
Coded Computing:
Mitigating Fundamental

Bottlenecks in Large-Scale
Distributed Computing and

Machine Learning

Full text available at: http://dx.doi.org/10.1561/0100000103

Other titles in Foundations and Trends R© in Communications and
Information Theory

Cache Optimization Models and Algorithms
Georgios Paschos, George Iosifidis and Giuseppe Caire
ISBN: 978-1-68083-702-5

Lattice-Reduction-Aided and Integer-Forcing
Equalization: Structures, Criteria, Factorization, and Coding
Robert F. H. Fischer, Sebastian Stern and
Johannes B. Huber
ISBN: 978-1-68083-644-8

Group Testing: An Information Theory Perspective
Matthew Aldridge, Oliver Johnson and Jonathan Scarlett
ISBN: 978-1-68083-596-0

Sparse Regression Codes
Ramji Venkataramanan, Sekhar Tatikonda and Andrew Barron
ISBN: 978-1-68083-580-9

Full text available at: http://dx.doi.org/10.1561/0100000103

Coded Computing: Mitigating
Fundamental Bottlenecks in

Large-Scale Distributed Computing
and Machine Learning

Songze Li
University of Southern California

USA
songzeli@usc.edu

Salman Avestimehr
University of Southern California

USA
avestimehr@ee.usc.edu

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/0100000103

Foundations and Trends R© in Communications and
Information Theory

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

S. Li and S. Avestimehr. Coded Computing: Mitigating Fundamental Bottlenecks in
Large-Scale Distributed Computing and Machine Learning. Foundations and TrendsR©

in Communications and Information Theory, vol. 17, no. 1, pp. 1–148, 2020.

ISBN: 978-1-68083-705-6
c© 2020 S. Li and S. Avestimehr

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise,
without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for internal or personal
use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users
registered with the Copyright Clearance Center (CCC). The ‘services’ for users can be found on
the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system of payment
has been arranged. Authorization does not extend to other kinds of copying, such as that for
general distribution, for advertising or promotional purposes, for creating new collective works,
or for resale. In the rest of the world: Permission to photocopy must be obtained from the
copyright owner. Please apply to now Publishers Inc., PO Box 1024, Hanover, MA 02339, USA;
Tel. +1 781 871 0245; www.nowpublishers.com; sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/0100000103

Foundations and Trends R© in Communications
and Information Theory
Volume 17, Issue 1, 2020

Editorial Board

Editor-in-Chief
Sergio Verdú
Princeton University
United States

Editors

Venkat Anantharam
UC Berkeley

Helmut Bölcske
ETH Zurich

Giuseppe Caire
TU Berlin

Daniel Costello
University of Notre Dame

Anthony Ephremides
University of Maryland

Andrea Goldsmith
Stanford University

Albert Guillen i Fabregas
Pompeu Fabra University

Dongning Guo
Northwestern University

Dave Forney
MIT

Te Sun Han
University of Tokyo

Babak Hassibi
Caltech

Michael Honig
Northwestern University

Tara Javidi
UC San Diego

Ioannis Kontoyiannis
Cambridge University

Gerhard Kramer
TU Munich

Amos Lapidoth
ETH Zurich

Muriel Medard
MIT

Neri Merhav
Technion

David Neuhoff
University of Michigan

Alon Orlitsky
UC San Diego

Yury Polyanskiy
MIT

Vincent Poor
Princeton University

Maxim Raginsky
UIUC

Kannan Ramchandran
UC Berkeley

Igal Sason
Technion

Shlomo Shamai
Technion

Amin Shokrollahi
EPF Lausanne

Yossef Steinberg
Technion

Wojciech Szpankowski
Purdue University

David Tse
Stanford University

Antonia Tulino
Bell Labs

Rüdiger Urbanke
EPF Lausanne

Emanuele Viterbo
Monash University

Tsachy Weissman
Stanford University

Frans Willems
TU Eindhoven

Raymond Yeung
CUHK

Bin Yu
UC Berkeley

Full text available at: http://dx.doi.org/10.1561/0100000103

Editorial Scope
Topics

Foundations and Trends R© in Communications and Information Theory
publishes survey and tutorial articles in the following topics:

• Coded modulation
• Coding theory and practice
• Communication complexity
• Communication system design
• Cryptology and data security
• Data compression
• Data networks
• Demodulation and

Equalization
• Denoising
• Detection and estimation
• Information theory and

statistics
• Information theory and

computer science
• Joint source/channel coding
• Modulation and signal design

• Multiuser detection

• Multiuser information theory

• Optical communication
channels

• Pattern recognition and
learning

• Quantization

• Quantum information
processing

• Rate-distortion theory

• Shannon theory

• Signal processing for
communications

• Source coding

• Storage and recording codes

• Speech and Image Compression

• Wireless Communications

Information for Librarians

Foundations and Trends R© in Communications and Information Theory,
2020, Volume 17, 4 issues. ISSN paper version 1567-2190. ISSN online
version 1567-2328 . Also available as a combined paper and online
subscription.

Full text available at: http://dx.doi.org/10.1561/0100000103

Contents

1 Introduction 3
1.1 Coding for Bandwidth Reduction 5
1.2 Coding for Straggler Mitigation 7
1.3 Coding for Security and Privacy 11
1.4 Related Works . 14

2 Coding for Bandwidth Reduction 18
2.1 A Fundamental Tradeoff Between Computation

and Communication . 20
2.2 Empirical Evaluations of Coded

Distributed Computing 37
2.3 Extension to Wireless Distributed Computing 48
2.4 Related Works and Open Problems 61

3 Coding for Straggler Mitigation 66
3.1 Optimal Coding for Matrix Multiplications 69
3.2 Optimal Coding for Polynomial Evaluations 79
3.3 Related Works and Open Problems 96

4 Coding for Security and Privacy 103
4.1 Secure and Private Multiparty Computing 104
4.2 Privacy Preserving Machine Learning 113

Full text available at: http://dx.doi.org/10.1561/0100000103

4.3 Related Works and Open Problems 122

Acknowledgements 126

Appendices 127

A Proof of Lemma 3.6 128

References 131

Full text available at: http://dx.doi.org/10.1561/0100000103

Coded Computing: Mitigating
Fundamental Bottlenecks in
Large-Scale Distributed Computing
and Machine Learning
Songze Li1 and Salman Avestimehr2

1University of Southern California, USA; songzeli@usc.edu
2University of Southern California, USA; avestimehr@ee.usc.edu

ABSTRACT
We introduce the concept of “coded computing”, a novel
computing paradigm that utilizes coding theory to effec-
tively inject and leverage data/computation redundancy
to mitigate several fundamental bottlenecks in large-scale
distributed computing, namely communication bandwidth,
straggler’s (i.e., slow or failing nodes) delay, privacy and
security bottlenecks. More specifically, for MapReduce based
distributed computing structures, we propose the “Coded
Distributed Computing” (CDC) scheme, which injects re-
dundant computations across the network in a structured
manner, such that in-network coding opportunities are en-
abled to substantially slash the communication load to shuf-
fle the intermediate computation results. We prove that
CDC achieves the optimal tradeoff between computation
and communication, and demonstrate its impact on a wide
range of distributed computing systems from cloud-based
datacenters to mobile edge/fog computing platforms.

Songze Li and Salman Avestimehr (2020), “Coded Computing: Mitigating Funda-
mental Bottlenecks in Large-Scale Distributed Computing and Machine Learning”,
Foundations and TrendsR© in Communications and Information Theory: Vol. 17, No.
1, pp 1–148. DOI: 10.1561/0100000103.

Full text available at: http://dx.doi.org/10.1561/0100000103

2

Secondly, to alleviate the straggler effect that prolongs the
executions of distributed machine learning algorithms, we
utilize the ideas from error correcting codes to develop
“Polynomial Codes” for computing general matrix algebra,
and “Lagrange Coded Computing” (LCC) for computing
arbitrary multivariate polynomials. The core idea of these
proposed schemes is to apply coding to create redundant
data/computation scattered across the network, such that
completing the overall computation task only requires a sub-
set of the network nodes returning their local computation
results. We demonstrate the optimality of Polynomial Codes
and LCC in minimizing the computation latency, by proving
that they require the least number of nodes to return their
results.
Finally, we illustrate the role of coded computing in pro-
viding security and privacy in distributed computing and
machine learning. In particular, we consider the problems of
secure multiparty computing (MPC) and privacy-preserving
machine learning, and demonstrate how coded computing
can be leveraged to provide efficient solutions to these criti-
cal problems and enable substantial improvements over the
state of the art.
To illustrate the impact of coded computing on real world
applications and systems, we implement the proposed coding
schemes on cloud-based distributed computing systems, and
significantly improve the run-time performance of important
benchmarks including distributed sorting, distributed train-
ing of regression models, and privacy-preserving training for
image classification. Throughout this monograph, we also
highlight numerous open problems and exciting research
directions for future work on coded computing.

Full text available at: http://dx.doi.org/10.1561/0100000103

1
Introduction

Recent years have witnessed a rapid growth of large-scale machine
learning and big data analytics, facilitating the developments of data-
intensive applications like voice/image recognition, real-time mapping
services, autonomous driving, social networks, and augmented/virtual
reality. These applications are supported by cloud infrastructures com-
posed of large datacenters. Within a datacenter, a massive amount of
users’ data are stored distributedly on hundreds of thousands of low-end
commodity servers, and any application of big data analytics has to
be performed in a distributed manner within or across datacenters.
This has motivated the fast development of scalable, interpretable, and
fault-tolerant distributed computing frameworks (see, e.g., [42, 56, 129,
171, 175]) that efficiently utilize the underlying hardware resources (e.g.,
CPUs and GPUs).

