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ABSTRACT

Common information is ubiquitous in information theory
and related areas such as theoretical computer science and
discrete probability. However, because there are multiple
notions of common information, a unified understanding
of the deep interconnections between them is lacking. This
monograph seeks to fill this gap by leveraging a small set
of mathematical techniques that are applicable across seem-
ingly disparate problems.

In Part I, we review the operational tasks and properties
associated with Wyner’s and Gács–Körner–Witsenhausen’s
(GKW’s) common information. In Part II, we discuss exten-
sions of the former from the perspective of distributed source
simulation. This includes the Rényi common information
which forms a bridge between Wyner’s common informa-
tion and the exact common information. Via a surprising
equivalence between the Rényi common information of or-
der ∞ and the exact common information, we demonstrate
the existence of a joint source in which the exact common

Lei Yu and Vincent Y. F. Tan (2022), “Common Information, Noise Stability, and
Their Extensions”, Foundations and Trends® in Communications and Information
Theory: Vol. 19, No. 2, pp 107–389. DOI: 10.1561/0100000122.
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information strictly exceeds Wyner’s common information.
Other closely related topics discussed in Part II include the
channel synthesis problem and the connection of Wyner’s
and exact common information to the nonnegative rank of
matrices.

In Part III, recognizing that GKW’s common information is
zero for most non-degenerate sources, we examine it with a
more refined lens via the Non-Interactive Correlation Distil-
lation (NICD) problem in which we quantify the agreement
probability of extracted bits from a bivariate source. We
extend this to the noise stability problem which includes
as special cases the k-user NICD and q-stability problems.
This allows us to seamlessly transition to discussing their
connections to various conjectures in information theory
and discrete probability, such as the Courtade–Kumar, Li–
Médard and Mossell–O’Donnell conjectures. Finally, we con-
sider functional inequalities (e.g., the hypercontractivity
and Brascamp–Lieb inequalities), which constitute a fur-
ther generalization of the noise stability problem in which
the Boolean functions therein are replaced by nonnnegative
functions. We demonstrate that the key ideas behind the
proofs in Part III can be presented in a pedagogically co-
herent manner and unified via information-theoretic and
Fourier-analytic methods.
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1
Introduction

1.1 Motivation

Let X be the statistical description of a set of images whose foregrounds
and backgrounds are those of an airplane and the blue sky respectively.
Let Y , which is correlated to X, be the statistical description of another
set of images whose foregrounds are those of a unicorn and the blue sky
respectively. It seems natural and intuitive that the common information
in X and Y should be the number of bits needed to describe the blue sky,
which is the common part of X and Y . Can we make this observation
precise and quantitative for arbitrary (X,Y ) pairs? This monograph is
centered on this fundamental question in information and probability
theory. In other words, we would like to quantify, via an assortment of
well-motivated measures, the intrinsic similarity or common information
between two correlated random variables X and Y . Regardless of what
applications there may be, the pursuit of operationally meaningful
measures that quantify the common information between two random
variables seems to be an extremely worthy academic endeavor. This is
especially so for researchers in information and coding theory, theoretical
computer science, and cryptography who are seeking to understand
the inherent difficulties in generating correlated bits from a single joint

3
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4 Introduction

source, or simulating a joint source using a single source of randomness
in a distributed manner.

In probability, statistics, and data analysis, there are numerous
popular functionals of joint distributions that quantify the amount of
correlation or dependence between two random variables X and Y .
If these random variables have joint distribution πXY and means µX

and µY respectively, such paradigmatic examples include the Pearson
correlation coefficient

ρ(X;Y ) := Cov(X,Y )√
Var(X) Var(Y )

= E[(X − µX)(Y − µY )]√
E[(X − µX)2]E[(Y − µY )2]

(1.1)

and the Hirschfeld–Gebelein–Rényi (HGR) maximal correlation

ρm(X;Y ) := sup
f,g

ρ
(
f(X); g(Y )

)
, (1.2)

where the supremum is taken over all real-valued functions f and g

such that 0 < Var(f(X)),Var(g(Y )) <∞. In addition, an information-
theoretic quantity known as the mutual information

I(X;Y ) =


∫

X ×Y
log

( dπXY

d(πXπY )

)
dπXY if πXY ≪ πXπY

+∞ otherwise
,

also serves to quantify the dependence between two random variables.
These measures have the property that they are zero if the two random
variables are independent, fulfilling a basic requirement of any measure
that quantifies the dependence between two random variables. These
measures can be regarded as common information quantities between X
and Y , jointly distributed as πXY . Indeed, the mutual information
I(X;Y ) captures the amount of information about X provided by
observing Y , as can observed in the celebrated distributed lossless
compression theorem of Slepian and Wolf [41], [156]. Are there any
other operationally-motivated measures that allow us to gain deeper
insights on the common information between X and Y given their
numerical values?

In information and coding theory, there are two canonical examples of
operationally-motivated common information measures that have been
widely accepted since their inceptions in the 1970s. The first, which was

Full text available at: http://dx.doi.org/10.1561/0100000122



1.2. Overview of the Monograph 5

introduced in 1973, is Gács–Körner–Witsenhausen’s (GKW’s) common
information [60], [178], defined as

CGKW(πXY ) := sup
f,g

H
(
f(X)

)
, (1.3)

where the supremum is taken over all pairs of deterministic functions
(f, g) defined respectively on X and Y such that f(X) = g(Y ) with
πXY -probability one. The second, which was introduced in 1975, is
Wyner’s common information [182], defined as

CW(πXY ) := inf
PW PX|W PY |W :PXY =πXY

IP (W ;XY ), (1.4)

where the infimum extends over triples of random variables (W,X, Y ) ∼
PW XY such that X −W − Y forms a Markov chain and PXY = πXY .

1.2 Overview of the Monograph

Our twin objectives in this monograph are as follows. Firstly, we seek to
provide a concise review of these classical notions of common information.
Secondly, we endeavor to connect these quantities to new notions of
common information in the literature that have gained traction recently.
A flowchart of the sections in this monograph is provided in Fig. 1.1.

1.2.1 Part I: Classic Common Information Quantities

We commence in Part I by reviewing the operational tasks associated
with the classical common information quantities in (1.3) and (1.4) and
describing their salient properties. This part consists of Sections 2 and 3
on Wyner’s and GKW’s common information respectively.

