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ABSTRACT
We introduce the concept of “coded computing”, a novel
computing paradigm that utilizes coding theory to effec-
tively inject and leverage data/computation redundancy
to mitigate several fundamental bottlenecks in large-scale
distributed computing, namely communication bandwidth,
straggler’s (i.e., slow or failing nodes) delay, privacy and
security bottlenecks. More specifically, for MapReduce based
distributed computing structures, we propose the “Coded
Distributed Computing” (CDC) scheme, which injects re-
dundant computations across the network in a structured
manner, such that in-network coding opportunities are en-
abled to substantially slash the communication load to shuf-
fle the intermediate computation results. We prove that
CDC achieves the optimal tradeoff between computation
and communication, and demonstrate its impact on a wide
range of distributed computing systems from cloud-based
datacenters to mobile edge/fog computing platforms.

Songze Li and Salman Avestimehr (2020), “Coded Computing: Mitigating Funda-
mental Bottlenecks in Large-Scale Distributed Computing and Machine Learning”,
Foundations and TrendsR© in Communications and Information Theory: Vol. 17, No.
1, pp 1–148. DOI: 10.1561/0100000103.
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Secondly, to alleviate the straggler effect that prolongs the
executions of distributed machine learning algorithms, we
utilize the ideas from error correcting codes to develop
“Polynomial Codes” for computing general matrix algebra,
and “Lagrange Coded Computing” (LCC) for computing
arbitrary multivariate polynomials. The core idea of these
proposed schemes is to apply coding to create redundant
data/computation scattered across the network, such that
completing the overall computation task only requires a sub-
set of the network nodes returning their local computation
results. We demonstrate the optimality of Polynomial Codes
and LCC in minimizing the computation latency, by proving
that they require the least number of nodes to return their
results.
Finally, we illustrate the role of coded computing in pro-
viding security and privacy in distributed computing and
machine learning. In particular, we consider the problems of
secure multiparty computing (MPC) and privacy-preserving
machine learning, and demonstrate how coded computing
can be leveraged to provide efficient solutions to these criti-
cal problems and enable substantial improvements over the
state of the art.
To illustrate the impact of coded computing on real world
applications and systems, we implement the proposed coding
schemes on cloud-based distributed computing systems, and
significantly improve the run-time performance of important
benchmarks including distributed sorting, distributed train-
ing of regression models, and privacy-preserving training for
image classification. Throughout this monograph, we also
highlight numerous open problems and exciting research
directions for future work on coded computing.

Full text available at: http://dx.doi.org/10.1561/0100000103



1
Introduction

Recent years have witnessed a rapid growth of large-scale machine
learning and big data analytics, facilitating the developments of data-
intensive applications like voice/image recognition, real-time mapping
services, autonomous driving, social networks, and augmented/virtual
reality. These applications are supported by cloud infrastructures com-
posed of large datacenters. Within a datacenter, a massive amount of
users’ data are stored distributedly on hundreds of thousands of low-end
commodity servers, and any application of big data analytics has to
be performed in a distributed manner within or across datacenters.
This has motivated the fast development of scalable, interpretable, and
fault-tolerant distributed computing frameworks (see, e.g., [42, 56, 129,
171, 175]) that efficiently utilize the underlying hardware resources (e.g.,
CPUs and GPUs).

In this monograph, we focus on addressing the following three
major performance bottlenecks for large-scale distributed machine learn-
ing/data analytics systems.

• Communication bottleneck: Excessive data shuffling between com-
pute nodes.

3
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4 Introduction

• Straggler bottleneck: Delay of computation caused by slow or
failing compute nodes, which are referred to as stragglers.

• Security bottleneck: Vulnerability to eavesdroppers and attackers.

To alleviate these bottlenecks, we take an unorthodox approach by
employing ideas and techniques from coding theory, and propose the
concept of “coded computing”, whose core spirit is described as follows.

Exploiting coding theory to optimally inject and leverage
data/task redundancy in distributed computing systems, creat-
ing coding opportunities to overcome communication, straggler,
and security bottlenecks.

Guided by this core spirit, we propose and evaluate a rich class
of coded distributed computing frameworks, for computation tasks
ranging from general MapReduce primitives to fundamental polynomial
algebra, and for computation systems ranging from conventional cloud-
based datacenters to emerging (mobile) edge/fog computing systems.
In the rest of this section, we describe our contributions on utilizing
coded computing to mitigate the communication, straggler, and security
bottlenecks, and discuss related works.

