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ABSTRACT

In this monograph, a tutorial review of lattice-reduction-
aided (LRA) and integer-forcing (IF) equalization approach-
es in MIMO communications is given. Both methods have in
common that integer linear combinations are decoded; the
remaining integer interference is resolved subsequently. The
aim is to enlighten similarities and differences of both ap-
proaches. The various criteria for selecting the integer linear
combinations available in the literature are summarized in a
unified way. Thereby, we clearly distinguish between the cri-
teria according to which the non-integer equalization part
is optimized and those, which are inherently considered in
the applied lattice algorithms, i.e., constraints on the inte-
ger equalization part. The demands on the signal constella-
tions and coding schemes are discussed in detail. We treat
LRA/IF approaches for receiver-side linear equalization and
decision-feedback equalization, as well as transmitter-side
linear preequalization and precoding.

Robert F.H. Fischer, Sebastian Stern, and Johannes B. Huber (2019), “Lattice-
Reduction-Aided and Integer-Forcing Equalization”, Foundations and Trends©R in
Communications and Information Theory: Vol. 16, No. 1–2, pp. 1–155. DOI:
10.1561/0100000100.
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1

Introduction

Primarily, in the early days of communication and information theory
point-to-point transmission between a single transmitter and a single
receiver was studied, cf. the famous “Fig. 1” in [110]. Soon it was re-
alized that gains can be achieved by handling users jointly, leading
to the development of the the concept of the multiple-access channel
(MAC) in the 1970s [2, 79]. Thereby, many users are transmitting sig-
nals simultaneously with no separation in time, frequency, or space to
a central receiver which has to separate out the individual messages
from the noisy mixture of the users’ signals. At the same time, the
dual concept of the broadcast channel [19] was introduced: a central
transmitter supplies several users with their individual messages.

Around the same time, the concept of multiple-input/multiple-out-
put (MIMO) transmission was devised, e.g., [75, 28, 104]. Here, a num-
ber of signals is transmitted in parallel and a number of interfered
and noisy signals is received in parallel, i.e., the dimension space is
utilized. The breakthrough of the MIMO concept happened in the
1990s, where it was applied to enhance the performance of wireless com-
munications [124]; both to increase the data rate (multiplexing gain)
and the reliability (diversity gain) [127]. Most prominently, the Bell

2
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3

Laboratories layered space-time (BLAST) system has to be mentioned
[46, 52].

Since then, the design of joint receivers which observe multiple ver-
sions of noisy superpositions of the signals transmitted in parallel is
an important field of research. Initially, concepts well-known from the
equalization of linear, dispersive (single-input/single-output) channels
were transferred to the MIMO setting, cf. [31, Table E.1]. Because
maximum-likelihood detection (MLD) usually requires too much com-
plexity even if implemented using the sphere decoder [1], cf. also [87],
suboptimal schemes are of interest.

The simplest approach for handling the interference in MIMO com-
munications is to apply linear equalization (LE), which can either be
optimized according to the zero-forcing (ZF) or the minimum mean-
squared error (MMSE) criterion. Improvements can be achieved when
employing decision-feedback equalization (DFE), which is also known
under the term successive interference cancellation (SIC), and is used
in BLAST. However, the performance of both approaches is poor—in
particular, the achievable diversity order is significantly smaller than it
would be possible using MLD which fully exploits the MIMO channel’s
diversity [127].

Since almost two decades, low-complexity but well-performing ap-
proaches are available. These lattice-reduction-aided (LRA) techniques,
e.g., [151, 139], require some initial effort to calculate the equalizer
front-end but then have the same low complexity per time step as
LE or DFE. It was proven that LRA schemes achieve the optimal di-
versity order [122]. As the name suggests, the mathematical principle
behind LRA equalization is lattice reduction, e.g., [148]. The channel
is interpreted as the generator matrix of the regular arrangement—the
lattice [16]—of the signal points seen at the receiver. Since any lattice
can be given in an infinite number of bases, a “convenient” one can
be chosen—equalization is done based on a change to a suited basis.
As a consequence of this change of basis, not the users’ signals are
detected/decoded initially but integer linear combinations thereof [38].
An integer matrix Z collects the linear factors and describes the change
of basis. In a final step, after decoding, this change of basis (the action
of Z) is reversed; the integer interference has to be resolved.

Full text available at: http://dx.doi.org/10.1561/0100000100



4 Introduction

Recently, the concept of integer-forcing (IF) equalization for joint
linear equalization was proposed in [154]. This approach, originating
from compute-and-forward relaying schemes [88], and related to alge-
braic physical-layer network coding [30], is not only advantageous in
MIMO systems, but in multiple-access scenarios in general, e.g., [95].
Meanwhile, various extensions of the IF philosophy exist, e.g., succes-
sive integer-forcing [94] or integer-forcing source coding [96].

The term “LRA” can be interpreted as a channel-oriented view—it
emphasizes the mathematical tool applied to the channel matrix. In
contrast, the denomination “IF” is signal-oriented—it highlights the
main operation on the signals.

As the name suggests, the main idea in IF is to force the interfer-
ence to be an integer linear combination of the other users’ signals. In
this regard, LRA and IF techniques coincide. However, LRA and IF
receivers differ in the way the integer interference is handled, i.e., how
the integer matrix Z characterizing the linear combinations is inverted,
cf. [42]. Moreover, rooted in the way how the integer interference is
resolved, the mathematical principle of lattice reduction is weakened
to a more general lattice problem in IF relaxing the constraints on
Z present in the initial proposal of LRA. Finally, in contrast to LRA
schemes which are usually assume uncoded transmission, IF schemes
were directly proposed as coded schemes. In IF schemes, a strong cou-
pling between equalization and decoding exists, leading to significant
constraints on the signal constellations. In our view, the restriction
to prime-field arithmetic and matched constellations in IF is the much
more important conceptional difference between LRA and IF than that
of studying uncoded and coded transmission, respectively.

Meanwhile, a huge number of papers dealing with various aspects
of IF equalization were published. In particular, the calculation of the
receiver frontend and the code construction are of interest, see, e.g.,
[92, 103, 23, 116, 92, 42, 137, 11], to name only a few. Thereby, the
fundamental difference between the LRA and IF philosophy is often
blurred. Many equalization and lattice factorization approaches are not
limited to IF but can also be applied in LRA receivers. Indeed, the
invention of IF schemes has sparked a rethinking of the LRA approach.
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Besides joint receiver-side equalization in the MIMO MAC (typi-
cally the uplink in mobile communications), the joint transmitter-side
preequalization in MIMO broadcast channels (BC) (downlink) is of im-
portance. Basically, the two scenarios and respective operations/equal-
ization structures are dual to each other. For linear equalization and
DFE/precoding this fact is summarized in the famous uplink/downlink
duality [108, 130, 131, 152, 74].

Of course, this duality holds for LRA and IF schemes as well.
LRA precoding was introduced in [139, 143, 119]. IF schemes for the
downlink were proposed in [62] and [56]. Meanwhile, a (weakened) up-
link/downlink duality was proved for the IF architecture [57].

In this monograph, a tutorial review of the LRA and IF approaches
in MIMO communications is given. The aim is to enlighten the sim-
ilarities and differences of both approaches. The various criteria for
selecting the integer linear combinations available in the literature are
summarized in a unified way. Thereby, we clearly distinguish between
the criteria according to which the equalization part is optimized and
those, which are inherently considered in the applied lattice algorithms.
The demands on the signal constellations and coding schemes are dis-
cussed in detail. We treat LRA/IF approaches for receiver-side linear
equalization and DFE, as well as transmitter-side linear preequalization
and precoding.

The work is organized as follows: In Chapter 2 the system model
is introduced and classical equalization schemes are briefly reviewed to
establish the basis for the subsequent presentation. The equalization
task is discussed in detail in Chapter 3. We categorize the different
criteria available in the literature for adjusting the equalization part,
the different constraints on the matrix Z, and the related type of lattice
problem which has to be solved for calculating Z. In Chapter 4, the
demands on the coding schemes and signal constellations in LRA and
IF receivers are pointed out. Chapter 5 contrasts the LRA and IF
philosophy when DFE is applied and in Chapter 6 transmitter-side LRA
and IF precoding are analyzed. A brief summary and a final comparison
are given in Chapter 7. For completeness a short review on lattices and
lattice algorithms is compiled in Appendix A. To enhance readability, in
Appendix D the notation used throughout the monograph is collected
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as a reference. Finally, in Appendix C some practical issues concerning
offsets in constellations and handling of non-valid decoding results are
collected.
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A

Lattices, Lattice Problems, and Algorithms

This appendix collects the most important properties of lattices, the
problems of finding a so-called reduced basis or a set of shortest in-
dependent vectors for a given lattice, and related algorithms. Thereby,
we restrict ourselves to complex-valued lattices and algorithms directly
operating on complex lattices rather than the real-valued equivalent.
Operating in the equivalent complex baseband domain of signals where
the signal point lattice is equal to the Gaussian integers, this is a suited
approach.