1.2.2 Part II: Extensions of Wyner’s Common Information

We then extend and generalize Wyner’s common information in Part II
of this monograph, which consists of four sections. In Section 4, we
review the Rényi common information, originally studied by the present
authors [197], [202]. In his seminal paper [182], Wyner used the normal-
ized relative entropy

1
n
D (PXnY n∥πn

XY ) = 1
n

∑
xn,yn

PXnY n(xn, yn) log PXnY n(xn, yn)
πn

XY (xn, yn) .
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6 Introduction

1. Introduction

2. Wyner’s CI

5. Exact CI

4. Rényi’s CI

6. Ch. Synthesis

7. NN Rank

3. GKW’s CI

8. NICD

9. q-Stability

10. Func. Ineq.

X − W − Y U − X − Y − V

11. Open Probs.

Figure 1.1: Flowchart of the sections in this monograph (CI, NN, and NICD stand
for Common Information, Nonnegative, and Non-Interactive Correlation Distillation
respectively)

to quantify the discrepancy between the synthesized distribution PXnY n

and the target distribution πn
XY and sought the minimum rate for

distributed source synthesis for which this quantity vanishes as the
blocklength n grows. The Rényi common information [197], [202] gener-
alizes this to the case in which the discrepancy measures used belong
to the families of normalized and unnormalized Rényi divergences. For
Rényi order 1+s ∈ (0,∞)\{1}, the unnormalized form can be expressed
as

D1+s(PXnY n∥πn
XY ) = 1

s
log

∑
xn,yn

PXnY n(xn, yn)
(
PXnY n(xn, yn)
πn

XY (xn, yn)

)s

.

We use this family of measures to build a bridge to the topic
of discussion in Section 5, namely, the exact common information, a
quantity first defined and studied by Kumar, Li, and El Gamal [103]; see
Definition 5.3 for its precise definition. In contrast to the Rényi common
information, the exact version requires that synthesized distribution be
exactly equal to the target distribution for some blocklength n; however,
variable-length codes are permitted. Using an unexpected equivalence
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1.2. Overview of the Monograph 7

between the unnormalized Rényi common information of order ∞ (the
limit of D1+s as s→∞)

D∞(PXnY n∥πn
XY ) = log max

(xn,yn):PXnY n (xn,yn)>0

PXnY n(xn, yn)
πn

XY (xn, yn) ,

and the exact common information, we argue that the latter can be
strictly larger than Wyner’s common information for some sources,
specifically the doubly symmetric binary source (DSBS).

In Section 6, we use the preceding notions to describe the problem
of channel synthesis. We review this problem in both the approximate
and exact settings and show that it produces a continuum of common
information measures that interpolate from the mutual information to
Wyner’s or exact common information.

In Section 7, we describe a seemingly tangential topic in numerical
linear algebra, namely the nonnegative rank of nonnegative matrices [65],
[168]. It turns out that this area of research has intimate connections
to the preceding notions of common information, leading to some inter-
esting open problems.

1.2.3 Part III: Extensions of Gács–Körner–Witsenhausen’s Common
Information

It is known that GKW’s common information is zero for most non-
pathological sources such as the doubly symmetric binary source and
the bivariate Gaussian source. Consequently, in itself, GKW’s common
information does not provide any tangible quantification of how “similar”
two sources are. The goal of Part III, which consists of three sections,
is thus to consider several refinements of GKW’s common information
in which new insights can be readily gleaned.

We start in Section 8 by providing an extensive discussion of the
2-user Non-Interactive Correlation Distillation (NICD) problem [94],
[124]. Given a pair of random vectors (Xn, Y n) ∼ πn

XY in which each
(Xi, Yi) is drawn independently from a DSBS, this problem concerns
the agreement probability of the random bits that can be extracted
from Xn and Y n individually. In other words, we wish to quantify

max
f,g

Pr
(
U = V

)
and min

f,g
Pr
(
U = V

)
,
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8 Introduction

where U = f(Xn) and V = g(Y n) and f and g are {0, 1}-valued (i.e.,
Boolean) functions such that the marginals Pr(U = 1) and Pr(V = 1)
are appropriately constrained. For example, for the maximization version
of the NICD problem, we place upper bounds on Pr(U = 1) and
Pr(V = 1). We quantify these agreement probabilities by studying
various geometric structures such as Hamming subcubes and Hamming
balls. We discuss their optimality in several asymptotic regimes (such
as the central limit or large deviations regimes) using results from
concentration of measure and Boolean Fourier analysis, among other
techniques.

In Section 9, we extend the NICD problem to the multi-user version.
For the k-user case, there are k correlated sources Xn

1 , X
n
2 , . . . , X

n
k that

are generated independently conditioned on another source Y n such
that the joint distribution of Xn

i and Y n is πn
XY . We are interested in

quantifying
max

f1,f2,...,fk

Pr
(
U1 = U2 = . . . = Uk

)
,

where Ui = fi(Xn
i ), i = 1, 2, . . . , k and the maximum extends over all

k-tuples of Boolean functions fi’s whose marginals are also constrained
by placing upper bounds on Pr(Ui = 1). We also discuss the connection
of the k-user NICD problem to q-stability [52], [110] in which the number
of users k is replaced by an arbitrary real number q. This allows us
to seamlessly segue into a review of recent advances in contemporary
conjectures in information theory and discrete probability. These include
the Courtade–Kumar conjecture [40], the Mossel–O’Donnell conjecture
[122], and the Li–Médard conjecture [110]. Mathematical tools used
here include the analysis of Boolean functions [131] and, in particular,
edge-isoperimetric inequalities and the study of the maximal degree-1
Fourier weight.

In Section 10, we connect these notions and results to functional in-
equalities including the hypercontractivity, the logarithmic Sobolev, the
Brascamp–Lieb inequalities, as well as their strengthened counterparts.
This section generalizes the preceding two sections in that the Boolean
functions fi are replaced by arbitrary nonnnegative functions.

The monograph is concluded in Section 11 in which we summarize
open problems in this fascinating area of study.
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1.3. Notation 9

The common theme in Part II is the Markov chain X −W −Y ; this
corresponds to the constraint that defines Wyner’s common information
in (1.4). In contrast, in Part III, we focus on the Markov chain U −
X −Y −V ; this corresponds to the Markov chain in the NICD problem
in which U = f(Xn) and V = g(Y n) for some Boolean functions f
and g. It is also present in GKW’s common information. At first glance,
this appears to be different from the constraint in (1.3). However, this
constraint is merely a special case of U −X−Y −V by taking U and V
to be deterministic functions of X and Y respectively such that they
are also constrained to be equal almost surely.

1.3 Notation

To appreciate the material in this monograph, the reader is expected to
have some background in information theory at the level of Cover and
Thomas [42]. We will also make frequent use of the method of types, for
which an excellent exposition can be found in Csiszár and Körner [45].

In this monograph, we generally follow the notation in Cover and
Thomas [42], El Gamal and Kim [51], and Csiszár and Körner [45].

