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ABSTRACT

We focus on some specific problems in distribution testing,
taking goodness-of-fit as a running example. In particular,
we do not aim to provide a comprehensive summary of all
the topics in the area; but will provide self-contained proofs
and derivations of the main results, trying to highlight the
unifying techniques.
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1
What Is Distribution Testing?

This survey serves as an introduction and detailed overview of some top-
ics in (probability) distribution testing, an area of theoretical computer
science which falls under the general umbrella of property testing, and
sits at the intersection of computational learning, statistical learning
and hypothesis testing, information theory, and (depending on whom
one asks) the theory of machine learning. Broadly speaking, distribution
testing is concerned with the following type of questions:

Given a small number of independent data points from some
blackbox random source, can we efficiently decide whether the
distribution of the data follows some purported model (“property”),
or is statistically far from doing so?

Of course, there are many details to be made precise here. What
type of assumptions on the data do we make – is it discrete, continu-
ous, univariate, high-dimensional? What do we mean by “efficiently” –
the number of data points (data efficiency), the running time of our
algorithms (time efficiency), both? What do we mean by “far” – what
notion of distance are we considering? And what type of error do we
allow – false positives (Type I), false negative (Type II)?

2

Full text available at: http://dx.doi.org/10.1561/0100000114



3

Some of these are left flexible, as we will see below when formally
introducing the setting of distribution testing. However, the general
idea is to focus on finite sample guarantees (no qualitative limiting
statements as data size grows to infinity), for a fixed error probability
target δ controlling both Type I and Type II, and making as few
assumptions as possible under the (composite) alternative hypothesis.
That is, we will answer questions of the form “either the distribution of
the data satisfies the property, or it is pretty much anything far from
that.”

Adopting a Computer Science viewpoint, we will also assume that the
“size” of the object considered – typically, the domain size for discrete
data – is large, which allows us to focus on the first-order dependence
on this quantity. This also implies we typically consider a worst-case
(minimax) setting with respect to this quantity, making statements
about the worst-case data size, or time, required to achieve our goal.
This does not mean the algorithms and ideas obtained do not lead to
“practical” algorithms: rather, that people working in distribution testing
are quite pessimistic and paranoid in nature, and want the guarantee
that things are never too slow before the promise that they often are
quite fast. (Moreover, as we will see later, the worst-case instances for
most of our testing tasks are actually quite natural, and likely to arise
in practice! Paranoia, for once, may be warranted.)

A note. For simplicity, throughout this survey we will sweep under
the rug many measure-theoretic subtleties, and assume probability
distributions, probability density functions (pdf), and probability mass
functions (pmf) exist whenever required, and are suitably well-behaved.
We will also typically identify a probability distribution with its pdf
or pmf, and by a slight abuse of notation use p indifferently for the
distribution itself and its pdf. Most, if not all, of those subtleties can be
handled by inserting the words “Radon–Nikodym,” “measurable,” and
“counting measure” in suitable places and order.

Full text available at: http://dx.doi.org/10.1561/0100000114



4 What Is Distribution Testing?

1.1 Formulation, and relation to Hypothesis Testing

In what follows, k ∈ N will be used to parametrize the domain of the
probability distributions: namely, ∆k will denote the set of probability
distributions over a (known) domain Xk.

We begin with the notion of distance we will be concerned about,
the total variation distance (also known as statistical distance):

Definition 1.1 (Total variation distance). The total variation distance
between two probability distributions p,q ∈ ∆k is given by

dTV(p,q) = sup
S⊆Xk

(p(S)− q(S)) .

Given a subset C ⊆ ∆k of distributions, we further define the distance
from p ∈ ∆k to C as dTV(p, C) := infq∈C dTV(p,q), and will say that
p is ε-far from C if dTV(p, C) > ε.

One can check that dTV defines a metric on ∆k, and takes values in
[0, 1]. Moreover, the total variation distance exhibits several important
properties, some of which will be detailed at length in Appendix B; we
recall a crucial one below.

Fact 1.1 (Data Processing Inequality). Suppose X and Y are independent
random variables with distributions p and q, and let f be any (possi-
bly randomized) function independent of X,Y . Then the probability
distributions pf and qf of f(X) and f(Y ) satisfy

dTV(pf ,qf ) ≤ dTV(p,q) .

That is, postprocessing cannot increase the total variation distance.

Assuming that p,q are absolutely continuous with respect to some
dominating measure µ,

dTV(p,q) = 1
2

∫ ∣∣∣∣dp
dµ −

dq
dµ

∣∣∣∣ dµ (1.1)

In the discrete case where p,q are both over N or a finite domain, this
leads to

dTV(p,q) = 1
2∥p− q∥1 (1.2)

Full text available at: http://dx.doi.org/10.1561/0100000114



1.1. Formulation, and relation to Hypothesis Testing 5

that is, “total variation is half the ℓ1 distance between pmfs.” This turns
out to be a very useful connection, since ℓp norms are quite well-studied
beasts: we get to use our arsenal of geometric inequalities — Hölder,
Cauchy–Schwarz, and monotonicity of ℓp norms, to name a few.