A.1 Lattices

Let an N × K generator or basis matrix G = [g1, . . . ,gK ] ∈ C
N×K ,

which consists of K ∈ N linearly independent basis vectors gk ∈ C
N ,

N ≥ K, N ∈ N, be given. A complex-valued N -dimensional lattice of
rank K is defined as

Λ(G) def= {λ = Gu | u ∈ G
K} . (A.1)

For real lattices, G has to be real and G = Z + jZ is replaced by Z.

96
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A.1. Lattices 97

If the particular generator matrix is immaterial, we simply write Λ

for the lattice.
A complex lattice is a discrete set of points in C

N which has group
structure under ordinary vector addition [153, 31]. It is spanned by the
basis vectors gk, i.e., the lattice points λ ∈ Λ are (Gaussian) integer
linear combinations of the basis vectors and the set {g1, . . . ,gK} is
the basis of the lattice.1 Noteworthy, any lattice contains the origin
λ = 0 = [0, . . . , 0]T as a valid point.

To each lattice point a Voronoi region can be associated. It is de-
fined as the set of points in C

N , which are closer to the considered
point than to any other lattice point. Here, we are only interested in
the Voronoi region w.r.t. the origin and have (ties have to be resolved
in a suited way; || · ||: Euclidean norm)

RV(Λ) def= {x ∈ C | ||x|| ≤ ||x − λ||, ∀λ ∈ Λ \ {0}} . (A.2)

Given a lattice Λ with generator matrix G, the dual lattice, denoted
by Λ⊥, is the set of vectors λ⊥ ∈ C

N in the linear span of the columns
gk of G, such that the scalar product between any lattice point from
Λ and Λ⊥ is an (Gaussian) integer; mathematically

Λ⊥ def= {λ⊥ ∈ span(G) | ∀λ ∈ Λ , λHλ⊥ ∈ G} . (A.3)

The generator matrix G⊥ of the dual lattice is given by [16]

G⊥ def= G(GHG)−1 = (G+)H , (A.4)

where G+ def= (GHG)−1
GH is the Moore–Penrose left inverse of G.

1We will often use the terms generator/basis matrix and basis synonymously,
knowing that the matrix, contrary to the set, assumes as particular ordering of the
basis vectors.
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98 Lattices, Lattice Problems, and Algorithms

A.2 Lattice Problems

Given a lattice Λ (via its generator matrix G), fundamental problems
can be stated. First, one is often interested in the question which lattice
point is closest (w.r.t. Euclidean norm) to a given (non-lattice) point
x ∈ C

N , the so-called “closest point problem”. This is also denoted as
“lattice quantization” and is mathematically defined as

λ̂ = QΛ(x) def= argmin
λ∈Λ

||x − λ||2 . (A.5)

Next, the knowledge about the shortest vector (except 0) of a lattice
Λ, called “shortest vector problem”, is sometimes of importance. We
have

λshortest
def= argmin

λ∈Λ\{0}
||λ||2 . (A.6)

An important fact about lattices is that the generator matrix is
not unique. Let Z ∈ G

K×K with | det(Z)| = 1, i.e., Z is a so-called
integer unimodular matrix. Then, {Zu | u ∈ G

K} = G
K , or in short

ZG
K = G

K . Graphically, the transformation of the (Gaussian) integers
G by a unimodular matrix is identical to the (Gaussian) integers itself.
Consequently, we have

{Gu | u ∈ G
K} = {GZu | u ∈ G

K} , (A.7)

hence G and GZ span the same lattice.
This property of lattices gives rise to some important problems,

most prominently the question of a “suited” or “desired” basis (“lat-
tice basis reduction” or “shortest basis problem” (SBP)). In contrast,
the “shortest independent vector problem” (SIVP) asks for K linearly
independent vectors from the lattice such that the longest is as short
as possible; its stronger form is called “successive minima problem”
(SMP).

Subsequently, we define these problems and briefly review suited
algorithms for solving these problems. To this end, we first have to
define the Gram–Schmidt orthogonalization.
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A.3. Gram–Schmidt Orthogonalization 99

A.3 Gram–Schmidt Orthogonalization

Any N ×K matrix G, N ≥ K, can be decomposed into the form [53]

G = G◦R , (A.8)

where G◦ = [g◦
1, . . . ,g

◦
K ] ∈ C

N×K has orthogonal columns g◦
k, i.e.,

(g◦
i )

Hg◦
j = 0, i 6= j, and R ∈ C

K×K is upper triangular with unit main
diagonal.2

The process of calculating G◦ and R from G is called Gram–
Schmidt procedure.3 It operates successively and calculates

g◦
k = gk −

k−1∑

l=1

rl,k g◦
l , k = 1, . . . ,K , (A.9)

where the (upper triangular) coefficients of R are given by

rl,k =
(g◦
l )

Hg◦
k

||g◦
l ||2

, l = 1, . . . , k . (A.10)

A.4 Shortest Independent Vector Problem

In some situations, K linearly independent vectors from the lattice
Λ are required. However, usually not arbitrary vectors are accepted—
typically they should be as short as possible, meaning their norms
should be small. For that we require a reference what small is. This
is given by Minkowski’s successive minima.

A.4.1 Successive Minima

The kth successive minimum ρk(Λ), k = 1, . . . ,K, of Λ is defined as
[77]

ρk(Λ) def= inf {̺k | dim (span ( Λ ∩ B(̺k) )) = k} , (A.11)

2Normalizing g◦
k to unit norm and incorporating the respective normalization

factors into R by scaling of the row, a QR decomposition is obtained (G◦ would
then be a unitary matrix).

3In the decomposition (A.8) a reordering of the columns of G (by a permutation
matrix) may be allowed; this adds a pivoting step in the Gram–Schmidt procedure.
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where B(̺) def= {x ∈ C
N | ||x|| ≤ ̺} is the N -dimensional ball (over C)

with radius ̺ centered at the origin and dim(span(·)) denotes the di-
mension of the linear span of the given set of vectors. Graphically, ρk is
the smallest radius for which the ball B contains k linearly independent
lattice vectors.

A.4.2 Shortest Independent Vector Problem (SIVP)

Given a lattice Λ of rank K, the SIVP asks for a set G = {λ1, . . . ,λK}
of K linearly independent lattice vectors with ||λk|| ≤ ||λκ||, k < κ,
such that the maximal norm of these vectors is not larger than the Kth

minimum. Mathematically, the SIVP reads

||λk|| ≤ ρK(Λ) , k = 1, . . . ,K , (A.12)

or, since λK cannot be shorter than the Kth successive minimum,

max
k=1,...,K

||λk|| = ρK(Λ) . (A.13)

A.4.3 Successive Minima Problem (SMP)

In the SIVP, the norms of the shorter vectors are irrelevant. Contrary,
we now request a set G = {λ1, . . . ,λK} of K linearly independent
lattice vectors, such that the norm of the kth vector is identical to the
kth minimum. Mathematically, the SMP reads

||λk|| = ρk(Λ) , k = 1, . . . ,K . (A.14)

Apparently, the SMP is a stronger form and provides a particular solu-
tion to the SIVP.

A.4.4 Algorithms

Efficient algorithms for solving not only the real-valued but also the
complex-valued version of the (C)SMP (and hence the (C)SIVP) have
been proposed, e.g., [23, 42, 137].
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A.5 Lattice Basis Reduction

In a number of applications, given a lattice Λ(G), a generator matrix
Gr = [gr,1, . . . ,gr,K ] is requested, which spans the same lattice, i.e.,
Λ(Gr) = Λ(G), and where the basis vectors are as short as possible.
This problem is called shortest basis problem (SBP) or lattice basis
reduction; the matrix Gr represents a reduced basis.

Noteworthy, the columns gk of the generator matrix G as well as
the columns gr,k of the reduced basis Gr are valid lattice points (gk =

Gek and gr,k = Grek, where ek is the kth unit vector). Hence, Gr =

{gr,1, . . . ,gr,K} is a set of K short independent vectors from Λ. As this
set has to be a basis for Λ, the SBP is a stronger form of the SIVP.

Moreover, as gk, gr,k ∈ Λ, the gks can be written as (Gaussian)
integer linear combinations of the reduced basis vectors gr,k, in partic-
ular

G = GrZ , (A.15)

where Z ∈ GK×K and (see Sec. A.2) | det(Z)| = 1 (unimodular matrix),
such that Z describes a change of basis. Noteworthy, as Z is a unimod-
ular (Gaussian) integer matrix, its inverse Z−1 = adj(Z)

det(Z) = adj(Z),
where adj(Z) is the adjugate or adjunct of Z [53], is also a unimodular
integer matrix.

Still, the question what is meant by “short” basis, i.e., what is
accepted as valid solution, is open. Defining specific criteria on the basis
vectors, different types of lattice reduction and related algorithms are
obtained.

Subsequently, let the generator matrix G = [g1, . . . ,gK ] ∈ C
N×K

be given and let G◦ = [g◦
1, . . . ,g

◦
K ] be the Gram–Schmidt orthogonal

basis to G with upper triangular matrix R.

