X1, . . . , Xn drawn independently from P . Examples of the
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10 Introduction

loss function include the quadratic loss `(x, y) = ‖x− y‖22 and the zero-
one loss `(x, y) = 1{‖x−y‖2>ε} for a desired accuracy ε. For the zero-one
loss, we also consider the sample complexity:

Definition 1.1. For a desired accuracy ε and confidence 1 − δ, the
sample complexity is the minimal sample size n such that there exists
an estimator T̂ based on n independent and identically distributed (i.i.d.)
observations drawn from a distribution P such that P[`(T̂ , T (P )) <
ε] ≥ 1− δ for any P ∈ P.

In this survey, our primary goal is to characterize the minimax risk
(1.5) within universal constant factors, which is known as the minimax
rate; we will also consider the sample complexity in Definition 1.1. This
task entails an upper bound achieved by certain estimators, preferably
a computationally efficient one, and a matching minimax lower bound
that applies to all estimators.

A general program for obtaining lower bounds is based on a reduction
of estimation to testing (Le Cam’s method); cf. Subsection 3.3. If there
are two distributions P and Q that cannot be reliably distinguished
based on a given number of independent observations, while T (P ) and
T (Q) are different, then any estimate suffers a maximum risk at least
proportional to the distance between T (P ) and T (Q). Furthermore,
sometimes one needs to consider a pair of randomized distributions
in which case one needs to construct two distributions (priors) on the
space of distributions (also known as fuzzy hypothesis testing in [190]).
Here the polynomial method enters the scene again: statistical closeness
between two distributions can be bounded by comparing their moments.
More precisely, the strategy is to choose two priors with matching
moments up to a certain degree, which ensures the induced distributions
of data are impossible to test. The minimax lower bound is then given
by the maximal separation in the expected functional values subject to
the moment matching condition. For example, it pertains to the optimal
value of the following type of moment matching problem:

sup Eν [f(X)]− Eν′ [f(X)],
s.t. Eν [Xj ] = Eν′ [Xj ], j = 0, . . . , L,

ν, ν ′ are supported on [a, b],
(1.6)

Full text available at: http://dx.doi.org/10.1561/0100000095



1.3. Polynomial Methods for Determining Theoretical Limits 11

where the supremum is over all pairs of distributions, and the function f ,
the degree L, and the interval [a, b] are problem specific. We will discuss
how to choose those parameters, construct a pair of least favorable priors
from the optimal solution, and then derive the minimax lower bound
in Sections 4 and 5. It turns out this optimization problem is the dual
problem of the best polynomial approximation that arises in the design
of polynomial-based estimator in Subsection 1.2. In the introduction, let
us first look into the relation to polynomial method. Below we formally
derive the duality, and we leave the discussion on strong duality and the
correspondence between primal and dual solutions to Subsection 2.2.
By introducing the Lagrangian multipliers λ1, . . . , λL, we optimize the
Lagrangian function by

sup
ν,ν′

Eν [f(X)]− Eν′ [f(X)]−
L∑
j=1

λi(Eν [Xj ]− Eν′ [Xj ])

= sup
ν,ν′

Eν

f(X)−
L∑
j=1

λiX
i

− Eν′

f(X)−
L∑
j=1

λiX
i


= sup

x∈[a,b]

f(x)−
L∑
j=1

λix
i

− min
x∈[a,b]

f(x)−
L∑
j=1

λix
i

 .

We can introduce another variable λ0 that does not impact the optimal
value and formulate the dual problem as

inf
λ0,...,λL

sup
x∈[a,b]

f(x)−
L∑
j=0

λix
i

− min
x∈[a,b]

f(x)−
L∑
j=0

λix
i


= 2 inf

λ0,...,λL
sup
x∈[a,b]

∣∣∣∣∣∣f(x)−
L∑
j=0

λix
i

∣∣∣∣∣∣ . (1.7)

This last formulation is precisely the best polynomial approximation
problem (1.1). For this reason, estimators constructed using the method
of polynomial approximation frequently comes with a matching lower
bound that certifies their statistical optimality. The connection is pre-
cisely the duality between polynomial approximation and moment
matching.