In this monograph, we focus on addressing the following three
major performance bottlenecks for large-scale distributed machine learn-
ing/data analytics systems.

• Communication bottleneck: Excessive data shuffling between com-
pute nodes.

3

Full text available at: http://dx.doi.org/10.1561/0100000103

4 Introduction

• Straggler bottleneck: Delay of computation caused by slow or
failing compute nodes, which are referred to as stragglers.

• Security bottleneck: Vulnerability to eavesdroppers and attackers.

To alleviate these bottlenecks, we take an unorthodox approach by
employing ideas and techniques from coding theory, and propose the
concept of “coded computing”, whose core spirit is described as follows.

Exploiting coding theory to optimally inject and leverage
data/task redundancy in distributed computing systems, creat-
ing coding opportunities to overcome communication, straggler,
and security bottlenecks.

Guided by this core spirit, we propose and evaluate a rich class
of coded distributed computing frameworks, for computation tasks
ranging from general MapReduce primitives to fundamental polynomial
algebra, and for computation systems ranging from conventional cloud-
based datacenters to emerging (mobile) edge/fog computing systems.
In the rest of this section, we describe our contributions on utilizing
coded computing to mitigate the communication, straggler, and security
bottlenecks, and discuss related works.

Before proceeding with the overview of coded computing, we would
like to also point out an important remark. In order to enable redundant
computations in coded computing, we need to also redundantly store
the datasets over which the computations are done. This would impose
a certain communication and storage cost to the system. However, in
many applications this cost can be ignored due to the following two
reasons. First, in many computation scenarios we are interested in many
computations over the same dataset (e.g., database query, keyword
search, loss calculation in machine learning, etc.). In those cases the
cost of encoding and redundantly storing the dataset in the network
can be amortized over many computations. Second, in many scenarios,
the encoding and storage of the dataset can happen at a different time
than the desired computations. For example, one can use the off-peak

Full text available at: http://dx.doi.org/10.1561/0100000103

1.1. Coding for Bandwidth Reduction 5

network times to properly encode and store the dataset, so as to be
ready for computations during the peak times.

1.1 Coding for Bandwidth Reduction

It is well known that communicating intermediate computation results
(or data shuffling) is one of the major performance bottlenecks for various
distributed computing applications, including self-join [3], TeraSort [58],
and many machine learning algorithms [36]. For instance, in a Facebook’s
Hadoop cluster, it is observed that 33% of the overall job execution
time is spent on data shuffling [36]. Also as is observed in [174], 70% of
the overall job execution time is spent on data shuffling when running a
self-join job on Amazon EC2 clusters. This bottleneck is becoming worse
for training deep neural networks with millions of model parameters
(e.g., ResNet-50 [65]), where partial gradients with millions of entries
are computed at distributed computing nodes and passed across the
network to update the model parameters [33].

Many optimization methods have been proposed to alleviate the
communication bottleneck in distributed computing systems. For ex-
ample, from the algorithm perspective, when the function that reduces
the final result is commutative and associative, it was proposed to
pre-combine intermediate results before data shuffling, cutting off the
amount of data movement [42, 125]. On the other hand, from the
system perspective, optimal flow scheduling across network paths has
been designed to accelerate the data shuffling process [53, 57], and
distributed cache memories were utilized to speed up the data transfer
between consecutive computation stages [49, 173]. Recently, motivated
by the fact that training algorithms exhibit tolerance to precision loss
of intermediate results, a family of lossy compression (or quantization)
algorithms for distributed learning systems have been developed to com-
press the intermediate results (e.g., gradients), and then the compressed
results are communicated to achieve a smaller bandwidth consumption
(see, e.g., [5, 19, 138, 158]).

The above mentioned approaches are designed for specific compu-
tations and network structures, and difficult to generalize to handle
arbitrary computation tasks. To overcome these difficulties, we focus

Full text available at: http://dx.doi.org/10.1561/0100000103

6 Introduction

on a general MapReduce-type distributed computing model [42], and
propose to utilize coding theory to slash the communication bottleneck
in running MapReduce applications. In particular, in this computing
model, each input file is mapped into multiple intermediate values, one
for each of the output functions, and the intermediate values from all
input files for each output function are collected and reduced to the
final output result. For this model, we propose a coded computing
scheme, named “coded distributed computing” (CDC), which trades
extra local computations for more network bandwidth. For some de-
sign parameter r, which is termed as “communication load”, the CDC
scheme places and maps each of the input files on r carefully chosen
distributed computing nodes, injecting r times more local computations.
In return, the redundant computations produce side information at the
nodes, which enable the opportunities to create coded multicast packets
during data shuffling that are simultaneously useful for r nodes. That
is, the CDC scheme trades r times more redundant computations for
an r times reduction in the communication load. Furthermore, we theo-
retically demonstrate that this inversely proportional tradeoff between
computation and communication achieved by CDC is fundamental, i.e.,
for a given computation load, no other schemes can achieve a lower
communication load than that achieved by CDC.

Having proposed the CDC framework and characterized its opti-
mal performance in trading extra computations for communication
bandwidth, we also empirically demonstrate its impact on speeding up
practical workloads. In particular, we integrate the principle of CDC
into the widely used Hadoop sorting benchmark, TeraSort [62], de-
veloping a novel distributed sorting algorithm, named CodedTeraSort.
At a high level, CodedTeraSort imposes structured redundancy in the
input data, enabling in-network coding opportunities to significantly
slash the load of data shuffling, which is a major bottleneck of the
run-time performance of TeraSort. Through extensive experiments
on Amazon EC2 [7] clusters, we demonstrate that CodedTeraSort
achieves 1.97×∼3.39× speedup over TeraSort, for typical settings of
interest. Despite the extra overhead imposed by coding (e.g., genera-
tion of the coding plan, data encoding and decoding), the practically

Full text available at: http://dx.doi.org/10.1561/0100000103

1.2. Coding for Straggler Mitigation 7

achieved performance gain approximately matches the gain theoretically
promised by CodedTeraSort.

Beyond the conventional wireline networks in datacenters, we also
introduce the concept of coded computing to tackle the scenarios of
mobile edge/fog computing, where the communication bottleneck is
even more severe due to the low data rate and the large number of
mobile users. In particular, we consider a wireless distributed computing
platform, which is composed of a cluster of mobile users scattered around
the network edge, connected wirelessly through an access point. Each
user has a limited storage and processing capability, and the users have to
collaborate to satisfy their computational needs that require processing
a large dataset. This ad hoc computing model, in contrast to the
centralized cloud computing model, is becoming increasingly common
in the emerging edge computing paradigm for Internet-of-Things (IoT)
applications [28, 32]. For this model, following the principle of the CDC
scheme, we propose a coded wireless distributed computing (CWDC)
scheme that jointly designs the local storage and computation for each
user, and the communication schemes between the users. The CWDC
scheme achieves a constant bandwidth consumption that is independent
of the number of users in the network, which leads to a scalable design of
the platform that can simultaneously accommodate an arbitrary number
of users. Moreover, for a more practically important decentralized setting,
in which each user needs to decide its local storage and computation
independently without knowing the existence of any other participating
users, we extend the CWDC scheme to achieve a bandwidth consumption
that is very close to that of the centralized setting.

1.2 Coding for Straggler Mitigation

Other than data shuffling, another major performance bottleneck of
distributed computing applications is the effect of stragglers. That is,
the execution time of a computation consisting of multiple parallel tasks
is limited by the slowest task run on the straggling processor. These
stragglers significantly slow down the overall computations, and have
been widely observed in distributed computing systems (see, e.g., [8, 41,
172]). For instance, it was experimentally demonstrated in [172] that

Full text available at: http://dx.doi.org/10.1561/0100000103

8 Introduction

this straggler effect can prolong the job execution time by as much as
five times.

Conventionally, in the original open-source implementation of
Hadoop MapReduce [10], the stragglers are constantly detected and
the slow tasks are speculatively restarted on other available nodes. Fol-
lowing this idea of straggler detection, more timely straggler detection
algorithms and better scheduling algorithms have been developed to
further alleviate the straggler effect (see, e.g., [9, 172]). Apart from
straggler detection and speculative restart, another straggler mitigation
technique is to schedule the clones of the same task (see, e.g., [8, 30,
55, 91, 139]). The underlying idea of cloning is to execute redundant
tasks such that the computation can proceed when the results of the
fast-responding clones have returned. Recently, it has been proposed
to utilize error correcting codes for straggler mitigation in distributed
matrix-vector multiplication [47, 89, 96, 106]. The main idea is to par-
tition the data matrix into K batches, and then generate N coded
batches using the maximum-distance-separable (MDS) code [101], and
assign multiplication with each of the coded batches to a worker node.
Benefiting from the “any K of N” property of the MDS code, the
computation can be accomplished as long as any K fastest nodes have
finished their computations, providing the system the robustness to
up to N −K arbitrary stragglers. This coded approach was shown to
significantly outperform the state-of-the-art cloning approaches in strag-
gler mitigation capability, and minimize the the overall computation
latency.