1.3.1 Random Variables and Probability Distributions

Random variables and their realizations are denoted by upper case letters
(such as X and Y ) and lower case letters (such as x and y) respectively.
The sets of values that the realizations take on, also called alphabets, are
denoted by calligraphic letters such as X and Y. We use PX , P̃X , QX ,
and πX to denote various probability distributions on alphabet X . If a
random variable X is distributed according to PX , we write X ∼ PX .
As we work with both discrete and continuous random variables in this
monograph, we will often have to distinguish between probability mass
functions (PMFs) for discrete random variables and probability density
functions (PDFs) for continuous random variables. If X is discrete, we
use x ∈ X 7→ PX(x) to denote its PMF. The PDF of a (real-valued)
continuous random variable is denoted as fX : x ∈ R 7→ (dPX/dµ)(x),
where µ is the Lebesgue measure on R. These will also be denoted as P
or f when the random variable X is clear from the context. Throughout

Full text available at: http://dx.doi.org/10.1561/0100000122



10 Introduction

the monograph, the notations πX and πXY are reserved for target and
source distributions.

The set of PMFs on X is denoted as P(X ) and the set of conditional
PMFs on Y given a variable taking values in X is denoted as P(Y|X ) =
{PY |X : PY |X(·|x) ∈ P(Y), x ∈ X}. The joint distribution induced by
PX ∈ P(X ) and PY |X ∈ P(Y|X ) is denoted as PXPY |X ∈ P(X × Y).
The support of a discrete distribution is denoted as supp(P ) := {x ∈ X :
P (x) > 0}. Given an input distribution PX ∈ P(X ) and a conditional
distribution PY |X ∈ P(Y|X ), if the induced output distribution is
PY (y) =

∑
x PX(x)PY |X(y|x) (for the discrete case), we write this as

PX → PY |X → PY . For two distributions P and Q (defined on the
same measurable space), we use P ≪ Q to denote that P is absolutely
continuous with respect to Q. In the finite alphabet case, P ≪ Q means
that for every x ∈ X such that Q(x) = 0, it holds that P (x) = 0.

We say that three random variables X,Y , and Z form a Markov
chain in this order if X and Z are conditionally independent given Y . In
this case, we write X−Y −Z. For discrete random variables, X−Y −Z if
and only if PXY Z(x, y, z) = PY (y)PX|Y (x|y)PZ|Y (z|y) for all (x, y, z) ∈
X × Y × Z. As is customary in information theory, for two integers m
and n, we write Xn

m to mean the random vector (Xm, Xm+1, . . . , Xn);
when m = 1, this is abbreviated to Xn. A particular realization of Xn, a
deterministic vector, is denoted as xn = (x1, x2, . . . , xn). We denote the
n-fold product distribution of P as Pn, which is defined by the formula
Pn(xn) =

∏n
i=1 P (xi) for all xn ∈ X n.

A stationary memoryless source, denoted by X ∼ PX ∈ P(X ), is a
discrete-time stochastic process {Xi}i∈N such that Xi’s are independent
copies of X. We also denote a source X by its distribution PX . We
use Xn to denote the first n random variables in the stochastic process
{Xi}i∈N. With a slight abuse of terminology, Xn is also called a source
sequence of the source X. A stationary memoryless channel, denoted by
PY |X ∈ P(Y|X ), is a random transformation that outputs a length-n
random vector Y n ∼ Pn

Y |X(·|xn) if the input is the length-n vector xn ∈
X n. Since we deal almost exclusively with stationary memoryless sources
and channels in this monograph, we will omit the term “stationary
memoryless” when we mention sources and channels.
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We will work mainly with three types of random variables in this
monograph. A discrete uniform random variable X takes equal proba-
bilities on its support X and its probability distribution is denoted as
Unif(X ). A Bernoulli random variable X is one with support {0, 1}. Its
probability distribution is abbreviated as Bern(a) if Pr(X = 1) = a. A
(d-dimensional) normal or Gaussian random variable or vector X has a
PDF that is denoted by

x ∈ Rd 7→ N (x; µ,Σ) = 1√
(2π)d det(Σ)

exp
(
−1

2(x−µ)⊤Σ−1(x−µ)
)
,

(or simply N (µ,Σ)) where µ and Σ are the mean vector and the
covariance matrix respectively.

1.3.2 Types or Empirical Distributions

We will often use the method of types [45] in our calculations, especially
for finite alphabets. Given a sequence xn ∈ X n, we use

Txn(a) := 1
n

n∑
i=1

1{xi = a} for all a ∈ X

to denote its type or empirical distribution. The type of a length-n
sequence will be denoted by T or T (n)

X depending on the context. The
set of all sequences with type T is denoted as TT ⊂ X n. This is known
as the type class of T . The set of all types that can be formed from
sequences of length n taking values in alphabet X n is denoted as Pn(X ),
which is a subset of the probability simplex P(X ).

1.3.3 Information Measures

We now recap the necessary information measures used in this mono-
graph. For X ∼ PX , we denote its Shannon entropy as

H(X) = HP (X) = H(PX) := −
∑

x∈supp(PX)
PX(x) logPX(x). (1.5)
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All logarithms are to the base 2 unless otherwise specified. For (X,Y ) ∼
PXY , we denote the conditional entropy of X given Y as

H(X|Y ) = HP (X|Y ) = H(PX|Y |PY )

:= −
∑
y∈Y

PY (x)
∑

x∈supp(PX|Y (·|y))
PX|Y (x|y) logPX|Y (x|y).

The mutual information between X and Y where (X,Y ) ∼ PXY is
denoted as

IP (X;Y ) = I(PX , PY |X) := HP (X)−HP (X|Y ).

The subscripts in HP and IP are used to emphasize the distribution of
(X,Y ) under which these information measures are computed. When the
distribution is clear from the context, the subscripts will be omitted. The
relative entropy or Kullback–Leibler divergence between two distributions
PX and QX defined on the same (countable) alphabet is1

D(PX∥QX) :=
∑

x∈supp(PX)
PX(x) log PX(x)

QX(x) .

The conditional relative entropy of two conditional distributions PY |X
and QY |X , given a distribution PX , is

D(PY |X∥QY |X |PX) := D(PXPY |X∥PXQY |X). (1.6)

In addition to the Shannon information measures above, we need
to recap the family of Rényi information measures [144], [166] as this
is central to the majority of our discussion in this monograph. For
two distributions PX , QX ∈ P(X ) on a countable set X , the Rényi
divergence of order 1 + s ∈ (0, 1) ∪ (1,∞) is

D1+s(PX∥QX) := 1
s

log
∑

x∈supp(PX)
PX(x)

(
PX(x)
QX(x)

)s

.