Before proceeding with the overview of coded computing, we would
like to also point out an important remark. In order to enable redundant
computations in coded computing, we need to also redundantly store
the datasets over which the computations are done. This would impose
a certain communication and storage cost to the system. However, in
many applications this cost can be ignored due to the following two
reasons. First, in many computation scenarios we are interested in many
computations over the same dataset (e.g., database query, keyword
search, loss calculation in machine learning, etc.). In those cases the
cost of encoding and redundantly storing the dataset in the network
can be amortized over many computations. Second, in many scenarios,
the encoding and storage of the dataset can happen at a different time
than the desired computations. For example, one can use the off-peak

Full text available at: http://dx.doi.org/10.1561/0100000103



1.1. Coding for Bandwidth Reduction 5

network times to properly encode and store the dataset, so as to be
ready for computations during the peak times.

1.1 Coding for Bandwidth Reduction

It is well known that communicating intermediate computation results
(or data shuffling) is one of the major performance bottlenecks for various
distributed computing applications, including self-join [3], TeraSort [58],
and many machine learning algorithms [36]. For instance, in a Facebook’s
Hadoop cluster, it is observed that 33% of the overall job execution
time is spent on data shuffling [36]. Also as is observed in [174], 70% of
the overall job execution time is spent on data shuffling when running a
self-join job on Amazon EC2 clusters. This bottleneck is becoming worse
for training deep neural networks with millions of model parameters
(e.g., ResNet-50 [65]), where partial gradients with millions of entries
are computed at distributed computing nodes and passed across the
network to update the model parameters [33].

Many optimization methods have been proposed to alleviate the
communication bottleneck in distributed computing systems. For ex-
ample, from the algorithm perspective, when the function that reduces
the final result is commutative and associative, it was proposed to
pre-combine intermediate results before data shuffling, cutting off the
amount of data movement [42, 125]. On the other hand, from the
system perspective, optimal flow scheduling across network paths has
been designed to accelerate the data shuffling process [53, 57], and
distributed cache memories were utilized to speed up the data transfer
between consecutive computation stages [49, 173]. Recently, motivated
by the fact that training algorithms exhibit tolerance to precision loss
of intermediate results, a family of lossy compression (or quantization)
algorithms for distributed learning systems have been developed to com-
press the intermediate results (e.g., gradients), and then the compressed
results are communicated to achieve a smaller bandwidth consumption
(see, e.g., [5, 19, 138, 158]).

The above mentioned approaches are designed for specific compu-
tations and network structures, and difficult to generalize to handle
arbitrary computation tasks. To overcome these difficulties, we focus

Full text available at: http://dx.doi.org/10.1561/0100000103



6 Introduction

on a general MapReduce-type distributed computing model [42], and
propose to utilize coding theory to slash the communication bottleneck
in running MapReduce applications. In particular, in this computing
model, each input file is mapped into multiple intermediate values, one
for each of the output functions, and the intermediate values from all
input files for each output function are collected and reduced to the
final output result. For this model, we propose a coded computing
scheme, named “coded distributed computing” (CDC), which trades
extra local computations for more network bandwidth. For some de-
sign parameter r, which is termed as “communication load”, the CDC
scheme places and maps each of the input files on r carefully chosen
distributed computing nodes, injecting r times more local computations.
In return, the redundant computations produce side information at the
nodes, which enable the opportunities to create coded multicast packets
during data shuffling that are simultaneously useful for r nodes. That
is, the CDC scheme trades r times more redundant computations for
an r times reduction in the communication load. Furthermore, we theo-
retically demonstrate that this inversely proportional tradeoff between
computation and communication achieved by CDC is fundamental, i.e.,
for a given computation load, no other schemes can achieve a lower
communication load than that achieved by CDC.