Our first contribution on this topic is the development of optimal
codes, named polynomial codes, to deal with stragglers in distributed
high-dimensional matrix–matrix multiplication. More specifically, we
consider a distributed matrix multiplication problem where we aim to
compute C = A>B from input matrices A and B. The computation is
carried out using a distributed system with a master node and N worker
nodes that can each stores a fixed fraction of A and B respectively
(possibly in a coded manner). For this problem, we aim to design
computation strategies that achieve the minimum possible recovery
threshold, which is defined as the minimum number of workers that the
master needs to wait for in order to compute C. While the prior works,

Full text available at: http://dx.doi.org/10.1561/0100000103

1.2. Coding for Straggler Mitigation 9

Table 1.1: Comparison of recovery threshold for distributed high-dimensional matrix
multiplication, over a system consisting of a master node, and N worker nodes

1D MDS Code Product Code Polynomial Code

Recovery threshold Θ(N) Θ(
√
N) Θ(1)

i.e., the one dimensional MDS code (1D MDS code) in [89], and the
product code in [90] apply MDS codes on the data matrices, they are
sub-optimal in minimizing the recovery threshold. The main novelty
and advantage of the proposed polynomial code is that, by carefully
designing the algebraic structure of the coded storage at each worker,
we create an MDS structure on the intermediate computations, instead
of only the coded data matrices. This allows polynomial code to achieve
order-wise improvement over state of the arts (see Table 1.1). We also
prove the optimality of polynomial code by showing that it achieves
the information-theoretic lower bound on the recovery threshold. As
a by-product, we also prove the optimality of polynomial code under
several other performance metrics considered in previous literature.

Going beyond matrix algebra, we also study the straggler mitigation
strategies for scenarios where the function of interest is an arbitrary
multivariate polynomial of the input dataset. This significantly broadens
the scope of the problem to cover many computations of interest in ma-
chine learning, such as various gradient and loss-function computations
in learning algorithms and tensor algebraic operations (e.g., low-rank
tensor approximation). In particular, we consider a computation task
for which the goal is to compute a function f over a large dataset
X = (X1, . . . , XK) to obtain K outputs Y1 = f(X1), . . . , YK = f(XK).
The computation is carried over a system consisting of a master node
and N worker nodes. Each worker i stores a coded dataset X̃i generated
from X, computes f(X̃i), and sends the obtained result to the master.
The master decodes the output Y1, . . . , YK from the computation results
of the group of the fastest workers.

For this setting, a naive repetition scheme would repeat the compu-
tation for each data block Xk onto N/K workers, yielding a recovery
threshold of N −N/K + 1 = Θ(N). We propose the “Lagrange Coded

Full text available at: http://dx.doi.org/10.1561/0100000103

10 Introduction

Computing” (LCC) framework to minimize the recovery threshold. In
particular, denoting the degree of the function f as deg f , LCC promises
the recovery of all output results at the master as soon as it receives com-
putation results from (K−1) deg f +1 workers. That is, LCC achieves a
recovery threshold of (K−1) deg f+1. Note that the recovery threshold
of LCC is Θ(K), which is independent of the total number of workers N .
Hence, as the network expands (i.e., N grows), compared with the
naive repetition scheme, LCC benefits much more from the abundant
computation resources in alleviating the negative effects caused by slow
or failed nodes, which leads to a much lower computation latency. In
fact, we demonstrate through proving a matching information-theoretic
converse that LCC achieves the minimum possible recovery threshold
among all distributed computing schemes.

The key idea of LCC is to encode the input dataset using the
well-known Lagrange interpolation polynomial, in order to create com-
putation redundancy in a novel coded form across the workers. This
redundancy can then be exploited to provide resiliency to stragglers.
Additionally, we emphasize on the following two salient features of the
data encoding of LCC:

• Universal: The data encoding is oblivious of the output function
f . Therefore, the coded data placement can be performed offline
without knowing which operations will be applied on the data.

• Incremental: When new data become available and coded data
batches need to be updated, we only need to encode the new
data and append them to the previously coded batches, instead
of accessing the entire uncoded data and re-encoding them to
update the coded data.

Finally, we specialize our general theoretical guarantees for LCC
in the context of least-squares linear regression, which is one of the
elemental learning tasks, and demonstrate its performance gain by op-
timally suppressing stragglers. Leveraging the algebraic structure of
gradient computations, several strategies have been developed recently
to exploit data and gradient coding for straggler mitigation in the
training process (see, e.g., [78, 89, 94, 106, 147]). We implement LCC

Full text available at: http://dx.doi.org/10.1561/0100000103

1.3. Coding for Security and Privacy 11

for regression on Amazon EC2 clusters, and empirically compare its
performance with the conventional uncoded approaches, and two state-
of-the-art straggler mitigation schemes: gradient coding (GC) [63, 127,
147, 164] and matrix-vector multiplication (MVM) based approaches
[89, 106]. Our experiment results demonstrate that compared with the
uncoded scheme, LCC improves the run-time by 6.79×∼13.43×. Com-
pared with the GC scheme, LCC improves the run-time by 2.36×∼4.29×.
Compared with the MVM scheme, LCC improves the run-time by
1.01×∼12.65×.

1.3 Coding for Security and Privacy

Data privacy has become a major concern in the information age. The
immensity of modern datasets has popularized the use of third-party
cloud services, and as a result, the threat of privacy infringement has
increased dramatically. In order to alleviate this concern, techniques
for private computation are essential [25, 38, 102, 114]. Additionally,
third-party service providers often have an interest in the result of the
computation, and might attempt to alter it for their benefit [23, 24].
In particular, we consider a common and important scenario where a
user wishes to disperse computations over a large network of workers,
subject to the following privacy and security constraints.

• Privacy constraint: Sets of colluding workers cannot infer anything
about the input dataset in the information-theoretic sense.

• Security constraint: The computation must be accomplished suc-
cessfully even if some workers return purposefully erroneous
results.

The problem of secure and private distributed computing has been
studied extensively from various perspectives in the past, mainly within
the scope of secure multiparty computation (MPC) [18, 37, 38, 64]. Most
notably, the celebrated BGW scheme [18], which adapts the Shamir
secret sharing scheme [141] to the realm of computation, has been a
reference point for several decades. The key idea of BGW scheme is to
view any computation task as composed by linear and bilinear functions

Full text available at: http://dx.doi.org/10.1561/0100000103

12 Introduction

to be handled in multiple rounds. It applies the Shamir secret sharing
scheme to generate coded data shares with security guarantees, and
computes the function on the coded shares. We generalize the proposed
Lagrange Coded Computing (LCC) scheme designed for straggler miti-
gation purposes to also provide security and privacy guarantees to MPC
systems. Specifically, similarly as before, we consider the problem of
evaluating a multivariate polynomial f over dataset X = (X1, . . . , XK).
We employ a distributed computing network with a master and N

workers, and aim to compute Y1 = f(X1), . . . , YK = f(XK). For this
computing system, we propose modifications to the data encoding and
computation decoding processes of LCC, and demonstrate that LCC
provides a T -private and A-secure computation of f (i.e., keeping the
dataset private amidst collusion of any T workers, and the computation
secure amidst the presence of A Byzantine adversarial workers), for any
pair (T,A) satisfying

N ≥ (K + T − 1) deg f + 2A+ 1. (1.1)
Furthermore, we also demonstrate that LCC achieves an optimal tradeoff
between privacy and security, and requires a minimal amount of added
randomness to preserve privacy.

In the presence of Byzantine workers, a subset of computation re-
sults received at the master can be arbitrarily erroneous. In order to
correctly recover the computation results, during the decoding pro-
cess, instead of mere polynomial interpolation, the master applies an
error correcting decoding algorithm for a Reed–Solomon code of dimen-
sion (K − 1) deg(f) + 1 and length N . This allows LCC to tolerate A
malicious workers as long as 2A ≤ N − (K − 1) deg f − 1. Obtaining
information-theoretic privacy against colluding workers, i.e., keeping
small sets of workers oblivious to the dataset does not require altering
the encoding nor decoding algorithm. However, prior to encoding, the
dataset X is padded by T random elements R1, . . . , RT , where T is the
maximum size of sets of workers that cannot infer anything about X.

We note from (1.1) that when N ≥ (K + T − 1) deg f + 2A+ 1, the
LCC scheme simultaneously achieves

1. Resiliency against N − ((K + T − 1) deg f + 2A + 1) straggler
workers that prolong computations;

Full text available at: http://dx.doi.org/10.1561/0100000103

1.3. Coding for Security and Privacy 13

2. Security against A malicious workers, with no computational
restriction, that deliberately send erroneous data in order to affect
the computation for their benefit; and

3. (Information-theoretic) Privacy of the dataset amidst possible
collusion of up to T workers.

We also note that the number of workers the master needs to wait
for does not scale with the total number of workers N , hence the key
property of LCC is that adding one additional worker can increase its
resiliency to stragglers by 1, or increase its robustness to malicious worker
by 1/2, while maintaining the privacy constraint. Hence, this result
essentially extends the well-known optimal scaling of error-correcting
codes (i.e., adding one parity can provide robustness against 1 erasure
or 1/2 error in optimal maximum distance separable codes) to the
distributed computing paradigm. Compared with the state-of-the-art
BGW-based designs, we also show that LCC significantly improves the
storage, communication, and secret-sharing overhead needed for secure
and private multiparty computing (see Table 1.2).

Finally, we will also discuss the problem of privacy-preserving ma-
chine learning. In particular, we consider an application scenario in
which a data-owner (e.g., a hospital) wishes to train a logistic regression
model by offloading the large volume of data (e.g., healthcare records)
and computationally-intensive training tasks (e.g., gradient computa-
tions) to N machines over a cloud platform, while ensuring that any
collusions between T out of N workers do not leak information about

Table 1.2: Comparison between BGW based designs and LCC. The computational
complexity is normalized by that of evaluating f ; randomness, which refers to the
number of random entries used in encoding functions, is normalized by the length
of Xi

BGW LCC

Complexity/worker K 1
Frac. data/worker 1 1/K
Randomness KT T
Min. num. of workers 2T + 1 deg f · (K + T − 1) + 1

Full text available at: http://dx.doi.org/10.1561/0100000103

14 Introduction

the dataset. We discuss a recently proposed scheme [145], named Cod-
edPrivateML, which leverages coded computing for this problem. More
specifically, we show how one can leverage coded computing to both
provide strong information-theoretic privacy guarantees and enable fast
training by distributing the training computation load effectively across
several workers.