1This definition is only applicable when the alphabets are countable. For PX

and QX defined on a general probability space, the ratio PX/QX should be replaced
with the Radon–Nikodym derivative dPX/dQX (if PX ≪ QX), and the expectation
with respect to PX should be written as a Lebesgue integral over X . If PX is not
absolutely continuous with respect to QX , D(PX∥QX) is defined to be +∞. In
the following, for simplicity, we only provide definitions of information-theoretic
quantities for countable alphabets.
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The Rényi divergence is monotonically nondecreasing in its order. Sib-
son’s [155] version of the conditional Rényi divergence between two
conditional distributions PY |X and QY |X given a distribution PX is

D1+s(PY |X∥QY |X |PX) := D1+s(PXPY |X∥PXQY |X). (1.7)

We note that while the conditional relative entropy in (1.6) is the ex-
pectation of D(PY |X(·|X)∥QY |X(·|X)) over X ∼ PX , the conditional
Rényi divergence in (1.7) depends on D1+s(PY |X(·|X)∥QY |X(·|X)) in a
more involved way; indeed, it is a generalized mean of the random vari-
able D1+s(PY |X(·|X)∥QY |X(·|X)) evaluated at s. For a more detailed
discussion on this point, the reader is referred to Cai and Verdú [32].
We also note that there are other definitions of the conditional Rényi
divergence but we will use the definition in (1.7) in this monograph; see
[20], [43], [155]. The Rényi divergence and its conditional version in (1.7)
can be extended to all orders 1+s ∈ {0, 1,∞} by taking the appropriate
limits. In particular, when s→ 0, we recover the usual relative entropy.
An order of the Rényi divergence that will be of particular interest to
us in this monograph is the Rényi divergence of order ∞. This is the
divergence we obtain when we let s→∞, i.e.,

D∞(PX∥QX) := log sup
x∈supp(PX)

PX(x)
QX(x) .

The Rényi entropy of order 1 + s ∈ (0, 1) ∪ (1,∞) of a probability
mass function PX ∈ P(X ) is defined as

H1+s(PX) = −1
s

log
∑

x∈supp(PX)

(
PX(x)

)1+s
. (1.8)

It is easy to check that

H1+s(PX) := log |X | −D1+s(PX∥Unif(X )). (1.9)

Similarly to the Rényi divergence, we define H0(PX) and H∞(PX) as
the limits of H1+s(PX) as s ↓ −1 and s → ∞ respectively. These are
known as the max-entropy and min-entropy respectively. Of special
importance is the case when s → 0, in which case H1+s(PX) reduces
to the Shannon entropy defined in (1.5). Since the relation in (1.9)
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holds and the Rényi divergence is nondecreasing in its order, the Rényi
entropy is nonincreasing in its order.

We need one additional measure of the discrepancy between two
distributions. The total variation distance or simply the TV distance
is defined for two distributions P and Q on a common (countable)
alphabet X as

|P −Q| := 1
2
∑
x∈X
|P (x)−Q(x)|.

More generally, |P −Q| = supA⊂X |P (A)−Q(A)|, where A runs over
all (measurable) subsets of X . Pinsker’s inequality yields the following
bound on the TV distance in terms of the relative entropy

|P −Q|2 ≤ ln 2
2 ·D(P∥Q). (1.10)

1.3.4 Typical Sets

In our achievability proofs, we will often need to use the notion of
typical sets [42], [51], [135]. The ϵ-strongly typical set with respect to a
distribution PX ∈ P(X ) is defined as

T (n)
ϵ (PX) :=

{
xn ∈ X n :

∣∣Txn(x)− PX(x)
∣∣ ≤ ϵPX(x), ∀x ∈ X

}
.

This notion of typicality, proposed by Orlitsky and Roche [135], is
also commonly known as robust typicality and is convenient for coding
problems with cost constraints or rate-distortion problems. However, it
suffers from the deficiency that it is amenable only to finite alphabets.
This is mitigated by the availability of the ϵ-weakly typical set with
respect to a distribution PX ∈ P(X ), which is defined as

A(n)
ϵ (PX) :=

{
xn ∈ X n :

∣∣∣ 1
n

log 1
Pn

X(xn) −H(PX)
∣∣∣ < ϵ

}
.

When X is a continuous random variable, H(PX) is to be replaced by
the differential entropy of X [42]. The conditional versions of these sets
can be defined in a natural manner, e.g., the conditionally ϵ-strongly
typical set of Y given a sequence xn ∈ X n is

T (n)
ϵ (PXY |xn) :=

{
yn ∈ Yn : (xn, yn) ∈ T (n)

ϵ (PXY )
}
.
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1.3.5 Asymptotic Notations

Asymptotic notation is used in the usual way [39]. Given two real-valued
sequences {an}∞n=1 ⊂ R and {bn}∞n=1 ⊂ R, we say that an = O(bn) if
lim supn→∞ |an/bn| < ∞, an = Ω(bn) if lim infn→∞ |an/bn| > 0, and
an = Θ(bn) if an = O(bn) and an = Ω(bn). Similarly, an = o(bn)
if limn→∞ |an/bn| = 0. Finally, if {an}∞n=1 and {bn}∞n=1 are positive
sequences, we write an

.= bn if these sequences are equal to first-order
in the exponent [42], i.e., limn→∞ n−1 log(an/bn) = 0.

1.3.6 Miscellaneous

For two integers m and n, we write [m : n] = {m,m+1, . . . , n} to denote
the discrete interval. When m = 1, this is abbreviated as [n]. Often, for
an R > 0, we write [2nR] to refer to the set {1, 2, . . . , 2⌊nR⌋}. Given a
number a ∈ [0, 1], we write a := 1− a. Given two numbers a, b ∈ [0, 1],
we write a ∗ b := ab̄+ bā to denote their binary convolution. We write
[a]+ to mean max{a, 0} for a ∈ R. For two bits a, b ∈ {0, 1}, a ⊕ b
denotes the binary addition (modulo-2 sum) operation, i.e., a⊕ b = 0
if a = b and 1 otherwise. Logarithms are always to the base 2 unless
otherwise specified. When we write ln, we are referring to the natural
logarithm (to base e).

Vectors are interchangeably denoted by boldface lower case font
(e.g., u) or, as mentioned in Section 1.3.1, with a lower case letter and
with a superscript indicating its length (e.g., un = (u1, u2, . . . , un)).
Matrices (e.g., M) are denoted in boldface upper case font. The ith
element of a vector u is denoted interchangeably as ui or [u]i. Similarly,
the (i, j)th element of a matrix M is denoted interchangeably as Mi,j

or [M]i,j .

1.4 Mathematical Tools

1.4.1 The Method of Types

We summarize a few key property of types which will turn out to
be useful in proving both achievability and converse parts of various
common information problems, particularly those with finite alphabets.
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For an extensive discussion, the reader is referred to the book by Csiszár
and Körner [45].