One last piece of terminology: a property of distributions is a pred-
icate we are interested in (e.g., “is the probability distribution uni-
modal?”). By identifying the predicate with the set of objects which
satisfy it, we can equivalently view a property of distributions as a subset
of probability distributions (typically, with some interesting structure).
Which is what we will do: throughout, a property is just an arbitrary
subset of distributions we are interested in (see Figure 1.1 for an illus-
tration). With this in hand, we are ready to provide a formal definition
of what a “testing algorithm” is.

Definition 1.2 (Testing algorithm). Let P =
⋃∞
k=1 Pk and C =

⋃∞
k=1 Ck

be two properties of probability distributions, where Pk, Ck ⊆ ∆k for
all k; and n : N × (0, 1] × (0, 1] → N, t : N × (0, 1] × (0, 1] → N be two
functions. A testing algorithm for P under C with sample complexity n
and time complexity t is a (possibly randomized) algorithm A which, on
input k ∈ N, ε ∈ (0, 1], δ ∈ (0, 1], and a multiset S of n(k, ε, δ) elements
of Xk, runs in time at most t(k, ε, δ) and outputs b ∈ {0, 1} such that
the following holds.

• If S is i.i.d. from some p ∈ Pk, then PrS,A[ b = 1 ] ≥ 1− δ;

• If S is i.i.d. from some p ∈ Ck such that dTV(p,Pk) > ε, then
PrS,A[ b = 0 ] ≥ 1− δ,

where in both cases the probability is over the draw of the i.i.d. sample
S from the (unknown) p, and the internal randomness of A.

The sample complexity of testing P under C is then the minimum sample
complexity n(k, ε, δ) achievable by a testing algorithm.

A few remarks are in order. First, in most of our applications we
will take Ck = ∆k, so that the unknown distribution p is a priori
arbitrary, and the goal is to check whether it belongs to the subset
(property) of interest Pk. However, this need not always be the case,

Full text available at: http://dx.doi.org/10.1561/0100000114



6 What Is Distribution Testing?

∆k

Ck

ε
Pk

Figure 1.1: An example of property to test. Here, Pk ⊆ Ck ⊆ ∆k, where the
property Pk is depicted as the inner orange area (“yolk”), and the “egg white” is the
area of rejection, i.e., the subset of Ck at total variation distance at least ε from Pk.1

and we may want to choose Ck differently to perform hypothesis testing
under structural assumptions: for instance, to test whether an unknown
unimodal distribution is actually Binomial (in this case, Pk ⊊ Ck ⊊ ∆k),
or if say a log-concave distribution is monotone (in which case there is
no inclusion relation between Pk and Ck, and both are strict subsets of
∆k).

Another important point is that, while our main focus will be on
discrete distributions, Definition 1.2 allows for continuous distribu-
tions as well. Finally, the above definition is quite flexible, and can
be seen to allow for testing multiple distributions: for instance, taking
Xk = [k]× [k], Ck := { p ∈ ∆k : p = p1 ⊗ p2 } (product distributions),
and Pk := { p1 ⊗ p2 ∈ Ck : p1 = p2 }, we obtain the question of two-
sample testing (a.k.a. closeness testing), which asks to test whether two
unknown distributions over [k] are equal, or far from each other.

1TikZ code for Figure 1.1 adapted from https://tex.stackexchange.com/a/598086/
31516.
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1.1. Formulation, and relation to Hypothesis Testing 7

Dependence on the error probability δ. Our definition of testing
algorithm leaves the error probability δ as a free parameter; however, it
is quite common in the distribution testing literature to set it as some
arbitrary constant smaller than 1/2 (usually 1/3). Indeed, by a standard
argument, an error probability 1/3 can be driven down to arbitrary δ
at the price of a O(log(1/δ)) factor in the sample complexity.

Lemma 1.1 (Error probability amplification). Fix P and C, and suppose
there exists a testing algorithm A for P under C with sample complexity
n(k, ε, 1/3) and time complexity t(k, ε, 1/3). Then there is a testing algo-
rithm A′ for P under C with sample and time complexities n′(k, ε, δ) :=
n(k, ε, 1/3)⌈18 ln(1/δ)⌉ and t′(k, ε, δ) := O(t(k, ε, 1/3) log(1/δ)).