1.4 Related Works

The problem of characterizing the minimum communication for dis-
tributed computing has been previously considered in several settings
in both computer science and information theory literature. In [163],
a basic computing model is proposed, where two parities have x and
y and aim to compute a Boolean function f(x, y) by exchanging the
minimum number of bits between them. Also, the problem of minimiz-
ing the required communication for computing the modulo-two sum
of distributed binary sources with symmetric joint distribution was
introduced in [85]. Following these two seminal works, a wide range of
communication problems in the scope of distributed computing have
been studied (cf. [16, 88, 116, 120, 121, 126]).

The idea of efficiently creating and exploiting coded multicasting
for bandwidth reduction was initially proposed in the context of cache
networks in [104, 105], and extended in [72, 79], where caches pre-
fetch part of the content in a way to enable coding during the content
delivery, minimizing the network traffic. Generally speaking, we can
also view the data shuffling of the considered distributed computing
framework as an instance of the index coding problem [15, 20], in
which a central server aims to design a broadcast message (code) with
minimum length to simultaneously satisfy the requests of all the clients,
given the clients’ side information stored in their local caches. Note
that while a randomized linear network coding approach (see e.g.,
[2, 66, 83]) is sufficient to implement any multicast communication
where messages are intended by all receivers, it is generally sub-optimal
for index coding problems where every client requests different messages.
Although the index coding problem is still open in general, for the
considered distributed computing scenario where we are given the

Full text available at: http://dx.doi.org/10.1561/0100000103

1.4. Related Works 15

flexibility of designing Map computation (thus the flexibility of designing
side information), we can prove tight lower bounds on the minimum
communication loads, demonstrating the optimality of the proposed
Coded Distributed Computing scheme.

We would like to also point out that the main focus of the index
coding problem/literature is to design the optimal delivery scheme for a
given (often fixed) side information at the nodes. On the other hand, the
key novelty of our scheme/framework is the design of side information
(or redundant computations) at the nodes in order to maximize the
index coding (or coded multicast) opportunities. So, while index coding
focused on the design of best delivery strategies, we focus on the design
of best side information structure. In that sense they are complementary
to each other and we can leverage any of the delivery schemes developed
in the index coding literature (e.g., the schemes based on local clique
cover [142], partial and fractional clique cover [1, 20], interference
alignment [107], and many other schemes [11]) in the shuffling phase.

Other than designing coded computing strategies for bandwidth
reduction, there has recently been a surge of interest in developing
coded computing frameworks for straggler mitigation. Initiated in [89],
many following works has focused on designing data encoding strate-
gies, mainly inspired by the concepts of erasure/error correcting codes
for communication systems, to minimize the recovery threshold, in
distributed computation of matrix-vector and matrix–matrix multipli-
cations (e.g., [47, 52, 155, 167, 168]). Coded computing also finds its
application in distributed machine learning, specifically for running
distributed stochastic gradient descent (SGD) on a master/worker ar-
chitecture. For general machine learning tasks, data encoding is not
applicable due to the complicated structure of gradient computation
(e.g., gradients are computed numerically using back-propagation for
deep neural networks). In this scenario, “gradient coding” techniques
[63, 94, 127, 147, 164] have been designed to code across partial gradi-
ents computed from uncoded data, such that the master can recover
the total gradient as the sum of all partial gradients, after receiving the
computation results from the minimum possible number of workers.

The proposed Lagrange Coded Computing (LCC) scheme improves
and expands these prior works in a few aspects: Generality – LCC

Full text available at: http://dx.doi.org/10.1561/0100000103

16 Introduction

significantly expands the computation class for which we know how to
design coded computing to go beyond linear and bilinear computations
that have so far been the main research focus. In particular, it can
be applied to more general multivariate polynomial computations that
arise in machine learning applications. Universality – once the data has
been coded, any polynomial up to a certain degree can be computed
distributedly via LCC. In other words, data encoding of LCC can
be universally used for any polynomial computation. This is in stark
contrast to previous task-specific coding techniques in the literature.
Security and privacy – other than straggler mitigation, LCC also extends
the application of coded computing to secure and private computing
for general polynomial computations.

The security and privacy issue of distributed computing has been
extensively studied in the literature of secure multiparty computing
(MPC) and secure machine learning/data mining, [18, 37, 38, 64, 68,
102]. As a representative example, we briefly describe the celebrated
BGW MPC scheme [18]. Given data inputs {Xi}Ki=1, the problem is to
compute outputs {f(Xi)}Ki=1 using N workers in a privacy-preserving
manner (i.e., colluding workers cannot infer anything about the dataset
using their local data). To do that, BGW first uses Shamir’s scheme [141]
to encode each Xi as a polynomial Pi(z) = Xi + Zi,1z + · · ·+ Zi,T z

T ,
where Zi,j ’s are i.i.d. uniformly random variables and T is the number
of colluding workers that should be tolerated. Then, each worker `
stores the coded data {Pi(α`)}Ki=1, for a distinct α`, and computes
{f(Pi(α`))}Ki=1. Hence, for each i, each worker provides the evaluation
of the degree-(deg f ·T) polynomial f(Pi(z)) at a distinct point α`. The
polynomial f(Pi(z)) can be interpolated using computation results from
deg f · T + 1 workers, and f(Xi) is obtained by taking the constant
term of f(Pi(z)).1 In the proposed LCC scheme, instead of hiding
Xi’s individually in data encoding, we code across Xi’s together with
some added random inputs. This gives rise to significant reduction on
storage overhead, computational complexity, and the amount of padded

1It is also possible to use the conventional multi-round BGW, which only requires
N ≥ 2T + 1 workers to ensure T -privacy. However, multiple rounds of computation
and communication (Ω(log(deg f)) rounds) are needed, which further increases its
communication overhead.

Full text available at: http://dx.doi.org/10.1561/0100000103

1.4. Related Works 17

randomness. However, under the same condition, LCC scheme requires
N ≥ deg f · (K + T − 1) + 1 number of workers, which is larger than
that of the BGW scheme. So, in some sense LCC achieves reduction in
storage overhead, computational complexity, and the amount of padded
randomness, at the expense of increasing the number of needed workers
(or reducing the fraction of Byzantine workers that can be tolerated).
We refer to Table 1.2 for a detailed comparison between BGW and
LCC.

Coding techniques have been recently developed to provide security
and privacy guarantees to distributed computing. Specifically, staircase
codes [21] were proposed to combat stragglers in linear computations
(e.g., matrix-vector multiplications) while preserving data privacy, im-
proving the computation latency of the conventional secure computing
schemes based on secret sharing [110, 141]. The proposed LCC scheme
generalizes the staircase codes beyond linear computations. Even for the
linear case, LCC guarantees data privacy against T colluding workers by
introducing less randomness than [21] (T rather than TK/(K−T)). Be-
yond linear computations, a recent work [117] has combined ideas from
the BGW scheme and the polynomial code [167] to form polynomial shar-
ing, a private coded computing scheme for arbitrary matrix polynomials.
However, polynomial sharing inherits the undesired BGW property of
performing a communication round for every bilinear operation in the
polynomial; a feature that drastically reduces communication efficiency,
and is circumvented by the one-shot approach of LCC. DRACO [31]
was proposed as a secure distributed training algorithm that is robust
to Byzantine workers. Since DRACO is designed for general gradient
computations, it employs a blackbox approach, i.e., the coding is applied
on the gradients computed from uncoded data, but not on the data
itself, which is similar to the gradient coding techniques [63, 94, 127,
147, 164] designed primarily for stragglers. For this approach, [31] show
that a 2A+ 1 multiplicative factor of redundant computations is needed
to be robust to A Byzantine workers. For the proposed LCC however,
the blackbox approach is disregarded in favor of an algebraic one, and
consequently, a 2A additive factor suffices.

Full text available at: http://dx.doi.org/10.1561/0100000103

References

[1] Agarwal, A. and A. Mazumdar (2016). “Local partial clique
and cycle covers for index coding”. In: 2016 IEEE Globecom
Workshops (GC Wkshps). 1–6.

[2] Ahlswede, R., N. Cai, S.-Y. R. Li, and R. W. Yeung (2000).
“Network information flow”. IEEE Transactions on Information
Theory. 46(4): 1204–1216.

[3] Ahmad, F., S. T. Chakradhar, A. Raghunathan, and T. Vijayku-
mar (2012). “Tarazu: Optimizing MapReduce on heterogeneous
clusters”. ACM SIGARCH Computer Architecture News. 40(1):
61–74.

[4] Aktas, M. F., P. Peng, and E. Soljanin (2018). “Straggler miti-
gation by delayed relaunch of tasks”. ACM SIGMETRICS Per-
formance Evaluation Review. 45(2): 224–231.

[5] Alistarh, D., D. Grubic, J. Li, R. Tomioka, and M. Vojnovic
(2017). “QSGD: Communication-efficient SGD via gradient quan-
tization and encoding”. Advances in Neural Information Pro-
cessing Systems (NIPS): 1707–1718.

[6] Alpatov, P., G. Baker, C. Edwards, J. Gunnels, G. Morrow,
J. Overfelt, R. van de Geijn, and Y.-J. J. Wu (1997). “PLAPACK:
Parallel linear algebra package design overview”. In: Proceedings
of the 1997 ACM/IEEE Conference on Supercomputing. ACM.
1–16.

131

Full text available at: http://dx.doi.org/10.1561/0100000103

132 References

[7] “Amazon Elastic Compute Cloud (EC2)” (n.d.). https://aws.a
mazon.com/ec2/. Accessed on Jan. 30, 2018.