A.5.1 Lenstra–Lenstra–Lovász Reduction

The most famous lattice-reduction algorithm is the one presented by
Lenstra, Lenstra, and Lovász, in short LLL algorithm [78]. Its practica-
bility stems from conveniently defined criteria when a basis is said to
be LLL-reduced. The initial algorithm treated real-valued lattices—an
extension to complex-valued lattices was given in [48].
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The basis/generator matrix is called (C)LLL-reduced with parame-
ter 0.5 < δ ≤ 1, if [48]

i) Size Reduction: for 1 ≤ l < k ≤ K it holds

|Re{rl,k}| ≤ 0.5 and |Im{rl,k}| ≤ 0.5 , (A.16)

ii) Lovász Condition: for k = 2, . . . ,K it holds

||g◦
k||2 ≥ (δ − |rk−1,k|2)||g◦

k−1||2 . (A.17)

The parameter δ controls the trade-off between “quality” of the LLL
reduction and computational complexity.

For δ < 1, the respective algorithm has polynomial-time complexity;
usually, as in [78], δ = 0.75 is chosen. For δ = 1, sometimes denoted as
optimal LLL reduction, convergence is still guaranteed mathematically
[4].

Meanwhile a lot of variants and generalizations of the LLL algo-
rithm exist, e.g., the deep LLL [107], the Siegel algorithm [112], or
fixed-point implementations [83], to name only a few.

A.5.2 Hermite–Korkine–Zolotareff (HKZ) Reduction

The criterion of the Hermite–Korkine–Zolotareff (HKZ) reduction [76]
is stronger than the LLL criterion. Now, the basis/generator matrix is
called (C)HKZ-reduced, if [77, 72]

i) Size Reduction as in (A.16) is fulfilled

ii) Shortest Vector in Sublattice: for k = 1, . . . ,K, g◦
k is a short-

est vector in the lattice Λ(G(k)) of rank K − k + 1 and di-
mension N , which is spanned by the generator matrix G(k) =

[0, . . . , 0,g◦
k, . . . ,g

◦
K ]R

To find an HKZ-reduced basis, K times a shortest vector problem
(A.6) has to be solved. Even though the shortest vector problem itself
is NP-hard, efficient practical algorithms for HKZ reduction exist, e.g.,
[155, 72].
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A.5.3 Minkowski Reduction

One of the strongest forms of lattice reduction is that by Minkowski
(Mk). Here, the basis/generator matrix is called Mk-reduced, if [86, 155]

for k = 1, . . . ,K, gk is the shortest vector among all possible
lattice points g′

k, for which the set {g1,g2, . . . ,gk−1,g
′
k} can be

extended to a basis of the lattice Λ(G)

Mk reduction can be seen as a stronger version of SMP; not only
the K shortest independent lattice vectors have to be found, but they
additionally have to establish a basis, i.e., the absolute value of the
determinant of the associated change-of-base matrix Z has to be one.

As for the HKZ reduction, the Mk reduction is NP-hard in prin-
ciple. Nevertheless, efficient practical algorithms for HKZ reduction
exist,4 e.g., [155], or that in [42] with an additional constraint on the
determinant.

A.6 Algorithms Adapted to LRA/IF

Beside these mentioned generic algorithms which can immediately be
used in LRA/IF schemes, algorithms specialized to the situation in
LRA/IF schemes (i.e., combining the factorization criterion according
to Sec. 3.3 with a desired reduction strategy) have been proposed in the
literature. See, e.g., the brute-force search in [154], the algorithms in [88,
103, 102], the suboptimal algorithms in [135, 136], or the distributed
approach in [62] to name only a few.

Moreover, a huge amount of variants of lattice reductions algorithms
exists. See, e.g., the boosted KZ/LLL [85], the improved KZ reduction
[138], LLL with deep insertions [107], Seysen’s algorithm for joint re-
duction of a lattice and its dual lattice [111] (cf. also [147]), the parallel
LLL [83], and the Siegel [112] and reverse Siegel algorithms [7].

4The algorithms in [155] are described for the real-valued case. In order to adapt
them to the complex case, the calculation of the greatest common divisor (gcd) of
real numbers has to be generalized to Gaussian integers [116].
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B

Derivation of the Equalization Matrices

for LRA DFE

The calculation of the optimal matrices for classical and LRA decision-
feedback equalization are collected in this appendix. To enlighten the
similarities and differences between the conventional and the LRA case,
the BLAST approach is reviewed in detail and the equivalence of the
“dual-lattice approach” (cf. Sec. 2.2.2) is proven. Based on this knowl-
edge, the optimal factorization approach for LRA DFE is derived from
general estimation principles and a generalized version of the dual lat-
tice approach is worked out. First, in order to improve readability of
the derivations, some properties of the Moore–Penrose inverse are pre-
sented.

104
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B.1 Properties of the Moore–Penrose Inverse

It is well-known that given an n × m, n ≥ m, matrix M over C with
full (column) rank m, the Moore–Penrose (left) inverse is given by

M + def= (MHM)−1
MH . (B.1)

For this specific type of pseudoinverse we have M +M = Im, where
Im is the m×m identity matrix, and (M+)+ = M .

Let the QR decomposition of the matrix be M = QR, where Q ∈
C
n×m has orthonormal columns, i.e., QHQ = Im, and R is m×m full-

rank upper triangular with real-valued main-diagonal elements. Then,
the Moore–Penrose inverse can be written as

M+ def= (RHQHQR)−1
RHQH

= R−1QH . (B.2)

We are interested in the Moore–Penrose inverse of partitioned ma-
trices. To this end, assume that Ma = [M1 M2], with M 1 ∈ C

n×m,
M2 ∈ C

n×p, and m + p ≤ n, is a column-wise partitioned matrix of
full (column) rank m+ p. Its QR decomposition reads

[M 1 M 2] = [Q1 Q2]

[
R1 S

0 R2

]
. (B.3)

Applying the inverse of partitioned matrices [63], the Moore–Penrose
inverse of Ma is given by

M+
a = [M1 M2]+

=

[
R1 S

0 R2

]−1

[Q1 Q2]H

=

[
R−1

1 −R−1
1 SR−1

2

0 R−1
2

] [
QH

1

QH
2

]

=

[
R−1

1 QH
1 − R−1

1 SR−1
2 QH

2

R−1
2 QH

2

]
. (B.4)

Moreover, since M 1 = Q1R1, we have

M+
1 = R−1

1 QH

1 . (B.5)
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Via (B.4) and (B.5) a relation between the pseudoinverses of Ma

(the entire matrix) and M1 (the left block) is readily established. Using
QH

2 Q1 = 0 ([Q1 Q2] has orthonormal columns), we have

M+
a (M+

1 )H =

[
R−1

1 −R−1
1 SR−1

2

0 R−1
2

] [
QH

1

QH
2

]
(R−1

1 QH

1 )H

=

[
R−1

1 −R−1
1 SR−1

2

0 R−1
2

] [
R−H

1

0

]

=

[
R−1

1 R−H
1

0

]
. (B.6)

This means that the last p rows of M +
a (the pseudoinverses of the entire

matrix) are orthogonal to the rows of M+
1 (the pseudoinverses of the

left block).
We are specifically interested in the case p = 1; here the partition

is given by Ma = [M m], with M ∈ C
n×m and m ∈ C

n×1 (column
vector). The QR decomposition of M a is now written as

[M m] = [Q q]

[
R r

0 r

]
, (B.7)

where [Q q] has orthonormal columns, r is a column vector of dimen-
sion m and r is a real-valued scalar. The Moore–Penrose inverses (B.5)
and (B.4) specialize to

M+ = R−1QH , (B.8)

M+
a = [M m]+

=

[
R−1QH − r−1R−1rqH

r−1qH

]
. (B.9)

The Hermitian of the Moore–Penrose inverse of M a and M thus read

(M+)H = QR−H , (B.10)

(M+
a )H =

[
QR−H − r−1qrHR−H r−1q

]

def= [X x] , (B.11)

with obvious definitions of the matrix X ∈ C
n×m and the vector x ∈

C
n.
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We are interested in the relation between (M+
a )H and (M +)H. To

this end, we perform a Gram–Schmidt orthogonalization of the last
column in (M +

a )H (which is x = r−1q) against all other columns (given
by X). Obeying qHq = 1 and qHQ = 0, this leads to

Y
def= X − x · xHX

xHx

=
(
I − xxH

xHx

)
X

=
(
I − qqH

qHq

)
X

=
(
I − qqH

)(
QR−H − r−1qrHR−H

)

= QR−H − qqHQR−H − r−1qrHR−H + r−1qqHqrHR−H

= QR−H − r−1qrHR−H + r−1qrHR−H

= QR−H . (B.12)

Comparing with (B.10), it can be deduced that hat Y = (M+)H.
Hence, given the inverse of the entire matrix Ma, the inverse of the
reduced (last columns deleted) matrix can be simply obtained by a
Gram–Schmidt orthogonalization step.

Of course, this procedure can be repeated. Starting with the Moore–
Penrose inverse of a given matrix, the pseudoinverse of the matrices
where the last column is successively deleted can simply be obtained
by repeated Gram–Schmidt orthogonalization.
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B.2 Classical DFE and the BLAST Approach

In DFE data is successively estimated taking already decoded sym-
bols into account. In contrast to DFE over the temporal dimension, in
the MIMO case detection/decoding can be done in an optimized or-
der. Moreover, the combination with channel coding is easily possible:
the codewords are arranged over the temporal (horizontal) direction
whereas cancellation of interference is done over the users (vertical di-
rection), cf. the H-BLAST approach [46, 47]. As discussed in Chapter 2,
the equalization part can hence be optimized as for the uncoded case.