Proof sketch. Fix P , C, A as in the statement. Given k, ε, and δ ∈ (0, 1],
let A′ be the algorithm which takes as input a multiset of n′(k, ε, δ)
elements, partitions it (arbitrarily) in m := ⌈18 ln(1/δ)⌉ disjoint multi-
sets S1, . . . , Sm, runs A independently on those m multisets with error
probability 1/3 to get b1, . . . ,bm, and finally outputs the majority
answer b := 1{

∑m
i=1 bi ≥ m/2}. The running time is dominated by

the m executions, giving the claimed O(m · t(k, ε, 1/3)) bound. Thus, it
suffices to check that the output is correct with probability at least 1−δ;
this in turn follows from a Hoeffding bound (Theorem A.3). Indeed,
by assumption, each bi is independently correct with some probability
p ≥ 2/3. Letting Xi ∼ Bern(p) be the indicator of the event “bi is the
correct output,” we have

Pr[ b incorrect ] = Pr
[

1
m

m∑
i=1

Xi <
1
2

]
≤ e−2(p−1/2)2m ≤ e−m/18 ≤ δ ,

where we used our setting of m in the last inequality.

Importantly, this logarithmic dependence is not always the right
one: as we will see in Section 2, there exist natural problems for which
the right dependence on the error probability only scales as

√
log(1/δ).

The learning baseline. Before setting out to design specific algorithms
for various testing tasks and analyze their performance, it is good
to have some sort of baseline to compare the result to. The most

Full text available at: http://dx.doi.org/10.1561/0100000114



8 What Is Distribution Testing?

natural one is the testing-by-learning approach, which can essentially be
summarized as follows: the sample complexity of testing P =

⋃∞
k=1 Pk

under C =
⋃∞
k=1 Ck is at most the sample complexity of, given k, learning

an arbitrary distribution from Pk ∪ Ck. More specifically, we have the
following:

Lemma 1.2 (Testing by Learning). Fix any P =
⋃∞
k=1 Pk and C =⋃∞

k=1 Ck, and let nL(k, ε, δ) denote the sample complexity of learning an
arbitrary probability distribution from Pk ∪ Ck ⊆ ∆k to total variation
ε with error probability at most δ. Then, the sample complexity n of
testing P under C satisfies

n(k, ε, δ) ≤ nL(k, ε2 , δ) .

This is not necessarily achieved by a computationally efficient tester.

Proof. Fix a learning algorithm A for Pk ∪ Ck with sample complexity
n := nL(k, ε2 , δ). By running it on n i.i.d. samples from p (which we are
promised either belongs to Pk or Ck), we obtain a distribution p̂ such
that dTV(p̂,p) ≤ ε/2 with probability at least 1− δ. Assuming this is
the case, then (i) if p ∈ Pk, then of course dTV(p̂,P) ≤ ε/2; while (ii) if
dTV(p,P) > ε, by the triangle inequality (since total variation distance
is a metric) we must have dTV(p̂,P) > ε/2.

But we have an explicit description of p̂ in our hands, so we can
check which of the two cases holds – this may not be computationally
efficient, but does not require any additional sample from p. Thus, we
have a bona fide testing algorithm for P under C.

Importantly, this baseline is with respect to the sample complexity
of learning distributions from Pk ∪ Ck, not just Pk: the latter is in
general much larger! For instance, if Pk is a singleton but Ck = ∆k (e.g.,
as in identity testing, which we shall see in Section 2) then learning
Pk has sample complexity 0, but learning Pk ∪ Ck = ∆k has sample
complexity Ω(k). This leads us to our baseline: since Pk ∪ Ck ⊆ ∆k, the
sample complexity of any distribution testing problem is at most the
sample complexity of learning an arbitrary distribution over a known
domain of the same size, which we record below:

Full text available at: http://dx.doi.org/10.1561/0100000114



1.1. Formulation, and relation to Hypothesis Testing 9

Theorem 1.3 (Learning baseline). The sample complexity of learning
an arbitrary probability distribution from ∆k to total variation ε with
error probability at most δ is

nL(k, ε, δ) = Θ
(
k + log(1/δ)

ε2

)
,

giving an upper bound on the sample complexity of any testing problem.

The proof can be found in various places; e.g., Canonne [28] and
Kamath et al. [65]. This testing-by-learning baseline, which is linear in
the domain size k, motivates the name commonly given to testing algo-
rithms which achieve significantly better sample complexity: sublinear
algorithms.

Worst-case distance parameter ε. As defined, a testing algorithm
must reject all distributions which are at distance greater than ε from the
property, where ε is provided as an input parameter. In particular, the
requirement is oblivious to the true distance ε(p) := dTV(p,Pk) > ε of
the unknown distribution p to the property, and the sample complexity
is just expressed as a function of the “worst-case” ε. Instead of this,
one may want an adaptive algorithm which only takes the number of
samples “needed” to reject, as a function of ε(p): after all, in cases
where ε(p)≫ ε, one may reject after taking much fewer samples.

As it turns out, our focus on “worst-case ε” readily implies this
adaptive setting, via the use of a doubling search. The idea is quite
simple: given a testing algorithm A, we create an adaptive testing
algorithm A′ by repeatedly trying to guess the true distance ε(p),
starting at ε0 = 1 and halving our current guess εj at every stage until
we reach εL = ε, and calling A for every guess, with parameters k, εj ,
and a suitable probability of failure δj at stage j. If any of these (at
most L := ⌈log(1/ε)⌉) calls leads to a rejection, A′ outputs 0; otherwise,
it outputs 1. The key is to choose δj suitably so that (1) by a union
bound all invocations of A are correct with probability at least 1− δ,
but (2) the union bound does not cost too much in terms of sample
complexity. A standard way to do so is to set δj := δ

2(j+1)2 (though
many other choices of convergent series would do), so that

∑∞
j=0 δj ≤ δ.