[8] Ananthanarayanan, G., A. Ghodsi, S. Shenker, and I. Stoica
(2013). “Effective straggler mitigation: Attack of the clones”. In:
10th USENIX Symposium on Networked Systems Design and
Implementation. 185–198.

[9] Ananthanarayanan, G., S. Kandula, A. G. Greenberg, I. Stoica,
Y. Lu, B. Saha, and E. Harris (2010). “Reining in the outliers in
map-reduce clusters using Mantri”. In: OSDI. Vol. 10. No. 1. 24.

[10] “Apache Hadoop” (n.d.). http://hadoop.apache.org. Accessed
on Jan. 30, 2018.

[11] Arbabjolfaei, F. and Y. Kim (2018). “Fundamentals of index
coding”. Foundations and Trends R© in Communications and
Information Theory. 14(3–4): 163–346.

[12] Attia, M. A. and R. Tandon (2016). “Information theoretic
limits of data shuffling for distributed learning”. In: IEEE Global
Communications Conference (GLOBECOM). 1–6.

[13] Baktir, S. and B. Sunar (2006). “Achieving efficient polynomial
multiplication in fermat fields using the fast fourier transform”.
In: Proceedings of the 44th Annual Southeast Regional Conference.
ACM. 549–554.

[14] Ballard, G., E. Carson, J. Demmel, M. Hoemmen, N. Knight,
and O. Schwartz (2014). “Communication lower bounds and
optimal algorithms for numerical linear algebra”. Acta Numerica.
23: 1–155.

[15] Bar-Yossef, Z., Y. Birk, T. Jayram, and T. Kol (2011). “Index
coding with side information”. IEEE Transactions on Informa-
tion Theory. 57(3): 1479–1494.

[16] Becker, K. and U. Wille (1998). “Communication complexity
of group key distribution”. In: Proceedings of the 5th ACM
Conference on Computer and Communications Security. 1–6.

[17] Beerliova-Trubiniova, Z. and M. Hirt (2008). “Perfectly-secure
MPC with linear communication complexity”. In: Theory of
Cryptography Conference. Springer. 213–230.

Full text available at: http://dx.doi.org/10.1561/0100000103

https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
http://hadoop.apache.org

References 133

[18] Ben-Or, M., S. Goldwasser, and A. Wigderson (1988). “Complete-
ness theorems for non-cryptographic fault-tolerant distributed
computation”. In: Proceedings of the Twentieth Annual ACM
Symposium on Theory of Computing. ACM. 1–10.

[19] Bernstein, J., Y.-X. Wang, K. Azizzadenesheli, and A. Anandku-
mar (2018). “signSGD: Compressed optimisation for non-convex
problems”. In: Proceedings of the 35th International Conference
on Machine Learning. Ed. by J. Dy and A. Krause. Vol. 80.
Proceedings of Machine Learning Research. Stockholmsmässan,
Stockholm Sweden: PMLR. 560–569. url: http://proceedings.m
lr.press/v80/bernstein18a.html.

[20] Birk, Y. and T. Kol (2006). “Coding on demand by an informed
source (ISCOD) for efficient broadcast of different supplemental
data to caching clients”. IEEE Transactions on Information
Theory. 52(6): 2825–2830.

[21] Bitar, R., P. Parag, and S. E. Rouayheb (2020). “Minimizing
latency for secure coded computing using secret sharing via
staircase codes”. IEEE Transactions on Communications.

[22] Blackford, L. S., J. Choi, A. Cleary, E. D’Azevedo, J. Demmel,
I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet,
K. Stanley, D. Walker, and R. C. Whaley (1997). ScaLAPACK
Users’ Guide. SIAM.

[23] Blanchard, P., E.-M. El Mhamdi, R. Guerraoui, and
J. Stainer (2017a). “Byzantine-tolerant machine learning”.
preprint arXiv:1703.02757.

[24] Blanchard, P., E.-M. El Mhamdi, R. Guerraoui, and J. Stainer
(2017b). “Machine learning with adversaries: Byzantine tolerant
gradient descent”. In: Advances in Neural Information Processing
Systems. 118–128.

[25] Bogdanov, D., S. Laur, and J. Willemson (2008). “Sharemind:
A framework for fast privacy-preserving computations”. In:
Proceedings of the 13th European Symposium on Research in
Computer Security: Computer Security. ESORICS ’08. Spain:
Springer-Verlag. 192–206.

Full text available at: http://dx.doi.org/10.1561/0100000103

http://proceedings.mlr.press/v80/bernstein18a.html
http://proceedings.mlr.press/v80/bernstein18a.html

134 References

[26] Bonawitz, K., V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMa-
han, S. Patel, D. Ramage, A. Segal, and K. Seth (2016). “Practi-
cal secure aggregation for federated learning on user-held data”.
In: Conference on Neural Information Processing Systems.

[27] Bonawitz, K., V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMa-
han, S. Patel, D. Ramage, A. Segal, and K. Seth (2017). “Practi-
cal secure aggregation for privacy-preserving machine learning”.
In: ACM SIGSAC Conference on Computer and Communications
Security. ACM. 1175–1191.

[28] Bonomi, F., R. Milito, J. Zhu, and S. Addepalli (2012). “Fog
computing and its role in the internet of things”. In: Proceed-
ings of the 1st Edition of the MCC Workshop on Mobile Cloud
Computing. ACM. 13–16.

[29] Charles, Z., D. Papailiopoulos, and J. Ellenberg (2017). “Ap-
proximate gradient coding via sparse random graphs”. preprint
arXiv:1711.06771.

[30] Chaubey, M. and E. Saule (2015). “Replicated data placement
for uncertain scheduling”. In: IEEE International Parallel and
Distributed Processing Symposium Workshop. 464–472.

[31] Chen, L., H. Wang, Z. Charles, and D. Papailiopoulos (2018).
“DRACO: Robust distributed training via redundant gradients”.
e-print arXiv:1803.09877.

[32] Chiang, M. and T. Zhang (2016). “Fog and IoT: An overview of
research opportunities”. IEEE Internet of Things Journal. 3(6):
854–864.

[33] Chilimbi, T. M., Y. Suzue, J. Apacible, and K. Kalyanaraman
(2014). “Project Adam: Building an efficient and scalable deep
learning training system”. In: 11th USENIX Symposium on Op-
erating Systems Design and Implementation. Vol. 14. 571–582.

[34] Choi, B., J.-Y. Sohn, D.-J. Han, and J. Moon (2019). “Scalable
network-coded PBFT consensus algorithm”. In: 2019 IEEE In-
ternational Symposium on Information Theory (ISIT). IEEE.
857–861.

[35] Choi, J., J. Dongarra, and D. Walker (1996). “PB-BLAS: A set
of parallel block basic linear algebra subprograms”. Concurrency:
Practice and Experience. 8(7): 517–535.

Full text available at: http://dx.doi.org/10.1561/0100000103

References 135

[36] Chowdhury, M., M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica
(2011). “Managing data transfers in computer clusters with or-
chestra”. ACM SIGCOMM Computer Communication Review.
41(4): 98–109.

[37] Cramer, R., I. Damgård, and J. B. Nielsen (2001). “Multiparty
computation from threshold homomorphic encryption”. In: In-
ternational Conference on the Theory and Applications of Cryp-
tographic Techniques. Springer. 280–300.

[38] Cramer, R., I. B. Damgrd, and J. B. Nielsen (2015). Secure Mul-
tiparty Computation and Secret Sharing. Cambridge University
Press.

[39] Dalcin, L. D., R. R. Paz, P. A. Kler, and A. Cosimo (2011). “Par-
allel distributed computing using python”. Advances in Water
Resources. 34(9): 1124–1139.

[40] Damgård, I. and J. B. Nielsen (2007). “Scalable and uncondition-
ally secure multiparty computation”. In: International Cryptology
Conference. Springer. 572–590.

[41] Dean, J. and L. A. Barroso (2013). “The tail at scale”. Commu-
nications of the ACM. 56(2): 74–80.

[42] Dean, J. and S. Ghemawat (2004). “MapReduce: Simplified
data processing on large clusters”. Sixth USENIX Symposium
on Operating System Design and Implementation.

[43] Demmel, J., L. Grigori, M. Hoemmen, and J. Langou (2012).
“Communication-optimal parallel and sequential QR and LU
factorizations”. SIAM Journal on Scientific Computing. 34(1):
A206–A239.

[44] Dimakis, A. G., J. Wang, and K. Ramchandran (2007). “Unequal
growth codes: Intermediate performance and unequal error pro-
tection for video streaming”. In: Multimedia Signal Processing,
2007. MMSP 2007. IEEE 9th Workshop on. IEEE. 107–110.

[45] “Distributed Algorithms and Optimization Lecture Notes” (n.d.).
https :// stanford . edu /~rezab/ classes / cme323 /S16 /notes /
Lecture16/Pregel_GraphX.pdf. Accessed on July 11, 2018.

[46] Dutta, S., Z. Bai, T. M. Low, and P. Grover (2019). “CodeNet:
Training large scale neural networks in presence of soft-errors”.
preprint arXiv:1903.01042.

Full text available at: http://dx.doi.org/10.1561/0100000103

https://stanford.edu/~rezab/classes/cme323/S16/notes/Lecture16/Pregel_GraphX.pdf
https://stanford.edu/~rezab/classes/cme323/S16/notes/Lecture16/Pregel_GraphX.pdf

136 References

[47] Dutta, S., V. Cadambe, and P. Grover (2016). “Short-dot: Com-
puting large linear transforms distributedly using coded short dot
products”. Advances in Neural Information Processing Systems
(NIPS): 2100–2108.