Having proposed the CDC framework and characterized its opti-
mal performance in trading extra computations for communication
bandwidth, we also empirically demonstrate its impact on speeding up
practical workloads. In particular, we integrate the principle of CDC
into the widely used Hadoop sorting benchmark, TeraSort [62], de-
veloping a novel distributed sorting algorithm, named CodedTeraSort.
At a high level, CodedTeraSort imposes structured redundancy in the
input data, enabling in-network coding opportunities to significantly
slash the load of data shuffling, which is a major bottleneck of the
run-time performance of TeraSort. Through extensive experiments
on Amazon EC2 [7] clusters, we demonstrate that CodedTeraSort
achieves 1.97×∼3.39× speedup over TeraSort, for typical settings of
interest. Despite the extra overhead imposed by coding (e.g., genera-
tion of the coding plan, data encoding and decoding), the practically
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1.2. Coding for Straggler Mitigation 7

achieved performance gain approximately matches the gain theoretically
promised by CodedTeraSort.

Beyond the conventional wireline networks in datacenters, we also
introduce the concept of coded computing to tackle the scenarios of
mobile edge/fog computing, where the communication bottleneck is
even more severe due to the low data rate and the large number of
mobile users. In particular, we consider a wireless distributed computing
platform, which is composed of a cluster of mobile users scattered around
the network edge, connected wirelessly through an access point. Each
user has a limited storage and processing capability, and the users have to
collaborate to satisfy their computational needs that require processing
a large dataset. This ad hoc computing model, in contrast to the
centralized cloud computing model, is becoming increasingly common
in the emerging edge computing paradigm for Internet-of-Things (IoT)
applications [28, 32]. For this model, following the principle of the CDC
scheme, we propose a coded wireless distributed computing (CWDC)
scheme that jointly designs the local storage and computation for each
user, and the communication schemes between the users. The CWDC
scheme achieves a constant bandwidth consumption that is independent
of the number of users in the network, which leads to a scalable design of
the platform that can simultaneously accommodate an arbitrary number
of users. Moreover, for a more practically important decentralized setting,
in which each user needs to decide its local storage and computation
independently without knowing the existence of any other participating
users, we extend the CWDC scheme to achieve a bandwidth consumption
that is very close to that of the centralized setting.

1.2 Coding for Straggler Mitigation

Other than data shuffling, another major performance bottleneck of
distributed computing applications is the effect of stragglers. That is,
the execution time of a computation consisting of multiple parallel tasks
is limited by the slowest task run on the straggling processor. These
stragglers significantly slow down the overall computations, and have
been widely observed in distributed computing systems (see, e.g., [8, 41,
172]). For instance, it was experimentally demonstrated in [172] that

Full text available at: http://dx.doi.org/10.1561/0100000103



8 Introduction

this straggler effect can prolong the job execution time by as much as
five times.

Conventionally, in the original open-source implementation of
Hadoop MapReduce [10], the stragglers are constantly detected and
the slow tasks are speculatively restarted on other available nodes. Fol-
lowing this idea of straggler detection, more timely straggler detection
algorithms and better scheduling algorithms have been developed to
further alleviate the straggler effect (see, e.g., [9, 172]). Apart from
straggler detection and speculative restart, another straggler mitigation
technique is to schedule the clones of the same task (see, e.g., [8, 30,
55, 91, 139]). The underlying idea of cloning is to execute redundant
tasks such that the computation can proceed when the results of the
fast-responding clones have returned. Recently, it has been proposed
to utilize error correcting codes for straggler mitigation in distributed
matrix-vector multiplication [47, 89, 96, 106]. The main idea is to par-
tition the data matrix into K batches, and then generate N coded
batches using the maximum-distance-separable (MDS) code [101], and
assign multiplication with each of the coded batches to a worker node.
Benefiting from the “any K of N” property of the MDS code, the
computation can be accomplished as long as any K fastest nodes have
finished their computations, providing the system the robustness to
up to N −K arbitrary stragglers. This coded approach was shown to
significantly outperform the state-of-the-art cloning approaches in strag-
gler mitigation capability, and minimize the the overall computation
latency.

Our first contribution on this topic is the development of optimal
codes, named polynomial codes, to deal with stragglers in distributed
high-dimensional matrix–matrix multiplication. More specifically, we
consider a distributed matrix multiplication problem where we aim to
compute C = A>B from input matrices A and B. The computation is
carried out using a distributed system with a master node and N worker
nodes that can each stores a fixed fraction of A and B respectively
(possibly in a coded manner). For this problem, we aim to design
computation strategies that achieve the minimum possible recovery
threshold, which is defined as the minimum number of workers that the
master needs to wait for in order to compute C. While the prior works,