Full text available at: http://dx.doi.org/10.1561/0100000114



10 What Is Distribution Testing?

The resulting sample complexity will then be, in the case ε(p) > ε,

⌈log(1/ε(p))⌉∑
j=0

n(k, εj , δj) =
⌈log(1/ε(p))⌉∑

j=0
n

(
k, 2−j ,

δ

2(j + 1)2

)
,

where n(·, ·, ·) denotes the sample complexity of A. Under very mild
conditions on n, this will be of the order n

(
k, ε(p), δ

log(1/ε(p))

)
, and

recalling that the dependence on the error probability is at worst
logarithmic, this means that adapting to the true value of ε(p) incurs
a cost at most doubly logarithmic in ε(p). Of course, when p ∈ Pk,
our adaptive algorithm A′ should run for all of the L := ⌈log(1/ε)⌉
iterations (until εL) in order to output 1, in which case the sample
complexity will be bounded as

⌈log(1/ε)⌉∑
j=0

n

(
k, 2−j ,

δ

2(j + 1)2

)
.

We will see a concrete example of this technique in Exercise 2.11.

1.2 Why total variation distance?

The standard formulation of distribution testing, as stated in Defini-
tion 1.2, is tied to a specific metric between probability distributions:
the total variation distance (Definition 1.1). It is natural to wonder if
that choice is arbitrary, and, if not, what motivates it.

• Total variation distance provides a very strong guarantee, and for
instance is the most stringent of all ℓp norms. This has practical
consequences: if a source of data passes the test, then it will be
nearly “as good as if it had the desired property” as far as any
algorithm is concerned.

• It is well-behaved: total variation distance defines a proper metric,
and thus satisfies for instance the triangle inequality (which cannot
be said about, for instance, Kullback–Leibler divergence). It is
also nicely bounded, and will not take infinite values due to
pathological reasons.
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1.2. Why total variation distance? 11

• It satisfies the data processing inequality (Fact 1.1), which means
it is robust to preprocessing. If data comes from two sources close
in total variation distance, then post-processing this data cannot
make their distribution statistically further apart. This is not the
case for, among others, the ℓ2 metric.

• Its relation to hypothesis testing: total variation distance has
a natural and precise interpretation in terms of distinguishabil-
ity. This is formalized in Lemma 1.4, and makes total variation
distance the “right” notion of distance in applications such as
cryptography, and when arguing about indistinguishability of data
sources.

• Its connection to other distance measures. Total variation distance
enjoys various inequalities relating it to other distance measures
such as Kullback–Leibler divergence, ℓp metrics, Hellinger distance,
Kolmogorov distance, and Wasserstein (Earthmover) metric. Some
of those are elaborated upon in Appendix B.

Of course, total variation distance also has its drawbacks: it is
sometimes too stringent, especially when considering distributions over
continuous domains: in that case, absent further assumptions on the
unknown continuous density, the testing problem becomes trivially
impossible [67]. It also does not “tensorize” well (as opposed to, say,
Hellinger distance or Kullback–Leibler divergence), meaning that the
total variation distance between product measures does not have a
nice form with respect to the total variation distances between indi-
vidual marginals. And indeed, there are pros and cons to each choice;
although in this case the above should convince you that the pros vastly
outnumber the cons.

Relation to hypothesis testing. As aforementioned, there is a natural
connection between total variation distance and hypothesis testing,
which we recall below.
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12 What Is Distribution Testing?

Lemma 1.4 (Pearson–Neyman). Any (possibly randomized) statistical
test which distinguishes between p0 and p1 from a single sample must
have Type I (false positive) and Type-II (false negative) errors satisfying

Type I + Type II ≥ 1− dTV(p0,p1)

Moreover, this is achieved by the test which outputs 1 if, and only if,
the sample belongs to the set S∗ := { x : p1(x) > p0(x) }.

Proof. Fix any test A distinguishing between two distributions p0 and
p1, given a single observation. Letting α and β denote the Type I and
Type-II errors of A, we have

α+ β = Pr
p0,R

[A(X,R) = 1 ] + Pr
p1,R

[A(X,R) = 0 ]

= ER[Pr
p0

[A(X,R) = 1 ]] + ER[Pr
p1

[A(X,R) = 0 ]]

= ER[Pr
p0

[A(X,R) = 1 ] + Pr
p1

[A(X,R) = 0 ]]

where we denote by R the internal randomness of A. Since, for any
fixed realization r of this randomness R, the resulting test A(·, r) is
deterministic, we can define for any r the acceptance region SA,r :=
{ x : A(x, r) = 1 }, and write

α+ β = ER[Pr
p0

[X ∈ SA,R ] + Pr
p1

[X /∈ SA,R ]]

= 1 + ER[p0(SA,R)− p1(SA,R)]
≥ 1 + inf

S
(p0(S)− p1(S))

= 1− sup
S

(p1(S)− p0(S))

= 1− dTV(p0,p1) ,

as claimed. Finally, it is immediate from the definition of total variation
distance that the proposed test satisfies Type I+Type II = 1+p0(S∗)−
p1(S∗) = 1− dTV(p0,p1).

