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ABSTRACT

In distributed data storage, information pertaining to a given
data file is stored across multiple storage units or nodes in
redundant fashion to protect against the principal concern,
namely, the possibility of data loss arising from the failure
of individual nodes. The simplest form of such protection
is replication. The explosive growth in the amount of data
generated on a daily basis brought up a second major con-
cern, namely minimization of the overhead associated with
such redundant storage. This concern led to the adoption by
the storage industry of erasure-recovery codes such as Reed-
Solomon (RS) codes and more generally, maximum distance
separable codes, as these codes offer the lowest-possible
storage overhead for a given level of reliability.

In the setting of a large data center, where the amount of
stored data can run into several exabytes, a third concern
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arises, namely the need for efficient recovery from a com-
monplace occurrence, the failure of a single storage unit.
One measure of efficiency in node repair is how small one
can make the amount of data download needed to repair
a failed unit, termed the repair bandwidth. This was the
subject of the seminal paper by Dimakis et al. [50] in which
an entirely new class of codes called regenerating codes was
introduced, that within a certain repair framework, had
the minimum-possible repair bandwidth. A second measure
relates to the number of helper nodes contacted for node
repair, termed the repair degree. A low repair degree is
desirable as this means that a smaller number of nodes are
impacted by the failure of a given node. The landmark paper
by Gopalan et al. [72] focuses on this second measure, lead-
ing to the development of the theory of locally recoverable
codes. The two events also led to the creation of a third
class of codes known as locally regenerating codes, where the
aim is to simultaneously achieve reduced repair bandwidth
and low repair degree. Research in a different direction led
researchers to take a fresh look at the challenge of efficient
RS-code repair, and led to the identification of improved
repair schemes for RS codes that have significantly reduced
repair bandwidth.

This monograph introduces the reader to these different
approaches towards efficient node repair and presents many
of the fundamental bounds and code constructions that have
since emerged. Several open problems are identified, and
many of the sections have a notes subsection at the end that
provides additional background.

Full text available at: http://dx.doi.org/10.1561/0100000115



1
Introduction

Given the failure-prone nature of a storage device, reliability against data
loss has always been of paramount importance in the storage industry.
In the early days, this was achieved through simple replication of data,
for example, triple replication was a commonplace selection within the
Hadoop distributed file system (HDFS). However, the explosive growth
in the amount of data stored over the past couple of decades encouraged
the industry to look for other means of ensuring reliability and having
less storage overhead. Here, the class of maximum distance separable
(MDS) codes are a natural choice as they incur the least amount of
storage overhead for a given level of protection, measured in terms of
the maximum number of node failures that can be tolerated.

1.1 Conventional Repair of an MDS Code

Many of the schemes employed in redundant array of independent
disks (RAID) technology make use of MDS codes. An [n, k] MDS code
is a block code of length n and dimension k over a suitably-defined
finite field. To store data using an [n, k] MDS code, the data file is
first partitioned into k equal-sized fragments, that are then stored on
k distinct storage units. An additional set of r = (n − k) fragments

3
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4 Introduction

of redundant data are then created and stored on a further set of r
storage units in such a manner that the contents of any k out of the
n storage units suffice to recover the data. In this way, the contents
of a file are efficiently stored in redundant fashion, across a set of n
storage units. For example, RAID 6 makes use of a [5, 3] MDS code.
Other examples of MDS codes that appear in the erasure coded-version
HDFS-EC of HDFS are a [9, 6] MDS code as well as a [14, 10] code,
the latter employed by Facebook. Throughout the monograph, we will
alternately refer to a storage unit as a node.

Today’s data centers store massive amounts of information, amounts
that can run into several exabytes, i.e., 1018 bytes. While protection
against data loss and maintaining low values of storage overhead continue
to be of primary importance, a third concern has recently surfaced. This
has to do with the efficiency with which a failed storage unit can be
repaired. We will view the repair process as one in which a new storage
unit, which we will term as the replacement node, is brought in as a
substitute for a failed storage unit. The replacement node then draws
from the partial or entire contents of all or a subset of the remaining
(n− 1) nodes, and uses the data so received to replicate the contents of
the original failed node.