Full text available at: http://dx.doi.org/10.1561/0100000103



1.2. Coding for Straggler Mitigation 9

Table 1.1: Comparison of recovery threshold for distributed high-dimensional matrix
multiplication, over a system consisting of a master node, and N worker nodes

1D MDS Code Product Code Polynomial Code

Recovery threshold Θ(N) Θ(
√
N) Θ(1)

i.e., the one dimensional MDS code (1D MDS code) in [89], and the
product code in [90] apply MDS codes on the data matrices, they are
sub-optimal in minimizing the recovery threshold. The main novelty
and advantage of the proposed polynomial code is that, by carefully
designing the algebraic structure of the coded storage at each worker,
we create an MDS structure on the intermediate computations, instead
of only the coded data matrices. This allows polynomial code to achieve
order-wise improvement over state of the arts (see Table 1.1). We also
prove the optimality of polynomial code by showing that it achieves
the information-theoretic lower bound on the recovery threshold. As
a by-product, we also prove the optimality of polynomial code under
several other performance metrics considered in previous literature.

Going beyond matrix algebra, we also study the straggler mitigation
strategies for scenarios where the function of interest is an arbitrary
multivariate polynomial of the input dataset. This significantly broadens
the scope of the problem to cover many computations of interest in ma-
chine learning, such as various gradient and loss-function computations
in learning algorithms and tensor algebraic operations (e.g., low-rank
tensor approximation). In particular, we consider a computation task
for which the goal is to compute a function f over a large dataset
X = (X1, . . . , XK) to obtain K outputs Y1 = f(X1), . . . , YK = f(XK).
The computation is carried over a system consisting of a master node
and N worker nodes. Each worker i stores a coded dataset X̃i generated
from X, computes f(X̃i), and sends the obtained result to the master.
The master decodes the output Y1, . . . , YK from the computation results
of the group of the fastest workers.

For this setting, a naive repetition scheme would repeat the compu-
tation for each data block Xk onto N/K workers, yielding a recovery
threshold of N −N/K + 1 = Θ(N). We propose the “Lagrange Coded

Full text available at: http://dx.doi.org/10.1561/0100000103



10 Introduction

Computing” (LCC) framework to minimize the recovery threshold. In
particular, denoting the degree of the function f as deg f , LCC promises
the recovery of all output results at the master as soon as it receives com-
putation results from (K−1) deg f +1 workers. That is, LCC achieves a
recovery threshold of (K−1) deg f+1. Note that the recovery threshold
of LCC is Θ(K), which is independent of the total number of workers N .
Hence, as the network expands (i.e., N grows), compared with the
naive repetition scheme, LCC benefits much more from the abundant
computation resources in alleviating the negative effects caused by slow
or failed nodes, which leads to a much lower computation latency. In
fact, we demonstrate through proving a matching information-theoretic
converse that LCC achieves the minimum possible recovery threshold
among all distributed computing schemes.

The key idea of LCC is to encode the input dataset using the
well-known Lagrange interpolation polynomial, in order to create com-
putation redundancy in a novel coded form across the workers. This
redundancy can then be exploited to provide resiliency to stragglers.
Additionally, we emphasize on the following two salient features of the
data encoding of LCC:

• Universal: The data encoding is oblivious of the output function
f . Therefore, the coded data placement can be performed offline
without knowing which operations will be applied on the data.

• Incremental: When new data become available and coded data
batches need to be updated, we only need to encode the new
data and append them to the previously coded batches, instead
of accessing the entire uncoded data and re-encoding them to
update the coded data.

Finally, we specialize our general theoretical guarantees for LCC
in the context of least-squares linear regression, which is one of the
elemental learning tasks, and demonstrate its performance gain by op-
timally suppressing stragglers. Leveraging the algebraic structure of
gradient computations, several strategies have been developed recently
to exploit data and gradient coding for straggler mitigation in the
training process (see, e.g., [78, 89, 94, 106, 147]). We implement LCC
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1.3. Coding for Security and Privacy 11

for regression on Amazon EC2 clusters, and empirically compare its
performance with the conventional uncoded approaches, and two state-
of-the-art straggler mitigation schemes: gradient coding (GC) [63, 127,
147, 164] and matrix-vector multiplication (MVM) based approaches
[89, 106]. Our experiment results demonstrate that compared with the
uncoded scheme, LCC improves the run-time by 6.79×∼13.43×. Com-
pared with the GC scheme, LCC improves the run-time by 2.36×∼4.29×.
Compared with the MVM scheme, LCC improves the run-time by
1.01×∼12.65×.