1.3 The road not taken: tolerant testing

In Definition 1.2 and throughout this survey, we focus on the standard
formulation version of testing, where the unknown distribution p either
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1.4. Historical notes 13

belongs to the property Pk or is far from it. A natural generalization
of this, allowing for some “tolerance” to noise or misspecification in
the former case, would be to ask to distinguish p close to Pk from p
far from it. This is called tolerant testing [72], and is formalized by
introducing two parameters 0 ≤ ε′ < ε ≤ 1, and relaxing the first item
of Definition 1.2 to

If S is i.i.d. from some p ∈ ∆k such that dTV(p,Pk) ≤ ε′,
then PrS,A[ b = 1 ] ≥ 1− δ;

(Note then that our regular, “non-tolerant” testing corresponds to
taking ε′ = 0.) The tolerant testing task, sometimes called in Statistics
testing with an imprecise null, typically requires a much higher sample
complexity than the non-tolerant one [81], and both algorithms and
lower bounds are obtained via significantly different techniques. For
this reason, we will not here discuss tolerant testing in much, or indeed
any detail: the interested reader is referred to, e.g., Wu et al. [86] for
a primer on some of those techniques, and to Canonne et al. [32] and
references within for an overview of results on tolerant goodness-of-fit
testing.

1.4 Historical notes

Hypothesis testing has a long and rich history in Statistics, starting
with the work of Pearson [73] introducing the χ2 test, and leading to
substantial advances over the next century. While it is difficult and
slightly dangerous to reduce twelve decades of intense research and
study in a few sentences,2 standard approaches in Statistics share a
few common features. First, they are asymptotic in nature (as opposite
to focusing on finite-sample guarantees), establishing and studying the
limiting distribution of a given test as the sample size goes to infinity.
This enables one to compute confidence intervals, and obtain a swath of
information from the limiting distribution; but by itself provides little
insight regarding the intermediate, finite-sample regime. Second, they
tend to focus on the so-called Type I error (significance of the test),

2Which is exactly what the following paragraph will set out to do regardless.
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14 What Is Distribution Testing?

i.e., the probability to mistakenly reject the null hypothesis H0, and
only after fixing this significance level set out to minimize the Type II
error (that is, maximize the power of the test), which is the probability
to mistakenly accept the alternative hypothesis H1. This is, again,
an oversimplification; the reader should refer to, e.g., Balakrishnan
et al. [14] for a complementary and more detailed view. Nonetheless,
these features are two of the most salient points of contrast with the
very recent and related take on hypothesis testing from the theoretical
computer science community, distribution testing, which perhaps shares
most similarity with the work of Ingster [61], [62].

Distribution testing was first introduced in an influential paper
by Goldreich et al. [58], which formally defined the broader field of
property testing; Goldreich et al. [59] then specifically considered the
question of testing uniformity of an unknown probability distribution (in
an ℓ2 sense), using the collision-based tester to test whether a random
walk had (approximately) reached its stationary distribution.

This was, however, only implicitly using uniformity testing as a
subroutine in the context of testing some property (expansion) of
bounded-degree graphs. The work of Batu et al. [19] first considers
distribution testing for its own sake, studying the question of closeness
testing (i.e., two-sample testing), where one seeks to decide from samples
if two unknown distributions are equal. This initiated a long line of work
on testing many properties – including uniformity, identity, closeness,
monotonicity, independence (being a product distribution), to name
only a few.

While the early papers focused on the dependence on the domain
size k, treating the distance parameter ε as a small constant or a second-
order concern, later works, beginning with Chan et al. [37], started
looking for the tight dependence on ε as well. Even more recently, the
“right” dependence on δ, the error probability, has come into focus as
well [41], [43]. This, in some sense, brings the theoretical computer
science closer to the information theory literature, where the focus on
the error exponent (that is, the rate at which the error probability
decays exponentially, as a function of the other parameters) is the
standard view.
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Another recent trend in distribution testing has been to consider
different “accesses” to the data, rather than i.i.d. samples: for instance,
access to so-called conditional samples [34], [36], or the ability to ask
for, or observe, the probability of individual elements of the domain [35],
[70], [75]. These types of access allow for much more efficient testing
algorithms, but require significantly different algorithmic tools and proof
techniques, and we will not discuss them here. For more on this, we
defer the interested reader to another survey, Canonne [29].