The detection order (sorting of the users) is represented via a per-
mutation matrix P of dimension K; it contains a single one in each
row and each column and we have the relation P −1 = P H = P T. The
MIMO input/output relation (2.12) is then written as

y = Ha + n = HP −1P a + n
def= HS ǎ + n , (B.13)

with the matrix S
def= P −1 characterizing the reordering (sorting) of the

columns of the channel matrix and1

ǎ
def= P a (B.14)

is the vector of permuted data symbols. The symbols of ǎ are de-
tected/decoded in the order l = K, K − 1, . . . , 1. Without loss of
generality, we assume white noise, i.e.,

Φnn
def= E{nnH} = σ2

nI ; (B.15)

colored noise can be transformed into white noise using a whitening
filter, which is incorporated into the channel matrix [31]. The data
symbols are also assumed to be uncorrelated,

Φaa
def= E{aaH} = σ2

aI , (B.16)

and zero-mean.

1In order to distinguish between the action of the permutation matrix P and,
later on, that of the integer matrix Z, we denote the permuted data vector as ǎ,
whereas the vector of integer linear combinations is denoted as ā.

Full text available at: http://dx.doi.org/10.1561/0100000100



B.2. Classical DFE and the BLAST Approach 109
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F DFE

ỹ
P −1

P −1

Figure B.1: Receiver structures according to the V-BLAST philosophy (top) and
conventional DFE (bottom).

Fig. B.1 shows the receiver structures as used in the derivation of
the V-BLAST system [144] (top) and the conventional DFE structure
(bottom); both are equivalent [51] and only differ in the point where
the interference is canceled (prior to or after the feedforward filter).

The derivations in [46, 144] combine the calculation of the required
filter matrices and the detection into a single algorithm. However, when
dealing with block-fading channels, the matrices have to be calculated
only once per channel realization and then detection is done over the
time step using these matrices. We explain the algorithms in the way
that they result in the feedforward matrix FDFE, feedback matrix B,
and the optimal detection order described by the permutation matrix
P .

Subsequently the detection step (iteration number) is indicated by
the superscript ·(l); the permuted data vector is partitioned into ǎ =[

ǎu

ǎd

]
, where the upper part, ǎu, corresponds to the still undetected

symbols and the lower part, ǎd, to the already detected part. The
same splitting is done for all other matrices, e.g., H(l) = HS(l) =

[Hu Hd], where the reordered channel matrix in step l is partitioned
such that the left/right columns correspond to the not yet/already
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decoded symbols, respectively. Moreover, as introduced in Chapter 2,
we employ augmented matrices and vectors, e.g., (ζ = σ2

n/σ
2
a)

H =

[
H√
ζI

]
, y =

[
y

0

]
(B.17)

are the augmented channel matrix and the augmented receive vector,
respectively.

B.2.1 Derivation of BLAST

The V-BLAST strategy for optimal successive detection can be sum-
marized as follows [144]:

In iteration l, the permuted data symbols ǎl+1, . . . , ǎK , i.e., the
elements of the vector ǎd, are already detected; their influence
on the received signal is canceled.

The linear estimators for the remaining symbols ǎ1, . . . , ǎl, i.e.,
the elements of the vector ǎu, and the corresponding estimation
variances are calculated.

Only the symbol which can be detected most reliably (having the
smallest estimation variance) is actually detected in iteration l.

The estimation vector for the best symbol gives the lth row of
the feedforward matrix FDFE; the channel matrix is reordered
accordingly (sorting S).

The procedure is repeated from l = K through l = 1.

We now take a closer look at the calculated MMSE estimators and
the induced sorting. We do this using the principle of mathematical
induction.

Base Case

The optimal linear MMSE estimator in the initial step (l = K) is the
same as for linear equalization (cf. (2.16), (2.18)). The MMSE estimate
is given by

ã(K)
u = (HHH + ζI)−1

HH y ,
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=
(
[HH

√
ζI]

[
H√
ζI

] )−1
[HH

√
ζI]

[
y

0

]

= H+
y ,

i.e., the feedforward filter F (K)
u = H+ is given by the pseudoinverse

of the augmented channel matrix. The mean-squared error (MSE), i.e.,
the variance of the estimation error ñ

def= ǎ(K)
u − a, is given by the

main-diagonal elements of [105, 31]

Φññ
def= E{ññH}
= σ2

n (HHH)−1 . (B.18)

The smallest main-diagonal element of Φññ is identified; the index k(K)
b

gives the user to be detected first (the user with the smallest noise

enhancement). The (k
(K)
b )th row of F (K)

u gives the last, i.e., Kth, row
of the final feedforward matrix F . The new channel matrix H(K−1)

is obtained from H by moving the (k
(K)
b )th column to the end (i.e.,

rightmost position). This reordering is recorded in the permutation

matrix; the (k
(K)
b )th column of S(K) = I is moved to the end.

Induction Step

In iteration l the current augmented channel matrix H(l) is sorted such
that the columns corresponding to the already decoded users form the
right part and the columns corresponding to the not yet decoded users
form the left part, i.e.,2

H(l) = HS(l) = [Hu Hd] =

[[
Hu√
ζSu

] [
Hd√
ζSd

]]
. (B.19)

The contributions of the already detected users are canceled, leading
to

ỹ(l) def= y − Hdǎd . (B.20)

Here we define the augmented receive vector where interference is can-
celed as

ỹ
(l) def= y − Hdǎd =

[
ỹ(l)

√
ζSdǎd

]
. (B.21)

2For readability the superscript ·(l) for the iteration is omitted for the partial
matrices and the partial vectors.
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Then, the MMSE estimate for the remaining users is calculated. Since
SH

u Su = I and SH
u Sd = 0 (parts of a permutation matrix), the MMSE

estimate reads

ã(l)
u = (HH

u Hu + ζI)−1
HH

u ỹ(l)

=
(
[HH

u

√
ζSH

u ]

[
Hu√
ζSu

] )−1
[HH

u

√
ζSH

u ]

[
ỹ(l)

√
ζSdǎd

]

= H+
u ỹ

(l) , (B.22)

hence the receive matrix F (l)
u = H+

u in step l is the pseudoinverse of
the left part of the sorted augmented channel matrix. The MSE is given
by the main-diagonal elements of the error covariance matrix

Φññ = σ2
n (HH

u Hu)−1 (B.23)

which can be written as

Φññ = σ2
n (HH

u Hu)−1HH

u · Hu(HH

u Hu)−1

= σ2
n H+

u (H+
u )H

= σ2
n (F (l)

u )HF (l)
u . (B.24)

Since the main-diagonal elements of the last product are equal to the
row norms of F (l), the noise enhancement (or, when multiplied with σ2

n,
the mean-squared error) is given by the row norms of the augmented
receive matrix.

Among the remaining users, the user (index k(l)
b ) with the currently

lowest noise enhancement is decoded at the present step l. The (k
(l)
b )th

row of F (l)
u gives the lth row of F .

Due to the specific calculation of F (l)
u we have

F (l)
u H(l) = (Hu)+ [Hu Hd]

= [I X] (B.25)

where X remains unspecified for the moment. Moreover, since equal-
ization is only done w.r.t. the not yet detected users we can write

F
(l)
d H(l) = [0 Rd] , (B.26)
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where Rd is an upper triangular matrix with unit main diagonal. Hence,
in total

[
F (l)

u

F
(l)
d

]
HS(l) =

[
I X

0 Rd

]
. (B.27)

Note that F (l)
u is the pseudoinverse of the left part of the matrix H(l)

and the rows of F
(l)
d are rows of the pseudoinverse of the entire matrix

H(l). Hence, according to (B.6), the rows of F (l)
u are orthogonal to that

of F
(l)
d . In the final step, we arrive at

FHS = R , (B.28)

where F has orthogonal rows (white noise remains white while filtering
with the DFE feedforward filter) and R is an upper triangular matrix.

Thus, over the iterations the V-BLAST algorithm induces a (sorted)
QR decomposition of the channel matrix. Defining O = F+ and obey-
ing S = P −1 = P H, we have

HP H = OR , (B.29)

Moving the subtraction point from the input of the feedforward
filter to its output, we moreover see that the feedback matrix in the
DFE structure is given by B = R as

ã = F ỹ

= F(y − HSǎ)

= Fy − Rǎ . (B.30)

The notation B − I instead of B in the block diagrams indicates that
the cancellation of symbol l from its own data stream l is neither re-
quired nor can it be carried out in a causal way; hence the unit-gain
main diagonal elements of B = R are eliminated for the feedback cal-
culation.
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B.2.2 Dual-Lattice Approach

The V-BLAST procedure results in the optimal (w.r.t. worst-link per-
formance [144]) detection order and corresponding feedforward and
feedback matrices. However, it requires a large effort as repeatedly
pseudoinverses have to be calculated. Hence, low-complexity variants
which also give the optimum solution, have been proposed. The most
prominent are the “square root” algorithm in [55], the recursive rank-
one update algorithm in [5], and the “dual-lattice” approach in [82].
Although not identical, they share the philosophy of avoiding the re-
peated calculations of pseudoinverses via low-complexity updates on
an initial solution.