First, the number of types |Pn(X )| ≤ (n + 1)|X | is polynomial
in n. Second, for a given type T ∈ Pn(X ), the size of the type class
(n+ 1)−|X |2nH(T ) ≤ |TT | ≤ 2nH(T ) is related to the entropy of the type
H(T ). Third, the Qn-probability of a sequence xn ∈ TT is Qn(xn) =
2−n(D(T ∥Q)+H(T )). Consequently, the Qn-probability of the type class
TT is bounded as (n+ 1)−|X |2−nD(T ∥Q) ≤ Qn(TT ) ≤ 2−nD(T ∥Q).

A particularly useful result that we use repeatedly in Part III of the
monograph is Sanov’s theorem [42], [49], [150], so we review it here.

Theorem 1.1 (Sanov’s theorem). Let the components of the random
vector Xn = (X1, X2, . . . , Xn) be generated in an independently and
identically distributed (i.i.d.) manner from a PMF Q ∈ P(X ). For any
n ∈ N and any set of distributions S ⊂ P(X ),

Qn({xn : Txn ∈ S}
)
≤ (n+ 1)|X |2−nD(P ∗∥Q),

where the information projection of Q onto S is any distribution P ∗

that satisfies
D(P ∗∥Q) = inf

P ∈S
D(P∥Q).

If additionally, S is equal to the closure of its interior (under the relative
topology),2

lim inf
n→∞

− 1
n

logQn({xn : Txn ∈ S}
)
≥ D(P ∗∥Q),

and hence,
Qn({xn : Txn ∈ S}

) .= 2−nD(P ∗∥Q).

Sanov’s theorem basically says that the exponent of the probability
that the type TXn of a random sequence Xn ∼ Qn belongs to a set S is
dominated by the relative entropy between the information projection
of Q onto S and Q.

2This regularity condition will always be satisfied in the sections to follow.
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1.4.2 Couplings

In this monograph, we will often encounter the optimization problems
over joint distributions for which their marginals are fixed. Such a joint
distribution is known as a coupling. More precisely, a coupling PXY of
two distributions QX ∈ P(Y) and QY ∈ P(Y) is a joint distribution on
X × Y whose X- and Y -marginals are respectively QX and QY . The
set of all couplings with marginals QX and QY is denoted as

C(QX , QY ) :=
{
PXY ∈ P(X × Y) : PX = QX , PY = QY

}
.

Similarly, a conditional coupling PXY |W is a joint conditional distribu-
tion whose X- and Y -marginals agree with given marginals QX|W and
QY |W respectively. The set of all conditional couplings with marginals
QX|W and QY |W is

C(QX|W , QY |W )
:=
{
PXY |W ∈ P(X × Y|W) : PX|W = QX|W , PY |W = QY |W

}
.

Couplings have many beautiful properties, but we will not elaborate
on them in this monograph; see Thorisson [163] or Yu and Tan [199] for
example. One property that is quite remarkable is the maximal coupling
equality which says that given two distributions QX and QY , the total
variation distance between them is equal to the probability that X is
not equal to Y minimized over all couplings induced by QX and QY ,
i.e.,

min
PXY ∈C(QX ,QY )

Pr(X ̸= Y ) = |QX −QY |.

A generalization of the maximal coupling equality that turns out to be
useful in the GKW common information problem (Section 3) is stated
as follows. This lemma is due to the present authors [199].

Lemma 1.2 (Maximal guessing coupling equality). Given two distribu-
tions QX and QY , we have

min
PXY ∈C(QX ,QY )

min
f :X →Y

Pr
(
Y ̸= f(X)

)
= min

f :X →Y

∣∣QY −Qf(X)
∣∣. (1.11)

The minimization problem on the left-hand side of (1.11) is termed
the maximal guessing coupling problem (because we would like to max-
imize the probability that Y is guessed correctly by f acting on X).

Full text available at: http://dx.doi.org/10.1561/0100000122



18 Introduction

The minimization problem on the right-hand side is a classical problem
in information theory which is termed the distribution approximation
or random number generation problem [71, Chapter 2]. Lemma 1.2
implies that the maximal guessing coupling problem is equivalent to
the distribution approximation problem.

The concept of coupling is naturally involved when we study a
problem involving Markov chains, e.g., Wyner’s common information
and its extensions. One key step to analyze such problems is to simplify
multi-letter expressions that involve optimizations over couplings to
single-letter ones. This is conveniently facilitated by the chain rule on
couplings. Before stating this, we first define the product coupling set

n∏
i=1
C(QXi|Xi−1W , PYi|Y i−1W ) :=

{
n∏

i=1
PXiYi|Xi−1Y i−1W :

PXiYi|Xi−1Y i−1W ∈ C(QXi|Xi−1W , QYi|Y i−1W ), i ∈ [n]
}
.

Lemma 1.3 (Chain Rule for Coupling Sets). For any pair of conditional
distributions (QXn|W , QY n|W ), we have

n∏
i=1
C(QXi|Xi−1W , QYi|Y i−1W ) ⊂ C(QXn|W , QY n|W ).

This lemma can be interpreted as follows. By the usual chain rule
for joint distributions, the conditional distributions QXn|W and QY n|W
can be factorized as

∏n
i=1QXi|Xi−1W and

∏n
i=1QYi|Y i−1W respectively.

Let PXiYi|Xi−1Y i−1W be a coupling of each pair of component condi-
tional distributions (QXi|Xi−1W , QYi|Y i−1W ). Then, this lemma says
that the product of PXiYi|Xi−1Y i−1W forms a coupling of the product of
QXi|Xi−1W and the product of QYi|Y i−1W .

The proof of this lemma can be found in Yu and Tan [204].
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Non-Interactive Correlation Distillation

In this section, we consider an extension of GKW’s common information,
termed Non-Interactive Correlation Distillation. We recall that GKW’s
common information measures the amount of “almost identical” ran-
domnesses that can be extracted individually from a pair of correlated
sources. By Gács and Körner’s theorem [60] (also recall Proposition 3.3),
the GKW’s common information of a joint source (X,Y ) is positive if
and only if there exists a pair of non-constant functions (f, g) such that
f(X) = g(Y ) almost surely. Unfortunately, GKW’s common informa-
tion is zero for many common pairs of sources, such as jointly Gaussian
sources and doubly symmetric binary sources (DSBS) with correlation
coefficients ρ ∈ (−1, 1). For these joint sources, even if we wish to
extract a single pair of identical bits from these sources individually,
this innocuous task still turns out to be infeasible.