Finally, over the past few years distribution testing has ventured
into adjacent areas of computer science and information theory, by
incorporating various constraints and resources into its formulation.
Examples include data privacy (and, more specifically, differential pri-
vacy [52] and its variants) – see, e.g., [64], memory constraints, and
bandwidth constraints [79]; of which we will cover a fraction in Section 4.
This has been done by borrowing, extending, and (re)discovering ideas
and techniques from these areas and Statistics; somewhat satisfyingly,
leading distribution testing back to some of its roots.

This survey aims to describe some of these connections, and provide
an overview of these ideas and techniques which took years for the
author to learn about.
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A
Some Good Inequalities

We only mention here a few good bounds that we found to be useful,
and sufficient in many or most settings. There are, of course, many
others, and many refinements or variants of the bounds we present here.
We refer the reader to, e.g., Vershynin [85, Chapter 2] or Boucheron et
al. [23] for a much more comprehensive and insightful coverage.

We start with the mother of all concentration inequalities, Markov’s
inequality:

Theorem A.1 (Markov’s inequality). Let X be a non-negative random
variable with E[X] <∞. For any t > 0, we have

Pr[X ≥ t] ≤ E[X]
t

Applying this to (X − E[X])2, we get

Theorem A.2 (Chebyshev’s inequality). Let X be a random variable
with E

[
X2] <∞. For any t > 0, we have

Pr[|X − E[X]| ≥ t] ≤ Var[X]
t2

By applying Markov’s inequality to the moment-generating function
(MGF) of

∑n
i=1Xi in various ways, one can also obtain the following

statements:
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Theorem A.3 (Hoeffding bound). Let X1, . . . , Xn be independent ran-
dom variables, where Xi takes values in [ai, bi]. For any t ≥ 0, we
have

Pr
[
n∑
i=1

Xi >
n∑
i=1

E[Xi] + t

]
≤ exp

(
− 2t2∑n

i=1(bi − ai)2

)
(A.1)

Pr
[
n∑
i=1

Xi <
n∑
i=1

E[Xi]− t
]
≤ exp

(
− 2t2∑n

i=1(bi − ai)2

)
(A.2)

Corollary A.4 (Hoeffding bound). Let X1, . . . , Xn be i.i.d. random vari-
ables taking value in [0, 1], with mean µ. For any γ ∈ (0, 1] we have

Pr
[∣∣∣∣∣ 1n

n∑
i=1

Xi − µ
∣∣∣∣∣ > γ

]
≤ 2 exp

(
−2γ2n

)
(A.3)

Theorem A.5 (Chernoff bound). Let X1, . . . , Xn be independent random
variables taking value in [0, 1], and let P :=

∑n
i=1 E[Xi] For any γ ∈ (0, 1]

we have

Pr
[
n∑
i=1

Xi > (1 + γ)P
]
< exp

(
−γ2P/3

)
(A.4)

Pr
[
n∑
i=1

Xi < (1− γ)P
]
< exp

(
−γ2P/2

)
(A.5)

In particular, if X1, . . . , Xn are i.i.d. with mean µ, then for any γ ∈ (0, 1]
we have

Pr
[∣∣∣∣∣ 1n

n∑
i=1

Xi − µ
∣∣∣∣∣ > γµ

]
≤ 2 exp

(
−γ2nµ/3

)
(A.6)

As a rule of thumb, the “multiplicative” (Chernoff) from Theo-
rem A.5 is preferable to the “additive” bound (Hoeffding) from Corol-
lary A.4 whenever µ := P/n ≪ 1. In case one only has an upper or
lower bound on the quantity P =

∑n
i=1 E[Xi], the following version of

the Chernoff bound can come in handy:
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Theorem A.6 (Chernoff bound (upper and lower bound version)). In the
setting of Theorem A.5, suppose that PL ≤ P ≤ PH . Then for any
γ ∈ (0, 1], we have

Pr
[
n∑
i=1

Xi > (1 + γ)PH

]
< exp

(
−γ2PH/3

)
(A.7)

Pr
[
n∑
i=1

Xi < (1− γ)PL

]
< exp

(
−γ2PL/2

)
(A.8)

Theorem A.7 (Bernstein’s inequality). Let X1, . . . , Xn be independent
random variables taking values in [−a, a], and such that E

[
X2
i

]
≤ vi for

all i. Then, for every t ≥ 0, we have

Pr
[∣∣∣∣∣

n∑
i=1

Xi −
n∑
i=1

E[Xi]
∣∣∣∣∣ ≥ t

]
≤ exp

(
− t2

2(
∑n
i=1 vi + a

3 t)

)
.

In particular, if X1, . . . , Xn are i.i.d. with mean µ and E
[
X2

1
]
≤ v, then

for any γ ≥ 0 we have

Pr
[∣∣∣∣∣ 1n

n∑
i=1

Xi − µ
∣∣∣∣∣ ≥ γ

]
≤ exp

(
− γ2n

2(v + a
3γ)

)
.