In this subsection, in view of the subsequent generalization to LRA
schemes, we re-derive the dual-lattice approach and prove that it leads
to the same results as the V-BLAST procedure.

In the dual-lattice approach, the Hermitian of the pseudoinverse of
the augmented channel matrix is calculated

(H+)H = ((HHH)−1HH)H = H(HHH)−1 (B.31)

and a sorted (with pivoting) Gram–Schmidt procedure (from l = K to
l = 1) is carried out leading to (cf. [38])

(H+)H
S = QL , (B.32)

where Q has orthogonal columns, L is lower triangular with unit main-
diagonal, and S is a permutation matrix. Since operations are carried
out on (H+)H and this matrix is the generator matrix G⊥ of the dual
lattice to that spanned by H (cf. Sec. A.1), this procedure is usually
denoted as “dual-lattice approach”.

We now show by mathematical induction that these matrices are
related to those of the V-BLAST procedure as QH = F and L−H = R

and that the same permutation matrix S is obtained.

Base Case

For l = K, the initialization is given by

Q(K) = (H+)H
L(K) = I , (B.33)
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and pivoting is done according to the column of Q(K) with the least
norm. The column norms are the main-diagonal elements of

(Q(K))HQ(K) = H+(H+)H

= (HHH)−1HH · H(HHH)−1

= (HHH)−1 . (B.34)

Hence we can conclude that for the base case the V-BLAST approach
and the dual-lattice approach use the same matrices, i.e., (Q(K))H =

F (K)
u , and find the same minimum as criteria (B.18) and (B.34) are

identical. Hence, the last row in F will be identical to the rightmost
column in Q (which is never changed during the GSO process) and the
same permutation matrices are present.

Induction Step

In iteration l, since a GSO is performed, we have

(H+)HS(l) = Q(l)L(l)

= [Qu Qd]

[
I 0

X Ld

]
, (B.35)

where the columns of Qd are orthogonal to each other, Ld is lower
triangular with unit main diagonal, and X is not specified for the
moment.

Assume that Fd = QH
d and the same sorting S(l) has been found up

to now in both approaches. Then the sorted augmented channel matrix
H(l) = HS(l) = [Hu Hd] is the same as in V-BLAST. Moreover,
since in V-BLAST the next estimation matrix is Fu = H+

u and, as
shown in Sec. B.1, a Gram–Schmidt orthogonalization on Q results in
Qu = (H+

u )H, we conclude that Fu = QH
u .

Since the column of Qu with the least norm is selected next and
this is identical to choosing the row in Fu with the least norm (cf.
(B.24), in both approaches the next user to be decoded is the same.
Hence, the same next permutation matrix is obtained and the same
row is appended to QH

d and Fd, respectively.
Consequently, due to induction, both approaches lead to the same

sorting matrix S and feedforward matrix F = QH, respectively, and
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also to the same feedback matrix B = L−H, which can be seen when
solving (B.32) for L−H as

L−H (B.32)
=

(
Q+(H+)H

S
)−H

S−1=SH

=
(
H+(Q+)H

)+
S

= QHHS
(B.29)

= B . (B.36)

In summary, the optimal equalization matrices for conventional
DFE obeying the BLAST approach can be efficiently calculated by a
conventional Gram–Schmidt orthogonalization procedure with suited
pivoting, cf. [38]. Thereby, the Hermitian pseudoinverse of the aug-
mented channel matrix, i.e., (H+)H, can also be calculated applying a
Gram–Schmidt procedure to obtain the QR decomposition (B.2).
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B.3 LRA DFE and Adapted Lattice Reduction Algorithm

We now turn to LRA DFE and the question how to calculate the feed-
forward matrix F , feedback matrix B, and integer matrix Z for optimal
performance. As LRA DFE (cf. Chapter 3) can be seen as a generaliza-
tion of conventional DFE where the permutation matrix P is replaced
by the integer matrix Z, the derivations, in some sense, are generaliza-
tions of that given above. As before, we start with the main principles
from estimation theory and then show how to efficiently solve the re-
sulting factorization task.

B.3.1 Derivation of “LRA-BLAST”

For the subsequent derivations, Fig. B.1 is still valid if P is replaced
by the more general integer matrix Z, cf. also Fig. 5.1. As in (3.1) we
define the reduced channel matrix W and its augmented version by W

by

W
def= H Z−1 (B.37)

W
def= HZ−1 =

[
W√
ζZ−1

]
=

[
W√
ζV

]
, (B.38)

with

V
def= Z−1 . (B.39)

The Hermitian of the integer matrix is written as column-wise parti-
tioned, i.e., ZH = [z1, . . . ,zK ].

As already observed in Chapter 3, the integer linear combinations
ā are correlated; the correlation matrix is given by

Φāā
def= E{āāH} = σ2

aZZH = σ2
aV

−1V −H ; (B.40)

this is one of the main differences to conventional DFE.

We now take a detailed look on the calculation of the optimal
MMSE estimators and the respective integer matrix. We do this again
using the principle of mathematical induction.
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Base Case

The optimal linear MMSE estimator in the initial step is the same as in
LRA linear equalization (cf. (3.3) and (3.6)). Assume for the moment
that the integer matrix Z is fixed and hence the correlations are known.
In case of white noise, i.e., Φnn = σ2

nI, the MMSE estimate is then
given by [105]

ǎ(K)
u =

(
W HΦ−1

nnW + Φāā

)−1
W HΦ−1

nn y

=
(
W HW + ζZ−HZ−1

)−1
W H y

=
(
WHW

)−1
WH

y

= Z
(
HHH

)−1
HH

y

= ZH+
y , (B.41)

where again the augmented receive vector from (B.17) has been used.
The MMSE estimator is hence equal to F (K)

u = ZH+. The MSE, i.e.,
the variance of the estimation error ñ

def= ǎ(K)
u − ā, is given by the

main-diagonal elements of (cf. (3.6))

Φññ = σ2
n

(
WHW

)−1

= σ2
n Z

(
HHH

)−1
ZH . (B.42)

In contrast to LRA linear equalization, in the current step we are
not interested in the entire matrix Z, but in an integer vector, as in
LRA DFE only a single data stream is detected in each iteration. Since
detection is done in sequence l = K through l = 1, in the base case we
may choose zK , i.e., build the best integer linear combination out of
the K parallel data streams, such that3

zH

K

(
HHH

)−1
zK = zH

KH+(H+)HzK

= ||(H+)HzK ||2 (B.43)

is minimized over the choice of the integer vector zK . This is a shortest
vector problem (cf. Appendix A).

3Please note that
(
HHH

)−1
=
(
HHH

)−1
HHH

(
HHH

)−1
= H+(H+)H.
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Having a solution, zH
KH+ gives the last row of the final feedforward

matrix F and zK is the last column of the Hermitian of the final integer
matrix. Both items are never changed in the subsequent steps. However,
as will be discussed later in detail, we might have some constraint on
the integer matrix Z. Starting with Z = I and updating only the last
columns might destroy this constraint. Hence, whenever a new column
is forced in ZH (row in Z) the not yet fixed columns (z1 through zl−1

in iteration l) have to be updated adequately. The same holds for the
inverse of Z, i.e., V . Subsequently, we will discuss how this is done in
detail.

Induction Step

In iteration l, the linear combinations āl+1, . . . , āK have already been
detected; the symbols ā1, . . . , āl still have to be determined with
the aid of the already available knowledge. To this end, we partition
the matrices according to the part corresponding to the already de-
tected/decoded linear combinations (right part “d”) and that corre-
sponding to the not yet detected/decoded linear combinations (left part
“u”); in particular we have

ZH = [ Zu Zd ] , V = [ V u V d ] , W = [ W u W d ] (B.44)

and

W(l) = H(Z(l))−1 = [Wu Wd] =

[[
W u√
ζV u

] [
W d√
ζV d

]]
. (B.45)

The respective partitioning also is done for the vector of integer linear
combinations, i.e., ā =

[
āu

ād

]
.

As already emphasized, in LRA DFE correlated data is successively
estimated. Assume for the moment that the integer matrix Z is fixed
and hence the correlations4 (covariance matrix Φāā, cf. (B.40)) of the
data are known. Having the observation y = W ā + n, the optimal
procedure is as follows:

A) As in conventional DFE, the influence of the already detected
symbols is canceled from the receive vector y. This is done by remod-

4We assume zero-mean data; offsets are eliminated.
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ulating the vector ˆ̄ad of decisions via W d and calculating

ỹ(l) def= y − W d
ˆ̄ad . (B.46)

B) The symbols of the unknown part āu = [ā1, . . . , āl]
T are cor-

related with the symbols of the known part ād = [āl+1, . . . , āK ]T.
This p-priori knowledge has to be taken into account in the estimation
process, expressed as a known mean µu|d of āu. This mean and the
covariance matrix of the remaining error eād = ād − µu|d are obtained
as follows.