This observation begs the following natural question: How can we
refine the quantification of common information for these and other
sources such that it resembles the GKW’s common information and yet is
non-zero? Even though any randomnesses extracted from these sources
individually cannot agree almost surely, the extracted randomnesses can
indeed agree with a certain probability, which, in this section, we quantify

148
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via various probability limit theorems such as the central limit and large
deviations theorems. In other words, the extracted randomnesses can be
correlated. It is thus natural to quantify the “common information” by
the maximal correlation of a pair of random bits that can be extracted
from the sources individually. In the literature, determining this maximal
correlation is coined the Noise Stability Problem (two-set version),
the Non-Interactive Correlation Distillation or NICD problem. Other
names include the Non-Interactive Binary Simulation Problem and the
Binary Decision Problem. This problem was studied by Kamath and
Anantharam [94], Yang [188], Mossel et al. [124] and Witsenhausen
[178] among others.

In this section, we focus mainly on the doubly symmetric binary
source (DSBS) parametrized by its correlation coefficient ρ ∈ (−1, 1).
Even though this source is simple, the NICD problem for this source is
nontrivial and insights can be drawn from it. In Section 8.1, we define
the 2-user NICD problem for the DSBS. Based on the means of the
extracted random bits, we define several asymptotic regimes of interest,
including the central limit, moderate, and large deviations regimes.
In Section 8.2, we discuss various achievability schemes for the NICD
problem based on certain geometric structures in Hamming space; these
include subcubes and Hamming spheres. These geometric structures
are useful to prove existence results in the above-mentioned asymptotic
regimes. In Sections 8.3, 8.4, and 8.5 we discuss the optimality of these
schemes. Finally, in Section 8.6 we discuss known results in the NICD
problem for other sources such as bivariate Gaussians.

8.1 Non-Interactive Correlation Distillation with 2 Users

Consider a doubly symmetric binary distribution πXY on the alphabet
X × Y = {0, 1}2 with correlation coefficient ρ ∈ (0, 1), i.e.,

πXY (x, y) =


1 + ρ

4 x = y

1− ρ
4 x ̸= y

. (8.1)

With this parametrization, the correlation coefficient of (X,Y ), defined
in (1.1), is indeed ρ. The pair of random variables (X,Y ) ∼ πXY
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Xn Y n

f(Xn)∼Bern(a) g(Y n)∼Bern(b)

max /min Pr(f(Xn) = g(Y n))

DSBS with correlation coefficient ρ

f g

Figure 8.1: The Non-Interactive Correlation Distillation problem with 2 users

corresponds to the DSBS as described in Section 2.3 with crossover
probability p = (1−ρ)/2 ∈ (0, 1/2). In this section, we find it convenient
to parametrize the DSBS by its correlation coefficient ρ instead of
its crossover probability p. It suffices to consider positive ρ as the
results carry over to the case for negative ρ by replacing X with 1−X.
Throughout this section except for Section 8.6, we let (Xn, Y n) be
distributed as the n-fold product distribution πn

XY .
We now introduce the NICD problem with 2 users. This problem is

illustrated in Fig. 8.1, in which a source sequence (Xn, Y n) generated by
a DSBS is given, and two random bits f(Xn) and g(Y n) are generated in
a distributed manner using a pair of Boolean functions f, g : {0, 1}n →
{0, 1}. The objective of the NICD problem is to maximize or minimize
the agreement probability of f(Xn) and g(Y n), i.e., Pr(f(Xn) = g(Y n)),
under the condition that the means of f(Y n) and g(Y n) are bounded.

Definition 8.1. Given a, b ∈ [0, 1], the forward joint probability is

Γ(n)(a, b) := max
f,g:{0,1}n→{0,1}:Pr(f(Xn)=1)≤a,

Pr(g(Y n)=1)≤b

Pr
(
f(Xn)=g(Y n)=1

)
. (8.2)

Similarly, define the reverse joint probability as

Γ(n)(a, b) := min
f,g:{0,1}n→{0,1}:Pr(f(Xn)=1)≥a,

Pr(g(Y n)=1)≥b

Pr
(
f(Xn)=g(Y n)=1

)
. (8.3)

In Definition 8.1, we maximize or minimize the probability that
both generated bits are equal to one, i.e., Pr(f(Xn) = g(Y n) = 1),
rather than Pr(f(Xn) = g(Y n)), since by noting that the marginal
probabilities Pr(f(Xn) = 1) and Pr(g(Y n) = 1) are constrained in (8.2)
and (8.3), determining the former is equivalent to that of the latter.
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8.1.1 Optimizing over Supports of Boolean Functions

Instead of optimizing over the Boolean functions f and g, in the follow-
ing, we find it convenient for the sake of exploiting the properties of geo-
metric structures (such as Hamming balls and spheres) to optimize over
their supports. The support of a Boolean function f : {0, 1}n → {0, 1}
is defined as the set A := {xn ∈ {0, 1}n : f(xn) = 1}.

If we denote the supports of f and g as A and B respectively, then
one can rewrite (8.2) and (8.3) respectively as

Γ(n)(a, b) = max
A,B⊂{0,1}n : πn

X(A)≤a, πn
Y (B)≤b

πn
XY (A× B), (8.4)

and

Γ(n)(a, b) = min
A,B⊂{0,1}n : πn

X(A)≥a, πn
Y (B)≥b

πn
XY (A× B). (8.5)

Let Γ(∞) and Γ(∞) respectively denote the pointwise limits of Γ(n) and
Γ(n) as n→∞, i.e.,

Γ(∞)(a, b) := lim
n→∞

Γ(n)(a, b) and Γ(∞)(a, b) := lim
n→∞

Γ(n)(a, b). (8.6)

These are respectively known as the asymptotic forward and asymptotic
reverse joint probabilities.

By definition, the forward and reverse joint probabilities are non-
decreasing in each of the parameters when the other is fixed. This
implies that there exists an optimal pair of sets A,B ⊂ {0, 1}n (or
Boolean functions (f, g)) attaining the forward joint probability such
that

πn
X(A) = ⌊a · 2

n⌋
2n

and πn
Y (B) = ⌊b · 2

n⌋
2n

.

Indeed, if either of these statements were not true, we can enlarge A
(resp. B) to make its πn

X -probability (resp. πn
Y -probability) closer to

a (resp. b). Similarly, there exists an optimal pair (A,B) (or Boolean
functions (f, g)) attaining the reverse joint probability such that

πn
X(A) = ⌈a · 2

n⌉
2n

and πn
Y (B) = ⌈b · 2

n⌉
2n

.

As a consequence, for dyadic rationals a and b (i.e., a = M/2n, b = N/2n

with integers M,N ∈ {0, 1, . . . , 2n}), the inequalities in the constraints
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in the definitions of forward and reverse probabilities (i.e., Γ(n)(a, b)
and Γ(n)(a, b)) can be replaced by equalities, without affecting their
values. These observations also allow us to conclude that

Γ(n)(1− a, b) = b− Γ(n)(a, b) for all dyadic rationals a, b.