[48] Dutta, S., V. Cadambe, and P. Grover (2017). “Coded convolu-
tion for parallel and distributed computing within a deadline”. In:
IEEE International Symposium on Information Theory (ISIT).
IEEE. 2403–2407.

[49] Ekanayake, J., H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu,
and G. Fox (2010). “Twister: A runtime for iterative MapReduce”.
Proceedings of the 19th ACM International Symposium on High
Performance Distributed Computing. June: 810–818.

[50] Ezzeldin, Y. H., M. Karmoose, and C. Fragouli (2017). “Com-
munication vs. distributed computation: An alternative trade-off
curve”. In: IEEE Information Theory Workshop (ITW). IEEE.
279–283.

[51] Fahim, M. and V. R. Cadambe (2019). “Numerically stable
polynomially coded computing”. In: 2019 IEEE International
Symposium on Information Theory (ISIT). 3017–3021.

[52] Fahim, M., H. Jeong, F. Haddadpour, S. Dutta, V. Cadambe, and
P. Grover (2017). “On the optimal recovery threshold of coded
matrix multiplication”. In: 55th Annual Allerton Conference.
IEEE. 1264–1270.

[53] Al-Fares, M., S. Radhakrishnan, B. Raghavan, N. Huang, and
A. Vahdat (2010). “Hedera: Dynamic flow scheduling for data
center networks”. 7th USENIX Symposium on Networked Sys-
tems Design and Implementation. Apr.

[54] Ferdinand, N. and S. C. Draper (2018). “Hierarchical coded
computation”. In: 2018 IEEE International Symposium on In-
formation Theory (ISIT). 1620–1624.

[55] Gardner, K., S. Zbarsky, S. Doroudi, M. Harchol-Balter, and
E. Hyytia (2015). “Reducing latency via redundant requests:
Exact analysis”. ACM SIGMETRICS Performance Evaluation
Review. 43(1): 347–360.

Full text available at: http://dx.doi.org/10.1561/0100000103

References 137

[56] Gemulla, R., E. Nijkamp, P. J. Haas, and Y. Sismanis (2011).
“Large-scale matrix factorization with distributed stochastic gra-
dient descent”. In: Proceedings of the 17th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining.
ACM. 69–77.

[57] Greenberg, A., J. R. Hamilton, N. Jain, S. Kandula, C. Kim,
P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta (2009). “VL2:
A scalable and flexible data center network”. ACM SIGCOMM
Computer Communication Review. 39(4): 51–62.

[58] Guo, Y., J. Rao, and X. Zhou (2013). “iShuffle: Improving
Hadoop performance with shuffle-on-write”. In: Proceedings of
the 10th International Conference on Autonomic Computing.
107–117.

[59] Gupta, V., S. Wang, T. Courtade, and K. Ramchandran (2018).
“OverSketch: Approximate matrix multiplication for the cloud”.
In: 2018 IEEE International Conference on Big Data (Big Data).
298–304.

[60] Guyon, I., S. Gunn, A. Ben-Hur, and G. Dror (2005). “Result
analysis of the NIPS 2003 feature selection challenge”. Advances
in Neural Information Processing Systems (NIPS): 545–552.

[61] Haddadpour, F. and V. R. Cadambe (2018). “Codes for dis-
tributed finite alphabet matrix-vector multiplication”. In: 2018
IEEE International Symposium on Information Theory (ISIT).
1625–1629.

[62] “Hadoop TeraSort” (n.d.). https://hadoop.apache.org/docs/
r2.7.1/api/org/apache/hadoop/examples/terasort/package-su
mmary.html. Accessed on Jan. 30, 2018.

[63] Halbawi, W., N. Azizan-Ruhi, F. Salehi, and B. Hassibi (2017).
“Improving distributed gradient descent using Reed–Solomon
codes”. e-print arXiv:1706.05436.

[64] Halpern, J. and V. Teague (2004). “Rational secret sharing and
multiparty computation”. In: Proceedings of the Thirty-Sixth
Annual ACM Symposium on Theory of Computing. ACM. 623–
632.

Full text available at: http://dx.doi.org/10.1561/0100000103

https://hadoop.apache.org/docs/r2.7.1/api/org/apache/hadoop/examples/terasort/package-summary.html
https://hadoop.apache.org/docs/r2.7.1/api/org/apache/hadoop/examples/terasort/package-summary.html
https://hadoop.apache.org/docs/r2.7.1/api/org/apache/hadoop/examples/terasort/package-summary.html

138 References

[65] He, K., X. Zhang, S. Ren, and J. Sun (2016). “Deep residual
learning for image recognition”. IEEE Conference on Computer
Vision and Pattern Recognition: 770–778.

[66] Ho, T., R. Koetter, M. Medard, D. R. Karger, and M. Effros
(2003). “The benefits of coding over routing in a randomized
setting”. IEEE International Symposium on Information Theory.
June: 442.

[67] Huang, K.-H. and J. A. Abraham (1984). “Algorithm-based
fault tolerance for matrix operations”. IEEE Transactions on
Computers. C-33(6): 518–528.

[68] Huang, L., A. D. Joseph, B. Nelson, B. I. Rubinstein, and
J. Tygar (2011). “Adversarial machine learning”. In: Proceedings
of the 4th ACM Workshop on Security and Artificial Intelligence.
ACM. 43–58.

[69] Huang, W. (2017). “Coding for security and reliability in dis-
tributed systems”. PhD thesis. California Institute of Technology.

[70] Jahani-Nezhad, T. and M. A. Maddah-Ali (2019). “CodedSketch:
Coded distributed computation of approximated matrix multipli-
cation”. In: 2019 IEEE International Symposium on Information
Theory (ISIT). 2489–2493.

[71] Jeong, H., T. M. Low, and P. Grover (2018). “Masterless coded
computing: A fully-distributed coded FFT algorithm”. In: 2018
56th Annual Allerton Conference on Communication, Control,
and Computing (Allerton). 887–894.

[72] Ji, M., G. Caire, and A. F. Molisch (2016). “Fundamental limits
of caching in wireless D2D networks”. IEEE Transactions on
Information Theory. 62(2): 849–869.

[73] Joshi, G., E. Soljanin, and G. Wornell (2017). “Efficient re-
dundancy techniques for latency reduction in cloud systems”.
ACM Transactions on Modeling and Performance Evaluation of
Computing Systems (TOMPECS). 2(2): 12.

[74] Jou, J.-Y. and J. A. Abraham (1986). “Fault-tolerant matrix
arithmetic and signal processing on highly concurrent computing
structures”. Proceedings of the IEEE. 74(5): 732–741.

Full text available at: http://dx.doi.org/10.1561/0100000103

References 139

[75] Kadhe, S., J. Chung, and K. Ramchandran (2019). “SeF: A secure
fountain architecture for slashing storage costs in blockchains”.
preprint arXiv:1906.12140.

[76] Kairouz, P., H. B. McMahan, B. Avent, A. Bellet, M. Bennis,
A. N. Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cum-
mings, R. G. L. D’Oliveira, S. El Rouayheb, D. Evans, J. Gardner,
Z. Garrett, A. Gascón, B. Ghazi, P. B. Gibbons, M. Gruteser,
Z. Harchaoui, C. He, L. He, Z. Huo, B. Hutchinson, J. Hsu,
M. Jaggi, T. Javidi, G. Joshi, M. Khodak, J. Konečný, A. Ko-
rolova, F. Koushanfar, S. Koyejo, T. Lepoint, Y. Liu, P. Mittal,
M. Mohri, R. Nock, A. Özgür, R. Pagh, M. Raykova, H. Qi,
D. Ramage, R. Raskar, D. Song, W. Song, S. U. Stich, Z. Sun,
A. T. Suresh, F. Tramèr, P. Vepakomma, J. Wang, L. Xiong,
Z. Xu, Q. Yang, F. X. Yu, H. Yu, and S. Zhao (2019). “Ad-
vances and open problems in federated learning”. preprint
arXiv:1912.04977.

[77] Kamra, A., V. Misra, J. Feldman, and D. Rubenstein (2006).
“Growth codes: Maximizing sensor network data persistence”.
ACM SIGCOMM Computer Communication Review. 36(4): 255–
266.

[78] Karakus, C., Y. Sun, S. Diggavi, and W. Yin (2017). “Straggler
mitigation in distributed optimization through data encoding”.
Advances in Neural Information Processing Systems (NIPS):
5440–5448.

[79] Karamchandani, N., U. Niesen, M. A. Maddah-Ali, and S. Dig-
gavi (2014). “Hierarchical coded caching”. IEEE International
Symposium on Information Theory. June: 2142–2146.

[80] Kedlaya, K. S. and C. Umans (2011). “Fast polynomial factoriza-
tion and modular composition”. SIAM Journal on Computing.
40(6): 1767–1802.

[81] Kiamari, M., C. Wang, and A. S. Avestimehr (2017). “On het-
erogeneous coded distributed computing”. IEEE GLOBECOM.
Dec.

Full text available at: http://dx.doi.org/10.1561/0100000103

140 References

[82] Kim, S. and S. Lee (2009). “Improved intermediate performance
of rateless codes”. In: Advanced Communication Technology,
2009. ICACT 2009. 11th International Conference on. Vol. 3.
IEEE. 1682–1686.

[83] Koetter, R. and M. Medard (2003). “An algebraic approach
to network coding”. IEEE/ACM Transactions on Networking.
11(5): 782–795.

[84] Konstantinidis, K. and A. Ramamoorthy (2018). “Leveraging
coding techniques for speeding up distributed computing”. e-
print arXiv:1802.03049.