Full text available at: http://dx.doi.org/10.1561/0100000095



12 Introduction

The method of moment matching can be similarly carried out for
learning mixture models. Typically, there is a minimal number L of
moments that identifies a finite mixture model, which depends on the
order (the number of components) of the mixture model. A statistical
lower bound can then be obtained by constructing a pair of distributions
with matching L− 1 moments. This naturally matches the performance
of the “most economical” moment-based estimators that learns the
mixture distribution using the minimal number of moments. We will
discuss this approach in Section 7.

1.4 Organization

In this survey, we present several tools from the theory of polynomials
and their applications in statistical problems. Section 2 provides a brief
introduction to the necessary background in the theory of polynomials,
including polynomial approximation, interpolation and majorization,
theory of moments and positive polynomials, orthogonal polynomials,
and Gaussian quadrature. Figure 1.1 describes how these techniques
are used in specific statistical applications.

The first statistical application is in the topic of property estimation.
Section 3 introduces some common framework and techniques, including
Poisson sampling, approximation-theoretic construction of statistical

Figure 1.1: Statistical applications of polynomial methods.
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estimators, and minimax lower bounds based on moment matching.
We then apply these techniques to two representative problems: The
problem of entropy estimation is studied in details in Section 4; In
Section 5, we study the estimation of the unseen, including estimating
the support size and the distinct elements problem.

The second statistical application is learning Gaussian mixture mod-
els using moment methods. A general framework for mixture models and
various moment comparison theorems are developed Section 6, which
form the underpinnings of our statistical theory. Most of these results
do not depend on properties of Gaussians and are applicable to general
mixture models. Section 7 describes algorithms for Gaussian mixture
models and their statistical guarantees, complemented by matching
lower bounds.

1.5 Notations

For k ∈ N, let [k] , {1, . . . , k}. We use standard big-O notations, e.g.,
for any positive sequences {an} and {bn}, an = O(bn) or an . bn if
an ≤ Cbn for some absolute constant C > 0, an = o(bn) or an � bn or
if lim an/bn = 0. We write oδ(1) as δ → 0 to indicate convergence that is
uniform in all other parameters. The notations a∧ b and a∨ b stand for
min{a, b} and max{a, b}, respectively. For a probability measure π on
the real line, let Fπ denote its cumulative distribution function (CDF),
with Fπ(t) , π((−∞, t]). A distribution π is called σ-subgaussian if
Eπ[etX ] ≤ exp(t2σ2/2) for all t ∈ R. For matrices A � B stands for
A−B being positive semidefinite. The Euclidean ball centered at x ∈ Rd

of radius r is denoted by B(x, r).
Denote by Binomial(n, p) the binomial distribution with n Bernoulli

trials and success probability p. For P = (p1, . . . , pk), denote by
Multinomial(n, P ) the multinomial distribution with n trials where each
trial has outcome i with probability pi. Denote by N(µ, σ2) the normal
distribution with mean µ and variance σ2 and let φ(x) , 1√

2πe
−x2/2

denote the standard normal density. Denote by Poi(µ) the Poisson
distribution with mean µ.
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14 Introduction

We recall the definition of the following f -divergences (cf. [190,
Chap. 2] for details). For probability distributions P andQ, the Kullback-
Leibler (KL) divergence is D(P‖Q) ,

∫
dP log dP

dQ if P � Q and ∞
otherwise; the χ2-divergence is defined as χ2(P‖Q) ,

∫
dP (dPdQ − 1)2 if

P � Q and ∞ otherwise; the squared Hellinger distance is H2(P,Q) ,∫
(
√

dP
dµ −

√
dQ
dµ )2dµ and the total variation distance is TV(P,Q) ,∫

|dPdµ −
dQ
dµ |dµ, for any dominating measure µ such that P � µ and

Q� µ.
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