When we consider the asymptotic case in which n → ∞, i.e., the
quantities in (8.6), the requirement that a and b are dyadic rationals
can be removed. This implies that for any a, b ∈ [0, 1],

Γ(∞)(1− a, b) = b− Γ(∞)(a, b). (8.7)

Hence, for all (a, b) ∈ [0, 1]2, determining the asymptotic forward joint
probability in (8.6) is equivalent to determining the asymptotic reverse
joint probability and vice versa.

8.1.2 Asymptotic Regimes and Exponents of Interest

The identification of the optimal pairs (A,B) that attain the forward or
reverse joint probabilities in (8.4) and (8.5) constitutes a combinatorial
problem and is thus difficult in general. Hence, we focus on the limiting
cases as n → ∞ as this simplifies the problem, and the resultant
problems are also information-theoretic in nature. Specifically, the
following three asymptotic regimes will be considered.

1. Central limit (CL) regime: We set a and b to be constants. We
write a = 2−α and b = 2−β for a pair of constants (α, β) ∈ [0,∞)2.

2. Large deviations (LD) regime: We set a and b to be sequences
that vanish exponentially fast as n→∞. In particular, we write
a = 2−nα and b = 2−nβ for a pair of constants (α, β) ∈ [0, 1]2.

3. Moderate deviations (MD) regime: We set a and b to be sequences
that vanish subexponentially fast as n → ∞. More precisely,
a = 2−θnα, b = 2−θnβ for a pair of constants (α, β) ∈ [0,∞)2,
where {θn}n∈N is a positive sequence satisfying θn → ∞ and
θn/n→ 0, henceforth called an MD sequence.

The MD regime straddles between the CL and LD regimes. It is
usually the case if one solves a certain information-theoretic problem in
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the CL or the LD regimes, a result for the MD regime can be derived
as a corollary, for example, by appealing to Taylor’s theorem; see Altuğ
and Wagner [3], Polyanskiy and Verdú [140], and Tan [159] for example.
We will see that this is also the case for the NICD problem.

In the following section, we will set A and B to be subcubes, Ham-
ming balls, and Hamming spheres. These are prototypical subsets in the
Hamming space that are amenable to analyses. We will then apply vari-
ous probabilistic limit theorems—such as the central limit theorem and
large and moderate deviations theorems—to derive the “performances”
of these subsets in attaining the forward and reverse joint probabilities.
We formally define several exponents of interest.

Definition 8.2. Consider the following exponents:

1. Forward and reverse CL exponents: For α, β ∈ [0,∞),

Υ(n)
CL(α, β) := − log Γ(n)(2−α, 2−β) and (8.8)

Υ(n)
CL(α, β) := − log Γ(n)(2−α, 2−β).

2. Forward and reverse LD exponents: For α, β ∈ [0, 1],

Υ(n)
LD(α, β) := − 1

n
log Γ(n)(2−nα, 2−nβ) and (8.9)

Υ(n)
LD(α, β) := − 1

n
log Γ(n)(2−nα, 2−nβ). (8.10)

3. Forward and reverse MD exponents: Given an MD sequence {θn},
and for α, β ∈ [0,∞),

Υ(n)
MD(α, β) := − 1

θn
log Γ(n)(2−θnα, 2−θnβ) and (8.11)

Υ(n)
MD(α, β) := − 1

θn
log Γ(n)(2−θnα, 2−θnβ). (8.12)

4. Define Υ(∞)
CL , Υ(∞)

CL , Υ(∞)
LD , Υ(∞)

LD , Υ(∞)
MD , and Υ(∞)

MD as the pointwise
limits of the above exponents as n→∞.

The reader may notice that the definitions in (8.8)–(8.12) appear
to be redundant, since each of the forward (resp. reverse) exponents is

Full text available at: http://dx.doi.org/10.1561/0100000122



154 Non-Interactive Correlation Distillation

equivalent to the forward (resp. reverse) joint probability in the sense
that if the forward (resp. reverse) joint probability has been determined,
then each of the forward (resp. reverse) exponents has also been deter-
mined. This also means the forward (resp. reverse) exponents are also
“equivalent”. For example, for each n ∈ N, Υ(n)

LD(α, β) = 1
nΥ(n)

CL(nα, nβ)
and Υ(n)

MD(α, β) = 1
θn

Υ(n)
CL(θnα, θnβ). We introduce these notations be-

cause in the sequel, we will introduce several dimension-free bounds
(e.g., Theorem 8.9) that can be conveniently expressed in terms of the
exponents defined in (8.8)–(8.12). Here, a dimension-free bound is one
that is independent of the dimension (or blocklength) n, but is valid
for all dimensions n.

In the following, we introduce bounds on the NICD exponents
in (8.8)–(8.12). As is conventional in information theory, there are two
parts to this endeavor. In the achievability part that will be discussed in
Section 8.2, we construct subsets A and B that upper bound the forward
exponents and lower bound the reverse exponents. In the converse parts
that will be discussed in Section 8.3–8.5, we demonstrate impossibility
results, i.e., lower bounds on the forward exponents and upper bounds
on the reverse exponents. The achievability and converse bounds match
in some special cases.

8.2 Achievability: Subcubes, Hamming Balls, and Spheres

We now consider the achievability parts, i.e., deriving lower bounds for
the forward joint probability and upper bounds for the reverse joint
probability. For these parts, we consider three canonical types of subsets
in Hamming space—subcubes, Hamming balls, and Hamming spheres.

8.2.1 Subcubes

An (n − k)-subcube Cn−k is a set of vectors xn ∈ {0, 1}n with k com-
ponents held fixed. For example, if we fix the first k components to 1,
then we get the (n − k)-subcube {1k} × {0, 1}n−k, where 1k denotes
the length-k all-ones vector. For any set A ⊂ {0, 1}n, we say that its
indicator, denoted as 1A, is the function f : {0, 1}n → {0, 1} such that
f(xn) = 1 for all xn ∈ A and f(xn) = 0 for all xn /∈ A. The indicator of

Full text available at: http://dx.doi.org/10.1561/0100000122



8.2. Achievability: Subcubes, Hamming Balls, and Spheres 155

000

100

011010

001

111110

101

Figure 8.2: A subcube (shaded) in {0, 1}3 with the first component fixed to 1

the subcube {1k} × {0, 1}n−k is xn ∈ {0, 1}n 7→
∏k

i=1 xi. An important
class of subcubes is the class of (n− 1)-subcubes, e.g., {1} × {0, 1}n−1.
An (n− 1)-subcube with n = 3 is illustrated in Fig. 8.2. The indicators
of (n− 1)-subcubes are the functions xn 7→ xi or xn 7→ 1−xi for i ∈ [n].
Such functions are known as dictator functions.