[85] Korner, J. and K. Marton (1979). “How to encode the modulo-
two sum of binary sources”. IEEE Transactions on Information
Theory. 25(2): 219–221.

[86] Kosaian, J., K. Rashmi, and S. Venkataraman (2018). “Learn-
ing a code: Machine learning for approximate non-linear coded
computation”. preprint arXiv:1806.01259.

[87] Krizhevsky, A. and G. Hinton (2009). “Learning multiple layers
of features from tiny images”. Tech. rep. Citeseer.

[88] Kushilevitz, E. and N. Nisan (2006). Communication Complexity.
Cambridge University Press.

[89] Lee, K., M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ram-
chandran (2018). “Speeding up distributed machine learning
using codes”. IEEE Transactions on Information Theory. 64(3):
1514–1529.

[90] Lee, K., C. Suh, and K. Ramchandran (2017). “High-dimensional
coded matrix multiplication”. In: 2017 IEEE International Sym-
posium on Information Theory (ISIT). 2418–2422.

[91] Lee, K., R. Pedarsani, and K. Ramchandran (2015). “On schedul-
ing redundant requests with cancellation overheads”. In: 53rd
Annual Allerton Conference on Communication, Control, and
Computing. IEEE. 99–106.

[92] Li, S., M. A. Maddah-Ali, and A. S. Avestimehr (2018a). “Com-
pressed coded distributed computing”. In: 2018 IEEE Interna-
tional Symposium on Information Theory (ISIT). IEEE. 2032–
2036.

Full text available at: http://dx.doi.org/10.1561/0100000103

References 141

[93] Li, S., M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr (2018b).
“A fundamental tradeoff between computation and communica-
tion in distributed computing”. IEEE Transactions on Informa-
tion Theory. 64(1): 109–128.

[94] Li, S., S. M. M. Kalan, A. S. Avestimehr, and M. Soltanolkotabi
(2018c). “Near-optimal straggler mitigation for distributed gra-
dient methods”. IPDPSW. May.

[95] Li, S., S. M. M. Kalan, Q. Yu, M. Soltanolkotabi, and A. S. Aves-
timehr (2018d). “Polynomially coded regression: Optimal strag-
gler mitigation via data encoding”. e-print arXiv:1805.09934.

[96] Li, S., M. A. Maddah-Ali, and A. S. Avestimehr (2016a). “A uni-
fied coding framework for distributed computing with straggling
servers”. IEEE NetCod. Dec.

[97] Li, S., M. A. Maddah-Ali, and A. S. Avestimehr (2015). “Coded
MapReduce”. 53rd Annual Allerton Conference on Communica-
tion, Control, and Computing. Sept.

[98] Li, S., M. A. Maddah-Ali, and A. S. Avestimehr (2016b).
“Coded distributed computing: Straggling servers and multistage
dataflows”. 54th Allerton Conference. Sept.

[99] Li, S., M. Yu, C.-S. Yang, A. S. Avestimehr, S. Kannan, and
P. Viswanath (2018e). “PolyShard: Coded sharding achieves
linearly scaling efficiency and security simultaneously”. arXiv:
1809.10361 [cs.CR].

[100] Liberty, E. and S. W. Zucker (2009). “The mailman algorithm:
A note on matrix–vector multiplication”. Information Processing
Letters. 109(3): 179–182.

[101] Lin, S. and D. J. Costello (2004). Error Control Coding. Pearson.
[102] Lindell, Y. (2005). “Secure multiparty computation for privacy

preserving data mining”. In: Encyclopedia of Data Warehousing
and Mining. IGI Global. 1005–1009.

[103] Low, Y., D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and
J. M. Hellerstein (2012). “Distributed GraphLab: A framework
for machine learning and data mining in the cloud”. Proceedings
of the VLDB Endowment. 5(8): 716–727.

Full text available at: http://dx.doi.org/10.1561/0100000103

142 References

[104] Maddah-Ali, M. A. and U. Niesen (2014a). “Decentralized
coded caching attains order-optimal memory-rate tradeoff”.
IEEE/ACM Transactions on Networking. Apr.

[105] Maddah-Ali, M. A. and U. Niesen (2014b). “Fundamental limits
of caching”. IEEE Transactions on Information Theory. 60(5):
2856–2867.

[106] Maity, R. K., A. S. Rawat, and A. Mazumdar (2018). “Robust
gradient descent via moment encoding with LDPC codes”. SysML
Conference.

[107] Maleki, H., V. R. Cadambe, and S. A. Jafar (2014). “Index
coding—An interference alignment perspective”. IEEE Transac-
tions on Information Theory. 60(9): 5402–5432.

[108] Malewicz, G., M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski (2010). “Pregel: A system for large-
scale graph processing”. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data. ACM. 135–
146.

[109] Mallick, A., M. Chaudhari, U. Sheth, G. Palanikumar, and
G. Joshi (2019). “Rateless codes for near-perfect load balancing
in distributed matrix-vector multiplication”. Proceedings of the
ACM on Measurement and Analysis of Computing Systems. 3(3):
1–40.

[110] McEliece, R. J. and D. V. Sarwate (1981). “On sharing secrets
and Reed–Solomon codes”. Communications of the ACM. 24(9):
583–584.

[111] McMahan, H. B., E. Moore, D. Ramage, S. Hampson, and
B. A. Y. Arcas (2017). “Communication-efficient learning of
deep networks from decentralized data”. In: International Con-
ference on Artificial Intelligence and Statistics. 1273–1282.

[112] Melis, L., C. Song, E. D. Cristofaro, and V. Shmatikov (2019).
“Exploiting unintended feature leakage in collaborative learning”.
arXiv:1805.04049.

[113] Mitra, D. and L. Dolecek (2019). “Patterned erasure correcting
codes for low storage-overhead blockchain systems”. In: 2019
53rd Asilomar Conference on Signals, Systems, and Computers.
IEEE. 1734–1738.

Full text available at: http://dx.doi.org/10.1561/0100000103

References 143

[114] Mohassel, P. and Y. Zhang (2017). “SecureML: A system for
scalable privacy-preserving machine learning”. In: 2017 IEEE
Symposium on Security and Privacy (SP). 19–38.

[115] Narra, K. G., Z. Lin, M. Kiamari, S. Avestimehr, and M. An-
navaram (2019). “Slack squeeze coded computing for adaptive
straggler mitigation”. In: Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and
Analysis. SC ’19. Denver, Colorado: Association for Computing
Machinery.

[116] Nazer, B. and M. Gastpar (2007). “Computation over multiple-
access channels”. IEEE Transactions on Information Theory.
53(10): 3498–3516.

[117] Nodehi, H. A. and M. A. Maddah-Ali (2018). “Limited-sharing
multi-party computation for massive matrix operations”. In:
IEEE International Symposium on Information Theory (ISIT).
1231–1235.

[118] OMalley, O. (2008). “TeraByte sort on apache hadoop”. Tech.
rep. Yahoo.

[119] “Open MPI: Open source high performance computing” (n.d.).
https://www.open-mpi.org/.

[120] Orlitsky, A. and A. El Gamal (1990). “Average and randomized
communication complexity”. IEEE Transactions on Information
Theory. 36(1): 3–16.

[121] Orlitsky, A. and J. Roche (2001). “Coding for computing”. IEEE
Transactions on Information Theory. 47(3): 903–917.

[122] Pawar, S., S. El Rouayheb, and K. Ramchandran (2011). “Secur-
ing dynamic distributed storage systems against eavesdropping
and adversarial attacks”. IEEE Transactions on Information
Theory. 57(10): 6734–6753.

[123] Poulson, J., B. Marker, R. A. van de Geijn, J. R. Hammond,
and N. A. Romero (2013). “Elemental: A new framework for
distributed memory dense matrix computations”. ACM Trans-
actions on Mathematical Software. 39(2): 13:1–13:24.

[124] Prakash, S., A. Reisizadeh, R. Pedarsani, and S. Avestimehr
(2018). “Coded computing for distributed graph analytics”. IEEE
ISIT.

Full text available at: http://dx.doi.org/10.1561/0100000103

https://www.open-mpi.org/

144 References

[125] Rajaraman, A. and J. D. Ullman (2011). Mining of Massive
Datasets. Cambridge University Press.

[126] Ramamoorthy, A. and M. Langberg (2013). “Communicating
the sum of sources over a network”. IEEE Journal on Selected
Areas in Communications. 31(4): 655–665.

[127] Raviv, N., I. Tamo, R. Tandon, and A. G. Dimakis (2017).
“Gradient coding from cyclic MDS codes and expander graphs”.
e-print arXiv:1707.03858.

[128] Rawat, A. S., O. O. Koyluoglu, N. Silberstein, and S. Vish-
wanath (2014). “Optimal locally repairable and secure codes for
distributed storage systems”. IEEE Transactions on Information
Theory. 60(1): 212–236.

[129] Recht, B., C. Re, S. Wright, and F. Niu (2011). “Hogwild: A lock-
free approach to parallelizing stochastic gradient descent”. Ad-
vances in Neural Information Processing Systems (NIPS): 693–
701.

[130] Reisizadeh, A., S. Prakash, R. Pedarsani, and A. S. Avestimehr
(2019). “Coded computation over heterogeneous clusters”. IEEE
Transactions on Information Theory. 65(7): 4227–4242.

[131] Reisizadeh, A., S. Prakash, R. Pedarsani, and S. Avestimehr
(2017). “Coded computation over heterogeneous clusters”. IEEE
ISIT : 2408–2412.

[132] Renteln, P. (2013). Manifolds, Tensors, and Forms: An Introduc-
tion for Mathematicians and Physicists. Cambridge University
Press.

[133] Roth, R. (2006). Introduction to Coding Theory. Cambridge
University Press.