As is well known, an [n, k, dmin] code C is protected against data
loss if the number of node failures does not exceed (dmin − 1). For a
given value of (dmin −1), MDS codes in general, and Reed-Solomon (RS)
codes in particular, have the least possible value of storage overhead
given by n

k = n
n−dmin+1 . This follows as the minimum distance dmin

of an MDS code satisfies dmin = (n − k + 1), which by the Singleton
bound [156] is the largest value possible. In coding-theoretic terms, the
problem of node repair is equivalent to recovery from erasure of a single
code symbol. The most obvious approach is to invoke a parity-check
(p-c) equation involving the erased code symbol. Let

c = (c1 c2 . . . cn)

be a code word and let us assume without loss of generality, erasure of
the first code symbol c1. Any p-c equation involving c1 of the form

n∑
i=1

hici = 0, h1 ̸= 0,

Full text available at: http://dx.doi.org/10.1561/0100000115



1.2. Regenerating Codes and Locally Recoverable Codes 5

is associated to a codeword

h = (h1 h2 . . . hn)

belonging to the [n, n− k] dual code C⊥. In the case of an MDS code C,
its dual C⊥ is also an MDS code and hence has parameters [n, n−k, k+1].
Thus any codeword h in C⊥ has Hamming weight wH(h) ≥ k + 1. Thus
if a p-c equation

n∑
i=1

hici = 0,

is used to recover the code symbol c1, then we have

c1 =
n∑

i=2

(−hi

h1

)
ci, (1.1)

with at least k terms of the form −hi
h1

on the right side being nonzero.

1.2 Regenerating Codes and Locally Recoverable Codes

For the operation of a data center, equation (1.1) has two implications.
Firstly, that the replacement of the failed node must necessarily contact
k “helper nodes”, i.e., nodes that store the code symbols {ci | hi

h1
̸= 0}.

Secondly, equation (1.1) suggests that each helper node must transfer
its entire contents (represented by ci) for repair of the failed node. The
number of helper nodes contacted (at least k in the case of an MDS
code) is called the repair degree of the code. The total amount of data
downloaded for repair of the failed node is termed the repair bandwidth.
In the case of an MDS code, it is clear that the repair bandwidth is at
least k times the amount of data stored in the failed node.

This is illustrated below in the case of an [14, 10] MDS code. Assume
a data file of size equal to 1 GB. The data file is partitioned into 10
fragments, each of size 100 MB and each data fragment is stored in a
different node. Four parity nodes are then created, corresponding to
the four parity symbols of the MDS code. The contents of the 14 nodes
can be regarded as the layering of 108 codewords, each belonging to the
[14, 10] MDS code over F28 . Fig. 1.1 shows repair of a failed node. As

Full text available at: http://dx.doi.org/10.1561/0100000115
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Figure 1.1: Illustrating the repair degree and repair bandwidth involved in the
conventional repair of a failed node in a [14, 10] MDS code

can be seen, there are k = 10 helper nodes corresponding to nodes 2
through 11 and each helper node passes on the 100 MB of data or parity
stored in the respective node, to the repair center. Thus in this case the
repair degree equals 10 and the repair bandwidth equals 10 × 100 MB=
1 GB.

Seminal papers by Dimakis et al. [50] and Gopalan et al. [72] heralded
the theory of two entirely new classes of erasure-recovery codes, termed
as regenerating codes (RGCs) and locally recoverable codes (LRCs), that
were designed with the express aim of lowering the repair bandwidth
and repair degree respectively. The development of the theory of RGCs
and LRCs also led to the creation of a class of codes termed as locally
regenerating codes by Kamath et al. [117] and Rawat et el. [189], where
the aim is to simultaneously achieve reduced repair bandwidth and low
repair degree. Research in a slightly different direction, pioneered by
Shanmugam et al. [215] and Guruswami and Wootters [85], led to a
re-examination of the repair bandwidth of RS codes and the design of
more efficient repair schemes that permitted node repair with reduced
repair bandwidth.

As an indication of the kind of impact that research on the topics
of RGCs and LRCs has had on the development of coding theory, we
note that papers reporting research in this area have received many
best paper awards over the years. The list includes [50], [62], [72], [103],
[137], [185], [228], [229], [237], [255].
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1.3. Overview of the Monograph 7

1.3 Overview of the Monograph

This monograph presents an overview of how research on the topic of
codes for distributed storage has evolved in a certain direction (see
Fig. 1.2 for an overview of topics covered here). There have been several
excellent prior surveys on the topic, including those found in [46], [51],
[136], [145]. Additionally, concise surveys by the authors of the present
monograph can be found in [10], [178].

Given the vast nature of the literature on the topic of codes for
distributed storage, we have undoubtedly missed many papers that have
made a strong contribution. We apologize in advance to the authors of
these papers for the inadvertent omission. Furthermore, as can be seen
from the listing of topics in Fig. 1.2, our focus here is only on certain
specific approaches to coding for distributed storage.

Codes for distributed storage 

Minimize both repair 
bandwidth and repair degree  

Minimize repair bandwidth Minimize repair degree  Improved repair of 
RS codes 

Regenerating codes Locally recoverable codes  Locally regenerating codes 

Figure 1.2: An overview of the coverage of codes for distributed storage in this
monograph.