1.3 Coding for Security and Privacy

Data privacy has become a major concern in the information age. The
immensity of modern datasets has popularized the use of third-party
cloud services, and as a result, the threat of privacy infringement has
increased dramatically. In order to alleviate this concern, techniques
for private computation are essential [25, 38, 102, 114]. Additionally,
third-party service providers often have an interest in the result of the
computation, and might attempt to alter it for their benefit [23, 24].
In particular, we consider a common and important scenario where a
user wishes to disperse computations over a large network of workers,
subject to the following privacy and security constraints.

• Privacy constraint: Sets of colluding workers cannot infer anything
about the input dataset in the information-theoretic sense.

• Security constraint: The computation must be accomplished suc-
cessfully even if some workers return purposefully erroneous
results.

The problem of secure and private distributed computing has been
studied extensively from various perspectives in the past, mainly within
the scope of secure multiparty computation (MPC) [18, 37, 38, 64]. Most
notably, the celebrated BGW scheme [18], which adapts the Shamir
secret sharing scheme [141] to the realm of computation, has been a
reference point for several decades. The key idea of BGW scheme is to
view any computation task as composed by linear and bilinear functions
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12 Introduction

to be handled in multiple rounds. It applies the Shamir secret sharing
scheme to generate coded data shares with security guarantees, and
computes the function on the coded shares. We generalize the proposed
Lagrange Coded Computing (LCC) scheme designed for straggler miti-
gation purposes to also provide security and privacy guarantees to MPC
systems. Specifically, similarly as before, we consider the problem of
evaluating a multivariate polynomial f over dataset X = (X1, . . . , XK).
We employ a distributed computing network with a master and N

workers, and aim to compute Y1 = f(X1), . . . , YK = f(XK). For this
computing system, we propose modifications to the data encoding and
computation decoding processes of LCC, and demonstrate that LCC
provides a T -private and A-secure computation of f (i.e., keeping the
dataset private amidst collusion of any T workers, and the computation
secure amidst the presence of A Byzantine adversarial workers), for any
pair (T,A) satisfying

N ≥ (K + T − 1) deg f + 2A+ 1. (1.1)
Furthermore, we also demonstrate that LCC achieves an optimal tradeoff
between privacy and security, and requires a minimal amount of added
randomness to preserve privacy.

In the presence of Byzantine workers, a subset of computation re-
sults received at the master can be arbitrarily erroneous. In order to
correctly recover the computation results, during the decoding pro-
cess, instead of mere polynomial interpolation, the master applies an
error correcting decoding algorithm for a Reed–Solomon code of dimen-
sion (K − 1) deg(f) + 1 and length N . This allows LCC to tolerate A
malicious workers as long as 2A ≤ N − (K − 1) deg f − 1. Obtaining
information-theoretic privacy against colluding workers, i.e., keeping
small sets of workers oblivious to the dataset does not require altering
the encoding nor decoding algorithm. However, prior to encoding, the
dataset X is padded by T random elements R1, . . . , RT , where T is the
maximum size of sets of workers that cannot infer anything about X.

We note from (1.1) that when N ≥ (K + T − 1) deg f + 2A+ 1, the
LCC scheme simultaneously achieves

1. Resiliency against N − ((K + T − 1) deg f + 2A + 1) straggler
workers that prolong computations;
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1.3. Coding for Security and Privacy 13

2. Security against A malicious workers, with no computational
restriction, that deliberately send erroneous data in order to affect
the computation for their benefit; and

3. (Information-theoretic) Privacy of the dataset amidst possible
collusion of up to T workers.

We also note that the number of workers the master needs to wait
for does not scale with the total number of workers N , hence the key
property of LCC is that adding one additional worker can increase its
resiliency to stragglers by 1, or increase its robustness to malicious worker
by 1/2, while maintaining the privacy constraint. Hence, this result
essentially extends the well-known optimal scaling of error-correcting
codes (i.e., adding one parity can provide robustness against 1 erasure
or 1/2 error in optimal maximum distance separable codes) to the
distributed computing paradigm. Compared with the state-of-the-art
BGW-based designs, we also show that LCC significantly improves the
storage, communication, and secret-sharing overhead needed for secure
and private multiparty computing (see Table 1.2).