Observe that this tail bound exhibits both behaviours: it decays in
a subgaussian fashion for small γ, before switching to a subexponential
tail bound for large γ.

We conclude this section by providing a very convenient bound,
specifically for Poisson random variables, which shares the same “two-
tail” behaviour:

Theorem A.8 (Poisson concentration). Let X be a Poisson(λ) random
variable, where λ > 0. Then, for any t > 0, we have

Pr[X ≥ λ+ t ] ≤ e− t2
2λ
ψ( t

λ ) ≤ e− t2
2(λ+t) (A.9)

and, for any 0 < t < λ,

Pr[X ≤ λ− t ] ≤ e− t2
2λ
ψ(− t

λ ) ≤ e− t2
2(λ+t) , (A.10)

where ψ(u) := 2 (1+u) ln(1+u)−u
u2 for u ≥ −1. In particular, for any t ≥ 0,

Pr[ |X − λ| ≥ t ] ≤ 2e− t2
2(λ+t) . (A.11)
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B
Metrics and Divergences Between Probability

Distributions

We here focus on distributions over discrete domains; all of the stated
results do extend to the continuous settings, replacing ratios by Radon–
Nikodym derivatives and sums by suitable integrals.

We briefly recall the definitions of the distance measures between
probability distributions we will use here. This list is by no means
exhaustive, of course: there be (many more) dragons.

Definition B.1. For two probability distributions p1,p2 over the same
domain X , the Kullback–Leibler divergence (in nats), chi–square diver-
gence, and Hellinger distance are given by

D(p1∥p2) =
∑
x∈X

p1(x) ln p1(x)
p2(x) (B.1)

χ2(p1 || p2) =
∑
x∈X

(p1(x)− p2(x))2

p2(x) (B.2)

dH(p1,p2) = 1√
2
∥√p1 −

√p2∥2 , (B.3)
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with the convention that 0 ln 0 = 0. Note that the first two are not
symmetric, do not satisfy the triangle inequality, and are unbounded.

Importantly, TV distance, squared Hellinger, KL divergence, and
chi-square divergence are all instances of f -divergences, which directly
endows them with many desirable properties – among which joint
convexity and the data-processing inequality (Fact 1.1).

Squared Hellinger, KL divergence, and chi-square divergence also
“tensorize” nicely: specifically, for any product probability distributions
p1 ⊗ · · · ⊗ pn and q1 ⊗ · · · ⊗ qn, we have

D(p1 ⊗ · · · ⊗ pn∥q1 ⊗ · · · ⊗ qn) =
n∑
i=1

D(pi∥qi) (B.4)

χ2(p1 ⊗ · · · ⊗ pn || q1 ⊗ · · · ⊗ qn) =
n∏
i=1

(
1 + χ2(pi || qi)

)
− 1 (B.5)

and

dH(p1 ⊗ · · · ⊗ pn,q1 ⊗ · · · ⊗ qn)2 = 1−
n∏
i=1

(1− dH(pi,qi)2)

≤
n∑
i=1

dH(pi,qi)2 ; (B.6)

while TV distance is much less cooperative, only giving the weaker

dTV(p1 ⊗ · · · ⊗ pn,q1 ⊗ · · · ⊗ qn) ≤
n∑
i=1

dTV(pi,qi) (B.7)

(typically much looser, loosing up to a factor
√
n compared to what one

would get via, say, Hellinger).
We now state (and prove) several useful lemmas relating these

various distance measures.

Lemma B.1. For every p,q on X ,

dH(p,q)2 ≤ dTV(p,q) ≤
√

2dH(p,q) .
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Proof. Let us first prove the left side. Using a−b = (
√
a−
√
b)(
√
a+
√
b),

dH(p,q)2 = 1
2
∑
x∈X

(√
p(x)−

√
q(x)

)2

≤ 1
2
∑
x∈X

∣∣∣∣√p(x)−
√

q(x)
∣∣∣∣(√p(x) +

√
q(x)

)
= 1

2
∑
x∈X
|p(x)− q(x)| = dTV(p,q) .

For the right side, we have, by Cauchy–Schwarz and then using the
identity 2(a+ b) = (

√
a+
√
b)2 + (

√
a−
√
b)2,

dTV(p,q) = 1
2
∑
x∈X

∣∣∣√p(x)−
√

q(x)
∣∣∣(√p(x) +

√
q(x)

)
≤ 1

2

√∑
x∈X

(√
p(x)−

√
q(x)

)2
√∑

x∈X

(√
p(x) +

√
q(x)

)2

= 1√
2

dH(p,q)
√∑

x∈X

(
2(p(x) + q(x))−

(√
p(x)−

√
q(x)

)2
)

= dH(p,q)
√

2− dH(p,q)2
,

which implies the (slightly weaker) inequality we wanted to show.

Lemma B.2. For every p,q on X ,

dTV(p,q)2 ≤ 1
4χ

2(p || q) .