[134] Sahraei, S. and A. S. Avestimehr (2019). “INTERPOL: Infor-
mation theoretically verifiable polynomial evaluation”. In: 2019
IEEE International Symposium on Information Theory (ISIT).
IEEE. 1112–1116.

[135] Sahraei, S., M. A. Maddah-Ali, and S. Avestimehr (2019).
“Interactive verifiable polynomial evaluation”. preprint
arXiv:1907.04302.

Full text available at: http://dx.doi.org/10.1561/0100000103

References 145

[136] Sanghavi, S. (2007). “Intermediate performance of rateless codes”.
In: Information Theory Workshop, 2007. ITW’07. IEEE. 478–
482.

[137] Schölkopf, B., R. Herbrich, and A. J. Smola (2001). “A gen-
eralized representer theorem”. In: International Conference on
Computational Learning Theory. Springer. 416–426.

[138] Seide, F., H. Fu, J. Droppo, G. Li, and D. Yu (2014). “1-bit
stochastic gradient descent and its application to data-parallel
distributed training of speech dnns”. In: Fifteenth Annual Con-
ference of the International Speech Communication Association.

[139] Shah, N. B., K. Lee, and K. Ramchandran (2016). “When do
redundant requests reduce latency?” IEEE Transactions on Com-
munications. 64(2): 715–722.

[140] Shah, N. B., K. Rashmi, and P. V. Kumar (2011). “Information-
theoretically secure regenerating codes for distributed storage”.
In: Global Telecommunications Conference (GLOBECOM 2011),
2011. IEEE. 1–5.

[141] Shamir, A. (1979). “How to share a secret”. Communications of
the ACM. 22(11): 612–613.

[142] Shanmugam, K., A. G. Dimakis, and M. Langberg (2013). “Local
graph coloring and index coding”. In: 2013 IEEE International
Symposium on Information Theory. 1152–1156.

[143] Singleton, R. (1964). “Maximum distance q-nary codes”. IEEE
Transactions on Information Theory. 10(2): 116–118.

[144] So, J., B. Guler, and A. S. Avestimehr (2020). “Turbo-aggregate:
Breaking the quadratic aggregation barrier in secure federated
learning”. arXiv: 2002.04156 [cs.LG].

[145] So, J., B. Guler, A. S. Avestimehr, and P. Mohassel (2019).
“CodedPrivateML: A fast and privacy-preserving framework for
distributed machine learning”. CoRR. abs/1902.00641. arXiv:
1902.00641.

[146] Song, L., C. Fragouli, and T. Zhao (2017). “A pliable index
coding approach to data shuffling”. e-print arXiv:1701.05540.

Full text available at: http://dx.doi.org/10.1561/0100000103

146 References

[147] Tandon, R., Q. Lei, A. G. Dimakis, and N. Karampatziakis (2017).
“Gradient coding: Avoiding stragglers in distributed learning”.
In: Proceedings of the 34th International Conference on Machine
Learning. Vol. 70. Proceedings of Machine Learning Research. In-
ternational Convention Centre, Sydney, Australia: PMLR. 3368–
3376.

[148] Tang, L., K. Konstantinidis, and A. Ramamoorthy (2019). “Era-
sure Coding for distributed matrix multiplication for matrices
with bounded entries”. IEEE Communications Letters. 23(1):
8–11.

[149] “tc – show/manipulate traffic control settings” (n.d.). http://
lartc.org/manpages/tc.txt.

[150] Ullman, J. D., A. V. Aho, and J. E. Hopcroft (1974). The Design
and Analysis of Computer Algorithms. Vol. 4. Addison-Wesley,
Reading. 1–2.

[151] Van De Geijn, R. A. and J. Watts (1997). “SUMMA: Scalable uni-
versal matrix multiplication algorithm”. Concurrency-Practice
and Experience. 9(4): 255–274.

[152] Wan, K., D. Tuninetti, M. Ji, and P. Piantanida (2018).
“Fundamental limits of distributed data shuffling”. e-print
arXiv:1807.00056.

[153] Wang, D., G. Joshi, and G. Wornell (2014). “Efficient task
replication for fast response times in parallel computation”. ACM
SIGMETRICS Performance Evaluation Review. 42(1): 599–600.

[154] Wang, H., Z. Charles, and D. Papailiopoulos (2019a). “Era-
sureHead: Distributed gradient descent without delays using
approximate gradient coding”. preprint arXiv:1901.09671.

[155] Wang, S., J. Liu, and N. Shroff (2018a). “Coded sparse matrix
multiplication”. e-print arXiv:1802.03430.

[156] Wang, S., J. Liu, and N. Shroff (2019b). “Fundamental limits
of approximate gradient coding”. Proceedings of the ACM on
Measurement and Analysis of Computing Systems. 3(3): 52.

[157] Wang, S., J. Liu, N. Shroff, and P. Yang (2018b). “Fundamental
limits of coded linear transform”. e-print arXiv:1804.09791.

Full text available at: http://dx.doi.org/10.1561/0100000103

http://lartc.org/manpages/tc.txt
http://lartc.org/manpages/tc.txt

References 147

[158] Wen, W., C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li
(2017). “TernGrad: Ternary gradients to reduce communication
in distributed deep learning”. Advances in Neural Information
Processing Systems (NIPS): 1508–1518.

[159] Woolsey, N., R.-R. Chen, and M. Ji (2018). “A new com-
binatorial design of coded distributed computing”. e-print
arXiv:1802.03870.

[160] Yang, H. and J. Lee (2019). “Secure distributed computing with
straggling servers using polynomial codes”. IEEE Transactions
on Information Forensics and Security. 14(1): 141–150.

[161] Yang, Y., M. Interlandi, P. Grover, S. Kar, S. Amizadeh, and
M. Weimer (2019). “Coded elastic computing”. In: 2019 IEEE
International Symposium on Information Theory (ISIT). 2654–
2658.

[162] Yang, Y., P. Grover, and S. Kar (2017). “Coded distributed com-
puting for inverse problems”. In: Advances in Neural Information
Processing Systems 30. Ed. by I. Guyon, U. V. Luxburg, S. Ben-
gio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett.
Curran Associates, Inc. 709–719. url: http://papers.nips.cc/
paper/6673-coded-distributed-computing-for-inverse-problems.
pdf.

[163] Yao, A. C.-C. (1979). “Some complexity questions related to
distributive computing (preliminary report)”. In: Proceedings of
the Eleventh Annual ACM Symposium on Theory of Computing.
209–213.

[164] Ye, M. and E. Abbe (2018). “Communication-computation effi-
cient gradient coding”. e-print arXiv:1802.03475.

[165] Yu, M., S. Sahraei, S. Li, S. Avestimehr, S. Kannan, and P.
Viswanath (2020). “Coded Merkle tree: Solving data availability
attacks in blockchains”. In: Financial Cryptography and Data
Security (FC).

[166] Yu, Q., S. Li, M. A. Maddah-Ali, and A. S. Avestimehr (2017a).
“How to optimally allocate resources for coded distributed com-
puting?” IEEE International Conference on Communications
(ICC). May: 1–7.

Full text available at: http://dx.doi.org/10.1561/0100000103

http://papers.nips.cc/paper/6673-coded-distributed-computing-for-inverse-problems.pdf
http://papers.nips.cc/paper/6673-coded-distributed-computing-for-inverse-problems.pdf
http://papers.nips.cc/paper/6673-coded-distributed-computing-for-inverse-problems.pdf

148 References

[167] Yu, Q., M. A. Maddah-Ali, and A. S. Avestimehr (2017b). “Poly-
nomial codes: An optimal design for high-dimensional coded
matrix multiplication”. Advances in Neural Information Process-
ing Systems (NIPS): 4406–4416.

[168] Yu, Q., M. A. Maddah-Ali, and A. S. Avestimehr (2018a). “Strag-
gler mitigation in distributed matrix multiplication: Fundamental
limits and optimal coding”. e-print arXiv:1801.07487.

[169] Yu, Q., M. A. Maddah-Ali, and A. S. Avestimehr (2018b). “Strag-
gler mitigation in distributed matrix multiplication: Fundamental
limits and optimal coding”. In: IEEE International Symposium
on Information Theory (ISIT). 2022–2026.

[170] Yu, Q., N. Raviv, J. So, and A. S. Avestimehr (2018c). “Lagrange
coded computing: Optimal design for resiliency, security and
privacy”. e-print arXiv:1806.00939.

[171] Zaharia, M., M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica (2010). “Spark: Cluster computing with working sets”.
In: Proceedings of the 2nd USENIX HotCloud. Vol. 10. 10.

[172] Zaharia, M., A. Konwinski, A. D. Joseph, R. H. Katz, and I. Sto-
ica (2008). “Improving MapReduce performance in heterogeneous
environments”. Operating Systems Design and Implementation.
8(4): 7.

[173] Zhang, S., J. Han, Z. Liu, K. Wang, and S. Feng (2009). “Accel-
erating MapReduce with distributed memory cache”. 15th IEEE
International Conference on Parallel and Distributed Systems
(ICPADS). Dec.: 472–478.

[174] Zhang, Z., L. Cherkasova, and B. T. Loo (2013). “Performance
modeling of MapReduce jobs in heterogeneous cloud environ-
ments”. In: IEEE Sixth International Conference on Cloud Com-
puting. 839–846.

[175] Zhuang, Y., W.-S. Chin, Y.-C. Juan, and C.-J. Lin (2013). “A fast
parallel SGD for matrix factorization in shared memory systems”.
In: Proceedings of the 7th ACM Conference on Recommender
Systems. ACM. 249–256.

Full text available at: http://dx.doi.org/10.1561/0100000103