Finally, we will also discuss the problem of privacy-preserving ma-
chine learning. In particular, we consider an application scenario in
which a data-owner (e.g., a hospital) wishes to train a logistic regression
model by offloading the large volume of data (e.g., healthcare records)
and computationally-intensive training tasks (e.g., gradient computa-
tions) to N machines over a cloud platform, while ensuring that any
collusions between T out of N workers do not leak information about

Table 1.2: Comparison between BGW based designs and LCC. The computational
complexity is normalized by that of evaluating f ; randomness, which refers to the
number of random entries used in encoding functions, is normalized by the length
of Xi

BGW LCC

Complexity/worker K 1
Frac. data/worker 1 1/K
Randomness KT T
Min. num. of workers 2T + 1 deg f · (K + T − 1) + 1
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the dataset. We discuss a recently proposed scheme [145], named Cod-
edPrivateML, which leverages coded computing for this problem. More
specifically, we show how one can leverage coded computing to both
provide strong information-theoretic privacy guarantees and enable fast
training by distributing the training computation load effectively across
several workers.

1.4 Related Works

The problem of characterizing the minimum communication for dis-
tributed computing has been previously considered in several settings
in both computer science and information theory literature. In [163],
a basic computing model is proposed, where two parities have x and
y and aim to compute a Boolean function f(x, y) by exchanging the
minimum number of bits between them. Also, the problem of minimiz-
ing the required communication for computing the modulo-two sum
of distributed binary sources with symmetric joint distribution was
introduced in [85]. Following these two seminal works, a wide range of
communication problems in the scope of distributed computing have
been studied (cf. [16, 88, 116, 120, 121, 126]).

The idea of efficiently creating and exploiting coded multicasting
for bandwidth reduction was initially proposed in the context of cache
networks in [104, 105], and extended in [72, 79], where caches pre-
fetch part of the content in a way to enable coding during the content
delivery, minimizing the network traffic. Generally speaking, we can
also view the data shuffling of the considered distributed computing
framework as an instance of the index coding problem [15, 20], in
which a central server aims to design a broadcast message (code) with
minimum length to simultaneously satisfy the requests of all the clients,
given the clients’ side information stored in their local caches. Note
that while a randomized linear network coding approach (see e.g.,
[2, 66, 83]) is sufficient to implement any multicast communication
where messages are intended by all receivers, it is generally sub-optimal
for index coding problems where every client requests different messages.
Although the index coding problem is still open in general, for the
considered distributed computing scenario where we are given the
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flexibility of designing Map computation (thus the flexibility of designing
side information), we can prove tight lower bounds on the minimum
communication loads, demonstrating the optimality of the proposed
Coded Distributed Computing scheme.

We would like to also point out that the main focus of the index
coding problem/literature is to design the optimal delivery scheme for a
given (often fixed) side information at the nodes. On the other hand, the
key novelty of our scheme/framework is the design of side information
(or redundant computations) at the nodes in order to maximize the
index coding (or coded multicast) opportunities. So, while index coding
focused on the design of best delivery strategies, we focus on the design
of best side information structure. In that sense they are complementary
to each other and we can leverage any of the delivery schemes developed
in the index coding literature (e.g., the schemes based on local clique
cover [142], partial and fractional clique cover [1, 20], interference
alignment [107], and many other schemes [11]) in the shuffling phase.

Other than designing coded computing strategies for bandwidth
reduction, there has recently been a surge of interest in developing
coded computing frameworks for straggler mitigation. Initiated in [89],
many following works has focused on designing data encoding strate-
gies, mainly inspired by the concepts of erasure/error correcting codes
for communication systems, to minimize the recovery threshold, in
distributed computation of matrix-vector and matrix–matrix multipli-
cations (e.g., [47, 52, 155, 167, 168]). Coded computing also finds its
application in distributed machine learning, specifically for running
distributed stochastic gradient descent (SGD) on a master/worker ar-
chitecture. For general machine learning tasks, data encoding is not
applicable due to the complicated structure of gradient computation
(e.g., gradients are computed numerically using back-propagation for
deep neural networks). In this scenario, “gradient coding” techniques
[63, 94, 127, 147, 164] have been designed to code across partial gradi-
ents computed from uncoded data, such that the master can recover
the total gradient as the sum of all partial gradients, after receiving the
computation results from the minimum possible number of workers.