Proof. By Cauchy–Schwarz,

dTV(p,q) = 1
2
∑
x∈X
|p(x)− q(x)|

≤ 1
2

√√√√∑
x∈X

(p(x)− q(x))2

q(x)

√∑
x∈X

q(x)

= 1
2

√
χ2(p || q) .
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Lemma B.3 (Pinsker’s Inequality). For every p,q on X ,

dTV(p,q) ≤
√

1
2D(p∥q) .

This inequality is “good enough” for most situations; nonetheless,
we state here a lesser known, but stronger result, for when it is not:

Lemma B.4 (Bretagnolles–Huber Bound). For every p,q on X ,

dTV(p,q) ≤
√

1− e−D(p∥q) . (B.8)

In particular, as
√

1− e−x ≤ 1− 1
2e

−x for x ≥ 0, this implies

dTV(p,q) ≤ 1− 1
2e

−D(p∥q) . (B.9)

We refer the reader to Canonne [30] or Tsybakov [80, Section 2.4.1]
for a proof and discussion of this inequality, due to Bretagnolle et al.
[25].

Lemma B.5. For every p,q on X ,

D(p∥q) ≤ ln
(
1 + χ2(p || q)

)
≤ χ2(p || q)

Proof. The second inequality follows from the standard convexity in-
equality ln(1 + x) ≤ x (for x > −1), so it suffices to prove the first. To
do so, observe that

D(p∥q) =
∑
x∈X

p(x) ln p(x)
q(x)

≤ ln
∑
x∈X

p(x)2

q(x) (Jensen’s inequality)

= ln
(
1 + χ2(p || q)

)
,

where we used concavity of the logarithm.

Note that Lemmas B.3 and B.5 together imply a weaker version
of Lemma B.2, losing a factor 2.
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C
Poissonization

In the usual, standard sampling setting, the algorithm is given n i.i.d.
samples from a distribution p ∈ ∆k. This is sometimes called multi-
nomial sampling setting, as then the vector of counts (N1, . . . , Nk)
(where Ni is the number of times we see element i ∈ [k] among the
n samples) follows a multinomial distribution with parameters n and
(p(1), . . . ,p(k)).

An unfortunate aspect of this is that those N1, . . . , Nk are not
independent: each of them is marginally a Binomial random variable,
with Ni ∼ Bin(n,p(i)), but those are dependent, since for instance
N1 + · · ·+Nk = n.1 In turn, this can make many computations annoying
or complicated.

A possible solution to this is to work instead in the Poissonized
sampling setting, where the algorithm is given a random number of
samples. Specifically, the sampling process is as follows. Given an integer
n,

1. Draw N ∼ Poisson(n);

2. Draw N i.i.d. samples X1, . . . , XN from p;

3. Provide X1, . . . , XN to the algorithm.
1More specifically, the Ni’s are negatively associated; see Definition 2.3.
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Equivalently, assume we have an infinite sequence (Xi)∞
i=1 of i.i.d. sam-

ples from p, and the algorithm is provided the first N of them, where
N ∼ Poisson(n) and (Xi)∞

i=1 are mutually independent. We can then
define a property testing in the Poissonized setting exactly as in Defi-
nition 1.2, except for the fact that the “sample complexity” n(k, ε, δ)
is now referring to the parameter of N (the Poisson random variable
which is the number of samples actually given to the algorithm).

The reasons to do this are summarized in the following fact.

Fact C.1. Fix any p ∈ ∆k, and let (N1, . . . , Nk) denote the vector of
counts among the samples in the Poissonized sampling setting with
parameter n. Then (1) for every i ∈ [k], Ni ∼ Poisson(np(i)), and
(2) N1, . . . , Nk are mutually independent.

Moreover, tail bounds on Poisson concentration (Theorem A.8)
imply that

Pr
[
n

2 ≤ N ≤
3n
2

]
≥ 1− 2e−n/12 (C.1)

which is at least 1− δ if n ≥ 12 ln(2/δ). This can be used to show the
following:

Lemma C.1. Suppose there exists a tester for property P in the Pois-
sonized setting with sample complexity n ·⊂⋊(k, ε, δ). Then there exists a
tester for property P (in the standard sampling setting) with sample
complexity n(k, ε, δ) = max

(
3
2 · n

·⊂⋊(k, ε, δ/2), 18 ln(4/δ)
)
.

We also have a converse statement:

Lemma C.2. Suppose there exists a tester for property P (in the
standard sampling setting) with sample complexity n(k, ε, δ). Then
there exists a tester for property P in the Poissonized setting with
sample complexity n ·⊂⋊(k, ε, δ) = max(2 · n(k, ε, δ/2), 12 ln(4/δ)).

These two lemmas allow use to transfer upper and lower bounds
establish the Poissonized sampling setting to the standard one, and vice
versa. For more on Poissonization, see, e.g., Valiant [84, Section 4.3]
and references within, or Canonne [29, Appendix D.3].
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