The correlation matrix (B.40) may be decomposed according to

Φāā =

[
Φuu Φud

Φdu Φdd

]
. (B.47)

On the one hand, the inverse is given by [63] (the elements “∗” are
irrelevant here)

Φ−1
āā =

[
Φ−1

uu|d −Φ−1
uu|dΦudΦ−1

dd

∗ ∗

]
; (B.48)

with Φuu|d = Φuu−ΦudΦ−1
dd Φdu (the Schur complement of Φdd in Φāā).

On the other hand, we can write

Φ−1
āā =

1

σ2
a

Z−HZ−1 =
1

σ2
a

V HV

=
1

σ2
a

[
V H

uV u V H
u V d

V H
dV u V H

d V d

]
. (B.49)

A comparison of (B.48) and (B.49) reveals that

Φ−1
uu|d =

1

σ2
a

V H

u V u (B.50)

−Φ−1
uu|dΦudΦ−1

dd =
1

σ2
a

V H

u V d . (B.51)

Using these correspondences, the optimal linear estimator for āu

using ād only (ignoring the receive vector y) reads [105]

µu|d = ΦudΦ−1
dd ād

= −(V H

u V u)−1(V H

u V d)−1
ād , (B.52)
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and the covariance matrix of the error eād = µu|d − ād calculates to

Φuu|d = Φuu − ΦudΦ−1
dd Φdu

= σ2
a(V

H

u V u)−1 . (B.53)

C) Now, the optimal linear MMSE estimator for āu utilizing the
knowledge from the receive vector y and the prediction calculated from
ād (these decisions are assumed to be perfectly known) can be given.
For white noise (Φnn = σ2

nI, cf. (B.15); ζ = σ2
n/σ

2
a), it reads [105]

˜̄au =
(
W H

u Φ−1
nnW u + Φ−1

uu|d

)−1
W H

u Φ−1
nn (ỹ − W uµu|d) + µu|d

=
(
W H

u W u + ζV H

u V u

)−1
W H

u (y − W dād − W uµu|d) + µu|d

=
(
W H

u W u + ζV H

u V u

)−1
W H

u y

−
(
W H

u W u + ζV H

u V u

)−1
W H

u W d ād

−
((

W H

u W u + ζV H

u V u

)−1
W H

u W u − I

)
µu|d

=
(
W H

u W u + ζV H

u V u

)−1
W H

u y

−
(
W H

u W u + ζV H

u V u

)−1
W H

u W d ād

−
(
W H

u W u + ζV H

u V u

)−1
ζV H

u V u (V H

u V u)−1(V H

u V d)−1
ād

=
(
W H

u W u + ζV H

u V u

)−1
W H

u y

−
(
W H

u W u + ζV H

u V u

)−1 (
W H

u W d + ζV H

u V d

)
ād

=
(
WH

u Wu

)−1
WH

u
︸ ︷︷ ︸

F
(l)
u

y −
(
WH

u Wu

)−1
WH

u Wd
︸ ︷︷ ︸

B
(l)
u

ād , (B.54)

and the correlation matrix of the estimation error ñ
def= ǎ(K)

u − āu, is
given by [105]

Φee =
(
W H

u Φ−1
nnW u + Φ−1

uu|d

)−1

= σ2
n

(
W H

u W u + ζV H

u V u

)−1

= σ2
n

(
WH

u Wu

)−1
. (B.55)
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From these results, we see the following important fact: having al-
ready fixed the integer matrix Z (and hence the parts V u and V d),
the optimal receive matrix is given by F (l)

u = W+
u , i.e., the pseu-

doinverse of the left part of the reduced augmented channel matrix.
Since this matrix contains V u as lower part, the correlations are taken
correctly into account. Moreover, the prediction from the already de-
tected/decoded linear combinations is subsumed into the feedback ma-
trix B(l)

u = W+
u Wd. Hence, in summary, using augmented matrices

where the lower part reflects the correlations of the symbols, the MMSE
estimator and the correlation matrix of the estimation error are simply
given by the respective (pseudo)inverse (cf. also [40]).

However, up to now we have assumed a given integer matrix Z

which also determines V u and V d. For best performance, and since
in the current iteration step l we are only interested in a single linear
combination, the l present combinations can further be combined by
integer scaling factors. Defining zu,l = [z1, . . . , zl]

T, the estimate is
calculated from (B.54) as

˜̄al = zH

u,l
˜̄au

= zH

u,lW
+
u y − zH

u,lW
+
u Wd ād , (B.56)

and the estimation variance amounts to

σ2
e = σ2

n zH

u,l

(
WH

u Wu

)−1
zu,l

= σ2
n ||(W+

u )Hzu,l||2 . (B.57)

Thus, the optimal next integer vector—which is of dimension l and
an increment to the already present integer combinations—is given by
a shortest vector problem in the lattice spanned by (W+

u )H (the dual
lattice to that spanned by Wu). The matrix Z has to be updated
adequately (details are given below). The lth row of the feedforward
matrix F and the feedback matrix B are given by

zH

u,lW
+
u , [0, . . . , 0︸ ︷︷ ︸

l − 1 zeros

, 1,zH

u,lW
+
u Wd] , (B.58)

respectively.
Due to the specific calculation of F (l)

u we have

FuW(l) = (Wu)+[Wu Wd]
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= [I X] (B.59)

where X still has to be specified. Moreover, since equalization is done
only w.r.t. the not yet detected linear combinations

F
(l)
d W(l) = [0 Rd] , (B.60)

where Rd is an upper triangular matrix with unit main diagonal. Hence,
taking (B.45) into account, in total

[
Fu

Fd

]
H(Z(l))−1 =

[
I X

0 Rd

]
. (B.61)

According to (B.6), the rows of F
(l)
d are orthogonal to that of F (l)

u .
In the final step, we arrive at

FHZ−1 = R , (B.62)

where F has orthogonal rows and R is an upper triangular matrix.
Thus, over the iterations, the procedure induces a QR decomposition
of the channel matrix multiplied by the inverse of the integer matrix.

B.3.2 Dual-Lattice Approach

Similar to the V-BLAST algorithm, the above procedure results in
the optimal (w.r.t. worst-link performance [117]) integer matrix and
corresponding feedforward and feedback matrices. However, it requires
a large effort as repeatedly pseudoinverses have to be calculated. As
above, a dual-lattice approach is very well suited to overcome this prob-
lem.

In the dual-lattice approach, the Hermitian of the pseudoinverse of
the augmented channel matrix is calculated

(H+)H = ((HHH)−1HH)H = H(HHH)−1 (B.63)

and a generalized version of the Gram–Schmidt procedure (cf. [38]) is
carried out leading to

(H+)H
ZH = QL , (B.64)

where Q has orthogonal columns, L is lower triangular with unit main-
diagonal, and Z is an integer matrix with ZH = [z1, . . . ,zK ]. We now
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show by mathematical induction that these matrices are related to that
of the above direct procedure as QH = F and L−H = R and that the
same integer matrix Z is obtained.

Base Case

For l = K, the initialization is given by

Q(K) = (H+)H , Z(K) = I , L(K) = I , (B.65)

and we search for an integer vector zK , such that Q(K)zK has the
smallest norm. This (squared) norm is given by

||Q(K)zK ||2 = zH

KH+(H+)H
zK , (B.66)

which is the same criterion as in (B.43). Hence the same integer vector
as in the direct approach is found—which is the shortest vector in the
lattice spanned by (H+)H, which is the dual lattice to that spanned by
H (cf. Sec. A.1), hence the denomination “dual-lattice approach”.

The integer vector zH
K is recorded as the last column of ZH and

the last column of Q is updated to (H+)H
zK . Both columns are never

changed during the following process. As will be explained below, the
other columns of ZH and Q might also have to be updated at this
point. Finally, a Gram–Schmidt orthogonalization of the last column
of Q against the others is performed. Thereby, the last row of L is
generated.

Induction Step

In iteration l, since GSO is performed, we have

(H+)H(ZH)(l) = Q(l)L(l)

= [Qu Qd]

[
I 0

X Ld

]
(B.67)

where the columns of Qd are orthogonal to each other and to that of
Qu, Ld is lower triangular with unit main diagonal, and X needs not
to be specified.

Assume (induction) that Fd = (Qd)H and the Hermitian of the
integer matrix, ZH, are the same in both approaches. Then, the reduced
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augmented channel matrix W(l) = H(Z(l))−1 = [Wu Wd] is the same
as in the direct approach. Moreover, since in the direct approach the
next estimation matrix is Fu = W+

u and, as shown in Sec. B.1, a
Gram–Schmidt orthogonalization on Q results in Qu = (W+

u )H, we
conclude that Fu = QH

u .
In classical DFE the column with the smallest norm in Qu is se-

lected at this step. In contrast, in LRA DFE, the next best integer
linear combination of the rows of Qu is determined. This is identical to
searching for the shortest vector in the lattice spanned by this matrix,
i.e.,

zs = argmin
z
u,l

∈Gl

||Quzu,l||2 , (B.68)

which is the same problem as (B.57) and hence the same integer vector
zu,l = [z1, . . . , zl]

T will be found.
Consequently, due to induction, both approaches lead to the same

integer matrix Z and feedforward matrix F = QH, respectively, and
also to the same feedback matrix B = L−H, which can be seen when
solving (B.67) for L−H

L−H (B.67)
=

(
Q+(H+)H

ZH
)−H

=
(
H+(Q+)H

)+
Z−1

= QHHZ−1

(B.62)
= B . (B.69)

Finally, we have to discuss how Z and Q are updated in iteration
l. The main aim is to place qs

def= Quzs as lth column in Q. In order
that (B.67) is still satisfied, ZH has to be changed, too, and zu,l cannot
be placed directly in the integer matrix. Instead, the update can be
written as5

(H+)H (ZH)(l) U (l)

︸ ︷︷ ︸
(ZH)(l−1)

= Q(l) U (l)

︸ ︷︷ ︸
Q(l−1)

(U (l))−1 L(l)U (l)

︸ ︷︷ ︸
L(l−1)

, (B.70)

5Since the left multiplication with (U (l))−1 acts only on the upper l rows of L

which, however, have not been calculated yet, the right multiplication with U (l) is
sufficient for the update of L, cf. also [38].
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U (l) =

[
U (l)

u 0

0 I

]
, (B.71)where

with l × l part U (l)
u , acts on the left l columns.