MDS Codes Section 2 provides background on MDS, RS codes and a
generalization of RS codes known as generalized RS (GRS) codes.

Regenerating Codes The next seven sections deal with RGCs. The
definition of an RGC along with a fundamental upper bound on file
size is presented in Section 3. The bound reveals that there is a tradeoff
between the storage overhead and the repair bandwidth. Sections 4
and 5 present constructions for the two main classes of RGCs, namely
minimum bandwidth regenerating (MBR) codes and minimum storage
regenerating (MSR) codes, that lie at the two ends of the storage-repair
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8 Introduction

bandwidth tradeoff. The tradeoff itself is explored in the following
section, Section 6. Constructions for RGCs that lie on interior points of
the tradeoff are presented in Section 7. The sub-packetization level of
an RGC may be regarded as denoting the number of symbols stored
per node. An alternate viewpoint is to regard a regenerating code as a
code over a vector symbol alphabet of the form Fα

q , with α denoting the
sub-packetization level. Lower values of sub-packetization are desirable
in practice, as a large sub-packetization level, apart from increasing the
complexity of implementation, also limits the smallest size of a file that
can be stored. Section 8 presents lower bounds on the sub-packetization
level of an MSR code.

Several variants of RGCs have been explored in the literature. Piggy-
back codes, ϵ-MSR codes and the codes of Li-Liu-Tang, are MDS codes
that have reduced repair bandwidth and much smaller sub-packetization
level. Cooperative RGCs explore the cooperative repair of a set of t > 1
failed nodes. Secure RGCs are designed to provide security in the pres-
ence of an eavesdropper or an active adversary. Rack-aware RGCs are
designed to minimize the amount of cross-rack repair data that is trans-
ferred. An erasure-recovery code is said to possess the repair-by-transfer
(RBT) property, if it enables repair of a failed node without need for
computation at either helper or replacement node. Fractional repetition
codes form a class of erasure-recovery codes that possesses the repair-
by-transfer property and can be viewed as a generalization of a class of
RBT MBR codes. The former codes potentially offer reduced storage
overhead at the cost of reduced freedom in the selection of helper nodes.
All these variants of RGCs can be found discussed in Section 9.

Locally Recoverable Codes As noted above, the need for repair of a
failed node with low degree prompted the creation of LRCs. Section 10
introduces LRCs and presents an upper bound on the rate and minimum
distance of an LRC as well as optimal code constructions.

One means of handling the simultaneous failure of several nodes
with low repair degree is to make the local codes that are at the core
of an LRC more powerful. There are other approaches however, each
with its own advantages and disadvantages. The three sections that
follow present these other approaches. Availability codes, discussed in

Full text available at: http://dx.doi.org/10.1561/0100000115



1.3. Overview of the Monograph 9

Section 11, represent one such example. This class of codes has the
additional feature that in the case of a single erased node, there are
multiple, node-disjoint means of recovering from the node failure. This
can be a very useful feature to have in practice, particularly as a means
of handling cases when there are multiple simultaneous demands for
the data contained within a particular node.

Sequential-recovery LRCs place the least stringent conditions on an
LRC for the local recovery from multiple erasures, and consequently,
have smallest possible storage overhead. These are discussed in Sec-
tion 12. If an LRC has large block length and small value of repair
degree r, and a particular local code is overwhelmed by erasures, the
only option is to fall back on the properties of the full-length block code
to recover from the erasure pattern, leading to a sharp increase in the
repair degree. Codes with hierarchical locality, discussed in Section 13,
are designed to address this situation, provide layers of local codes hav-
ing increasing block length as well as erasure-recovery capability, and
permit a more graceful degradation in repair degree with an increasing
number of erasures.

Maximally recoverable codes (MRCs), discussed in Section 14, may
be regarded as the subclass of LRCs that are as MDS as possible in the
sense that every set of k columns of the generator matrix of an MRC is
a linearly independent set, unless the locality constraints imposed make
it impossible for this to happen. An MRC is maximal in the sense that
if an MRC is not able to recover from an erasure pattern, then no other
code satisfying the same locality constraints can possibly recover from
the same erasure pattern.

Locally Regenerating Codes Section 15 introduces a class of codes in
which the local codes are themselves regenerating codes. As a result,
these codes simultaneously offer both low repair degree as well as low
repair bandwidth.

Improved Repair Schemes for RS Codes The evolution of RGCs
and LRCs spurred researchers to take a fresh look at the challenge of
efficient RS-code repair and led to the identification of improved repair
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schemes for RS codes having significantly reduced repair bandwidth.
These developments are described in Section 16.

Codes in Practice The final section, Section 17, discusses the impact
that the theoretical developments discussed in this monograph have
had in practice.
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