The proposed Lagrange Coded Computing (LCC) scheme improves
and expands these prior works in a few aspects: Generality – LCC
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significantly expands the computation class for which we know how to
design coded computing to go beyond linear and bilinear computations
that have so far been the main research focus. In particular, it can
be applied to more general multivariate polynomial computations that
arise in machine learning applications. Universality – once the data has
been coded, any polynomial up to a certain degree can be computed
distributedly via LCC. In other words, data encoding of LCC can
be universally used for any polynomial computation. This is in stark
contrast to previous task-specific coding techniques in the literature.
Security and privacy – other than straggler mitigation, LCC also extends
the application of coded computing to secure and private computing
for general polynomial computations.

The security and privacy issue of distributed computing has been
extensively studied in the literature of secure multiparty computing
(MPC) and secure machine learning/data mining, [18, 37, 38, 64, 68,
102]. As a representative example, we briefly describe the celebrated
BGW MPC scheme [18]. Given data inputs {Xi}Ki=1, the problem is to
compute outputs {f(Xi)}Ki=1 using N workers in a privacy-preserving
manner (i.e., colluding workers cannot infer anything about the dataset
using their local data). To do that, BGW first uses Shamir’s scheme [141]
to encode each Xi as a polynomial Pi(z) = Xi + Zi,1z + · · ·+ Zi,T z

T ,
where Zi,j ’s are i.i.d. uniformly random variables and T is the number
of colluding workers that should be tolerated. Then, each worker `
stores the coded data {Pi(α`)}Ki=1, for a distinct α`, and computes
{f(Pi(α`))}Ki=1. Hence, for each i, each worker provides the evaluation
of the degree-(deg f ·T ) polynomial f(Pi(z)) at a distinct point α`. The
polynomial f(Pi(z)) can be interpolated using computation results from
deg f · T + 1 workers, and f(Xi) is obtained by taking the constant
term of f(Pi(z)).1 In the proposed LCC scheme, instead of hiding
Xi’s individually in data encoding, we code across Xi’s together with
some added random inputs. This gives rise to significant reduction on
storage overhead, computational complexity, and the amount of padded

1It is also possible to use the conventional multi-round BGW, which only requires
N ≥ 2T + 1 workers to ensure T -privacy. However, multiple rounds of computation
and communication (Ω(log(deg f)) rounds) are needed, which further increases its
communication overhead.
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randomness. However, under the same condition, LCC scheme requires
N ≥ deg f · (K + T − 1) + 1 number of workers, which is larger than
that of the BGW scheme. So, in some sense LCC achieves reduction in
storage overhead, computational complexity, and the amount of padded
randomness, at the expense of increasing the number of needed workers
(or reducing the fraction of Byzantine workers that can be tolerated).
We refer to Table 1.2 for a detailed comparison between BGW and
LCC.

Coding techniques have been recently developed to provide security
and privacy guarantees to distributed computing. Specifically, staircase
codes [21] were proposed to combat stragglers in linear computations
(e.g., matrix-vector multiplications) while preserving data privacy, im-
proving the computation latency of the conventional secure computing
schemes based on secret sharing [110, 141]. The proposed LCC scheme
generalizes the staircase codes beyond linear computations. Even for the
linear case, LCC guarantees data privacy against T colluding workers by
introducing less randomness than [21] (T rather than TK/(K−T )). Be-
yond linear computations, a recent work [117] has combined ideas from
the BGW scheme and the polynomial code [167] to form polynomial shar-
ing, a private coded computing scheme for arbitrary matrix polynomials.
However, polynomial sharing inherits the undesired BGW property of
performing a communication round for every bilinear operation in the
polynomial; a feature that drastically reduces communication efficiency,
and is circumvented by the one-shot approach of LCC. DRACO [31]
was proposed as a secure distributed training algorithm that is robust
to Byzantine workers. Since DRACO is designed for general gradient
computations, it employs a blackbox approach, i.e., the coding is applied
on the gradients computed from uncoded data, but not on the data
itself, which is similar to the gradient coding techniques [63, 94, 127,
147, 164] designed primarily for stragglers. For this approach, [31] show
that a 2A+ 1 multiplicative factor of redundant computations is needed
to be robust to A Byzantine workers. For the proposed LCC however,
the blackbox approach is disregarded in favor of an algebraic one, and
consequently, a 2A additive factor suffices.
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