In order that ZH remains integer, U (l) and thus U (l)
u have to be

integer as well. Moreover, U (l) and thus U (l)
u have to be unimodular,

i.e., | det(U (l)
u )| = 1. This can be seen from the following fact: In the

next iteration (number l− 1) the shortest vector in the lattice spanned
by the left l − l columns of Q(l−1) = Q(l) U (l) has to be determined.
If the update is not unimodular, a sublattice of Q(l) would be present.
This, however, poses restrictions for the further steps as a shortest
vector in a thinned lattice is searched which may result in a longer
vector and thus poorer performance. Hence, in LRA DFE unimodular
updates should be performed, finally leading in an optimal way to a
unimodular integer matrix. This fact that in LRA DFE we can restrict
ourselves to unimodular matrices and hence solving a lattice reduction
problem has already been observed in [94], cf. also [117].

Still the update matrix U (l) has to be determined. In [155] a very
efficient strategy for the update (implicitly obtaining U (l)) has been
proposed. The idea is to successively modify adjacent columns such
that after l − 1 steps column l of Q(l) contains the shortest vector
qs = Quzs. In [155] this has been only shown over the integers Z, but
the strategy also applies to the Gaussian integers G and the Eisenstein
integers E since they constitute Euclidean rings [117].

We start6 at u = 1 and successively calculate integers c1 and c2

via the extended Euclidean algorithm [49] such that for the coordinates
zs = [z1, . . . , zl]

T of the shortest vector the equation

c1 zu + c2 zu+1 = g def= gcd(zu, zu+1) , (B.72)

holds, where gcd(·, ·) denotes the greatest common divisor. It is easy
to see that the l × l matrix

U 2,u =




Iu−1 0

Uu,2,u

0 I l−u−1


 , with Uu,2,u =

[
c2 zu/g

−c1 zu+1/g

]

(B.73)

6Since we proceed from l = K to l = 1, the update has to be done from u = 1
to u = l − 1. This is the reverse order as given in [155].
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is unimodular integer and its inverse has the same structure but with
Uu,2,u replaced by the inverse U−1

u,2,u =
[
zu+1/g
c1

−zu/g
c2

]
. Since

Quzs = QuU2,u U −1
2,uzs (B.74)

and

U−1
u,2,u

[
zu
zu−1

]
=

[
zu+1/g −zu/g
c1 c2

] [
zu
zu+1

]
=

[
0

g

]
(B.75)

each application of U2,u forces the next top entry to zero. For the
next iteration zu+1 is set to g (cf. (B.72)). At step u = l − 1 the final
right-hand-side vector is the lth unit vector, hence, column l in Qu

equals the shortest vector. The update matrix in (B.70) then equals
U (l)

u = U2,1 · U2,2 · · · U2,l−1.
In summary, the optimal equalization matrices for LRA DFE can

be calculated by a Gram-Schmidt orthogonalization procedure and a
search for the shortest vector in lattices of successively decreasing di-
mension. Thereby, the complexity is dominated by the shortest vector
algorithm. A more efficient realization can be obtained if (suboptimal,
low-complexity) lattice reduction (e.g., via the LLL algorithm) is ap-
plied as preprocessing.

Noteworthy, the presented dual-lattice approach is equal to the
Hermite–Korkine–Zolotareff (HKZ) reduction algorithm, except that
the size reduction step is not applied [94, 116]. Size reduction operates
on the integer matrix Z and the lower triangular matrix L only. As
for noise enhancement only the column norms of Q are relevant and
this matrix is not touched by size reduction, (almost) no change in
performance7 is caused.

7As size reduction lowers the magnitudes of the entries of L, the magnitudes of
the entries of Z may be increased. This, however, might lead to a somewhat larger
error multiplication in the recovery of the data streams via Z−1.
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Implementation Issues

In this appendix, some practical issues when implementing LRA/IF
equalization schemes are collected. This includes the handling of offsets
usually present in signal constellations and effects due to individual
decoding and signal recovery via the inverse of the integer matrix.

C.1 Signal Constellations

In Chapter 2, the constituent signal constellation A is defined in two
different ways, which both have their theoretical and practical rele-
vance. In (2.1) the constellation is given starting from the underlying
signal-point lattice Λa; from it the constellation is carved out via the
intersection with the Voronoi region of the boundary lattice. This def-
inition focuses on the lattice structure of the constellation but ignores
practical aspects. For example, conventional QAM/ASK constellations
usually do not include the origin as signal point, hence a translate of a
lattice is used as signal-point lattice. In addition, no labeling of signal
points is associated with this definition.
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This shortcoming is resolved with the second definition by specify-
ing a particular mapping (2.7); the constellation is then obtained as

A =
{

M(bm−1 . . . b1b0) | bl ∈ F2, l = 0, . . . ,m− 1
}
. (C.1)

In this definition the offset O to obtain zero-mean constellations is
explicitly given. In Fig. C.1 the generation of a 16QAM constellation
using the mapping (2.7) (M = 16, B = (−1 + j)4 = −4, O = (1 + j)/2)
and in Fig. C.2 the generation of a 32QAM constellation M = 32,
B = (−1 + j)5 = 4 − 4j, O = −1/2) are exemplarily depicted.1

1011

1001

1010

1000

0010 0011 1110 1111

0000 0001 1100 1101

0110 0111

0100 0101

[b3b2b1b0]−1+j

B

−O

A

modB

Figure C.1: Generation of a 16QAM constellation using the mapping (2.7).

In practical systems, especially when dealing with integer linear
combinations, this offset and the actual boundary of the constellation
have to be handled suitably.

1Thereby ties in the rounding to the nearest integer in the definition of modB

are resolved towards −∞ in real and imaginary part. Hence in mod−4(x) = x −
(−4)⌊x (−4)/(| − 4|2)⌉ = x+ 4⌊−x /4⌉ ties are resolved towards +∞.
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Figure C.2: Generation of a 32QAM constellation using the mapping (2.7).

Defining the region (gray bordered in Fig. C.1) induced by the
remainder operation (cf. Appendix D) by

B def=
{

modB(x) | x ∈
{
R, ASK
C, QAM

}
(C.2)

the elements of A in (C.1), hence the transmit symbols, are drawn from

(Λa =
{
Z, ASK
G, QAM

)

a ∈ (Λa ∩ B) −O ⊂ Λa −O . (C.3)
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The receive vector is given as (cf. (2.12) and (3.1))

y = Ha + n

W Za + n , (C.4)

where Z = [ zl,k ] ∈
{

Z
K×K , ASK

G
K×K , QAM

. Since ZΛK
a = ΛK

a , the vector

ā = Za of integer linear combinations of the data symbols is drawn
from

ā = Za ∈ Z(Λa −O)K = ΛK
a −OZ1 , (C.5)

where 1 is the all-ones vector of dimension K. The elements of ā are
thus drawn from the signal-point lattice with an offset determined by
the row sum over the integer matrix Z, i.e.,

āl ∈ ΛK
a −Ol

l = 1, . . . ,K (C.6)with

Ol
def= O

K∑

k=1

zl,k .

When employing LRA/IF linear equalization, the decoders see the
signal

r = Za + ñ = ā + ñ . (C.7)

Hence, when the decoders work on the (non-shifted) lattice Λa (more
precisely, the coding lattice Λc based thereon) the offset Ol has to be
eliminated (by adding Ol) prior to the decoders. The individual offsets
Ol have to be subtracted again at the decoder outputs (the decoders
deliver the codewords in signal space), prior to resolving the integer
interference (cf. Fig. 3.1). This ensures that the inverse mapping sees
the usual zero-mean constellation. Alternatively, since Z−1 OZ1 = O1,
the common offset O has to be subtracted from all symbol estimates
after applying the inverse integer matrix.

Using LRA decision-feedback equalization (cf. Chapter 5), the re-
ceive vector after the feedforward matrix (cf. Fig. 5.1) is given by

r = BZa + ñ = Bā + ñ , (C.8)

where the feedback matrix B is upper triangular with unit main diag-
onal. Decisions are taken successively in sequence l = K, . . . , 1. When
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correct decoding results āℓ, ℓ = l + 1, . . . ,K, are fed back and sub-
tracted from r (via B − I), in step l the signal āl + ñl is the input to
the decoder; hence the same offset Ol as in case of the linear equaliza-
tion is present. In summary, as above, the offsets Ol have to be added
at the input of the decoders and subtracted from the decoding results.

The same considerations are also valid for Eisenstein constellations
generated using the mapping function (2.10). An example for a 27-ary
constellation (M = 27, m = 3, φ = −1+ω, B = φ3 = 3

√
3j) is depicted

in Fig. C.3.

B

000 001 002

010 011 012

020 021

100 102

110 111 112

120 121 122

200 201

210 211 212

221 222

101

220

202

022

[t2t1t0]−1+ω

−O

A

modE

B

Figure C.3: Generation of a 27-ary Eisenstein constellation using the mapping
(2.10).
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C.2 Decoding

One of the main features in LRA/IF equalization is that joint equal-
ization is only performed for the non-integer part W of the channel,
cf. Sec. 3.1. Then, individual, parallel decoding of the K integer lin-
ear combinations takes place, cf. Fig. 3.1. This approach leads to low-
complexity high-performing schemes but also some issues which have
to be kept in mind in practical implementations.

For illustration purpose let us assume real-valued signaling employ-
ing 4ASK per component (user). We expect the offsets of the constel-
lations to be already eliminated, hence the signal points ak are drawn
from the set Z4

def= {0, 1, 2, 3}. Moreover, let K = 2. When plotting
the first component, a1, on the horizontal axis and the second com-
ponent, a2, on the vertical axis, the transmit constellation, all vectors
a =

[
a1

a2

]
∈ Z

2
4, is then given by the 4 by 4 arrangement (resembling

16QAM) depicted on the left-hand side of Fig. C.4.

Let the integer matrix be Z =
[

1
0

1
1

]
. Then the vectors of integer

linear combinations, on which decoding is based, ā = Za ∈ ZZ
2
4, form

the arrangement shown on the left-hand side of Fig. C.4.

a1

ā2

Z

ā1

a2 B

Figure C.4: Action of the integer matrix Z =
[

1
0

1
1

]
on the data vectors a ∈ Z

2
4.

Since individual decoding/detection of these linear combinations is
performed, the actual boundary region of the set of ā is not taken into
account [142]. Consequently, non-valid vectors ˆ̄a outside the boundary
can be delivered. After application of the inverse integer matrix, here
Z−1 = [ 1

0
−1
1 ], these points â are outside the initial boundary B. Hence,

in the final demapping (and encoder inverse) step, these outliers have
to be projected back to the initial constellation. This is illustrated in
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âˆ̄a

a1

a2 B

ā1

ā2

Z−1

Figure C.5: Action of the inverse integer matrix on the decoding result.

Fig. C.5. The set Z2, w.r.t. which (in this illustration) decoding is done
is shown in light gray; the decoding results as the dark bigger point.

In the above example Z was a unimodular matrix, i.e., det(Z) = 1.
Consequently, ZZ

2 = Z
2 and the valid points ā are a compact subset of

Z
2. This changes if det(Z) > 1; then the points ā are taken from a sub-

lattice. This is illustrated in Fig. C.6 for Z =
[

1
−1

1
1

]
. Since det(Z) = 2

the initial lattice is inflated by the factor 2 (and rotated by 45◦) such
that only every other point (checkerboard lattice) is a valid point for
the integer linear combinations ā.

Z

a1

a2 B ā2

ā1

Figure C.6: Action of the integer matrix Z =
[

1
−1

1
1

]
on the data vectors a ∈ Z

2
4.

Now, due to individual decoding of the components, non-valid vec-
tors interlaced between the valid one can be produced, see Fig. C.7.
Since the inverse integer matrix reads Z−1 = [ .5.5

−.5
.5 ] and det(Z−1) = 1

2 ,
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all points are shrunk by the factor 1
2 (and rotated back). As as conse-

quence, the decoding result â is neither a valid point a ∈ Z
2
4 nor even

taken from the lattice Z
2. Again, the final demapping step has to take

this fact into account and perform some suited quantization to the
actual constellation.

ˆ̄a
â

a1

a2 Bā2

ā1

Z−1

Figure C.7: Action of the inverse integer matrix on the decoding result.

Noteworthy, for sufficiently large SNR the probability for decoding
results outside the transformed constellation is very small, but only
asymptotically this effect becomes irrelevant.
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Notation

This monograph uses standard mathematical notation. Scalar variables
are typeset in italic lowercase letter, constants in Roman. Boldface
lowercase letter denote vectors and boldface uppercase letters matrices.

Since the interaction between the real/complex field and finite fields
is one of the key points, throughout the exposition the notation clearly
distinguishes quantities over the real/complex numbers and over finite
fields. The former are typeset in the conventional font (x, x, Z, . . . ),
whereas finite-field variables are typeset in Fraktur font (q, c, Z0, . . . ).

Sets:

Symbol Meaning

N set of natural numbers (including 0)
Z set of integers
G set of Gaussian integers; G = Z + jZ, j2 = −1

R, C real and complex numbers
Fp finite field of cardinality p
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Vectors and Matrices:

Symbol Meaning

x column vector (over C)
x row vector (over C)
q row vector over Fq

X = [xi,j ] matrix with elements xi,j
XT, XH transpose and Hermitian of X

X−1 inverse of X

X−H Hermitian of inverse of X; X−H =(X−1)H =(XH)−1

X+ Moore–Penrose pseudo inverse of X

I Identity matrix
X augmented matrix of X; X = [ X

cI ]

diag(·) diagonal matrix with given elements
det(·) determinant
trace(·) trace

Operators and Functions:

Symbol Meaning

∗ convolution
δ(x) Dirac delta
⊕, ⊙ addition and multiplication over Fp

| · | scalars: absolute value; sets: cardinality
|| · || Euclidean norm
E{·} expectation
⌊x⌋ rounding to the next smaller integer (floor operation)
⌊x⌉ rounding to the nearest integer (ties resolved towards −∞)

remB(x) remainder of x ∈ R w.r.t. B ∈ R;
remB(x) def= x−B⌊x/B⌋

modB(x) modulo w.r.t. B ∈ R or C;
modB(x) def= x−B⌊(xB∗)/|B|2⌉

modE
B(x) modulo w.r.t. the Eisenstein integers

lsbφ(x) lsb of x in the binary expansion w.r.t. φ;
lsbφ(x) = x0 for x = [. . . x2 x1 x0]φ
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Designators:

Symbol Meaning

·̂ estimate
·̄ integer linear combination
·̈ modulo Λb reduced integer linear combination

Mapping Functions:

Symbol Meaning

M mapping of binary information to signal points
ψ mapping from the finite-field elements “0” and “1” to

integers “0” and “1”; ψ(0) = 0 and ψ(1) = 1

φ base of the binary expansion of the signal points
Ψ homomorphism between the arithmetics over the

Gaussian integers modulo Λb and that of the finite
field Fp; Ψ(a) = M−1(modΛb

(a))

Lattices:

Variable Meaning

Λ(G) lattice generated by the generator matrix G

RV(Λ) Voronoi region of Λ (cf. (2.2))
QΛ(x) quantization of x to the nearest (squared Euclidean

distance) point from Λ (cf. (2.6))
modΛb

(x) modulo lattice operation;
modΛb

(x) = x − QΛb
(x)

Λa/Λb lattice partition (decomposition of Λa into the sub-
lattice Λb and its cosets)

|Λa/Λb| depth of lattice partition (number of cosets including
the sublattice)

A + B sum of (finite or infinite) sets A and B;
A + B def= {a+ b | a ∈ A, b ∈ B}
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Constellations and Related Lattices:

Variable Meaning

A signal constellation
M cardinality of A; M = |A|
C lattice code
Λa signal-point lattice
Λb boundary lattice
Λc coding lattice
Λs shaping lattice
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List of Acronyms

Subsequently, the most relevant acronyms used in the monography are
alphabetically listed.

Acronym Meaning

ASK amplitude-shift keying

BC broadcast channel

BLAST Bell Laboratories Layered Space-Time

DFE decision-feedback equalization

GSO Gram–Schmidt orthogonalization

HKZ Hermite–Korkine–Zolotarev

IF integer-forcing

IRA irregular repeat-accumulate

LDPC low-density parity-check

LE linear equalization

LLL Lenstra–Lenstra–Lovász

LLR log-likelihood ratio

LPE linear preequalization

LRA lattice-reduction-aided

140

Full text available at: http://dx.doi.org/10.1561/0100000100



141

Acronym Meaning

MAC multiple-access channel

MIMO multiple-input/multiple-output

Mk Minkowski

MLC multilevel coding

MLD maximum-likelihood detection

MMSE minimum mean-squared error

MMSE-DFE MMSE decision-feedback equalization

MMSE-LE MMSE linear equalization

MSD multistage decoding

pdf probability density function

SBP shortest basis problem

SIC successive interference cancellation

SIVP shortest independent vector problem

SMP successive minima problem

QAM quadrature-amplitude modulation

SNR signal-to-noise ratio

SQRD sorted QR decomposition

RCoF reverse compute-and-forward

THP Tomlinson-Harashima precoding

ZF zero-forcing

ZF-DFE ZF decision-feedback equalization

ZF-LE ZF linear equalization
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