We now return to the NICD problem. For a = b = 2−k for a positive
integer k, we choose A and B as a pair of identical (n− k)-subcubes.
By referring to the joint distribution in (8.1), we see that the joint
probability induced by (A,B) is

πn
XY (A× B) = πXY (1, 1)k =

(1 + ρ

4
)k
. (8.13)

On the other hand, if we choose A and B as a pair of anti-symmetric
(n − k)-subcubes, i.e., A = 1n − B = Cn−k, then the induced joint
probability is

πn
XY (A× B) = πXY (1, 0)k =

(1− ρ
4

)k
. (8.14)

For the more general case in which a = 2−k1 and b = 2−k2 for integers
0 ≤ k1 ≤ k2, if we choose (A,B) as a pair of “nested” subcubes, i.e.,
A = {1k1} × {0, 1}n−k1 and B = {1k2} × {0, 1}n−k2 , then the induced
joint probability

πn
XY (A× B) =

(1
2
)k2−k1(1 + ρ

4
)k1

.

For the same case, if we choose (A,B) as a pair of “anti-nested” subcubes,
i.e., A = {1k1} × {0, 1}n−k1 and B = {0k2} × {0, 1}n−k2 , then

πn
XY (A× B) =

(1
2
)k2−k1(1− ρ

4
)k1

.
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Figure 8.3: A Hamming ball (shaded) in {0, 1}3 centered at (0, 0, 0) with radius 1

We now discuss the case in which a and b are dyadic rationals
(i.e., a = M/2n, b = N/2n for some integers M,N). Observe that if a
dyadic rational a is not equal to 2−k for some integer k, then there is
no subcube with πn

X -probability exactly equal to a. Hence, to achieve
better performances, a generalization of subcubes {0k} × {0, 1}n−k and
{1k} × {0, 1}n−k, called lexicographic sets, turns out to be useful. A
subset of {0, 1}n is called lexicographic if the elements are selected as
the first sequences in some lexicographic order (either ascending or
descending). A Boolean function is called lexicographic if its support
is a lexicographic set. By setting A and B to be two lexicographic sets
both in ascending (or descending) order, we can obtain a relatively
large joint probability πn

XY (A × B). On the other hand, if we set A
and B to be two lexicographic sets such that one is chosen in ascending
order and the other in descending order, we can obtain a relatively
small joint probability πn

XY (A× B). The explicit expressions for these
two joint probabilities are complicated, and thus we omit them. A
lexicographic set chosen in ascending order can then be written as
{xn ∈ {0, 1}n :

∑n
i=1 2i−1xi ≤ r} for some r. This is a special case of

so-called linear threshold functions, which is discussed in detail in [131].

8.2.2 Hamming Balls

A Hamming ball centered at yn ∈ {0, 1}n with radius r ∈ {0, 1, . . . , n}
takes the form Br(yn) := {xn ∈ {0, 1}n : dH(xn, yn) ≤ r}, where
dH(xn, yn) :=

∑n
i=1 1{xi ̸= yi} denotes the Hamming distance between

vectors xn and yn. An example of a Hamming ball with radius 1 is
illustrated in Fig. 8.3. In the following, we only consider Hamming balls
that are centered at 0n = (0, 0, . . . , 0) or 1n = (1, 1, . . . , 1). For these
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Hamming balls (with radius r), we can rewrite them as {xn ∈ {0, 1}n :∑n
i=1 xi ≤ r} and {xn ∈ {0, 1}n :

∑n
i=1 xi ≥ n− r} respectively.

We now set A and B in the NICD problem to be Hamming balls.
We first consider the CL regime in which we choose A and B to be a
pair of concentric Hamming balls. More specifically, An := Brn(0n) and
Bn = Bsn(0n) for some sequences {rn}n∈N and {sn}n∈N. We append the
subscript n to A and B, to indicate that these two sets depend on n. We
can rewrite An as {xn :

∑n
i=1 xi ≤ rn}. Hence, the marginal probability

πn
X(An) can be written as Pr(

∑n
i=1Xi ≤ rn) where {Xi}ni=1 are i.i.d.

with each Xi ∼ Bern(1/2). To calculate the limiting value of this
probability as n→∞, one may apply several well-known concentration
of measure theorems, including the central limit theorem or various
large deviations theorems. Since we focus on the CL regime here, we
require that πn

X(An) tends to a non-vanishing constant. Hence, we set
the radius rn = n

2 + λ
√

n
2 for some λ ∈ R. Then, the (univariate) central

limit theorem yields

lim
n→∞

πn
X(An) = Φ(λ), (8.15)

where Φ(·) is the cumulative distribution function (CDF) of the standard
univariate Gaussian distribution. Similarly, if we set the radius sn =
n
2 + µ

√
n

2 for some µ ∈ R, we obtain

lim
n→∞

πn
Y (Bn) = Φ(µ).

We now estimate the asymptotic value of the joint probability
πn

XY (An × Bn) where An and Bn are concentric spheres with radii
rn and sn respectively. Note that this probability can be restated as
Pr(

∑n
i=1Xi ≤ rn,

∑n
i=1 Yi ≤ sn) where (Xn, Y n) = {(Xi, Yi)}ni=1 is a

source sequence generated by a DSBS with correlation coefficient ρ. The
multivariate central limit theorem then yields

lim
n→∞

πn
XY (An × Bn) = Φρ(λ, µ), (8.16)

where Φρ(·, ·) is the joint CDF of the zero-mean bivariate Gaussian
distribution with covariance matrix

K :=
[
1 ρ

ρ 1

]
. (8.17)
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Based on the asymptotic results in (8.15)–(8.16), one can obtain a
lower bound on the forward joint probability in the NICD problem [131,
Ex. 9.24 and 10.5].

Proposition 8.1. For a, b ∈ (0, 1),

Γ(∞)(a, b) ≥ Λρ(a, b), (8.18)

where
Λρ(a, b) := Φρ

(
Φ−1(a),Φ−1(b)

)
. (8.19)

Here Λρ(·, ·) is known as the bivariate normal copula or the Gaussian
quadrant probability function. Thanks to the equivalence between the
forward and reverse joint probabilities as stated in (8.7), (8.18) can
alternatively be expressed in terms of the reverse joint probability as

Γ(∞)(a, b) ≤ Λ−ρ(a, b). (8.20)

The upper bound Λ−ρ(a, b) is achieved by a sequence of pairs of anti-
concentric balls An = Brn(0n) and Bn = Bsn(1n).

Considering the exponents of the probabilities in (8.18) and (8.20),

Υ(∞)
CL (α, β) ≤ ΥCL(α, β) := − log Λρ(2−α, 2−β) and (8.21)

Υ(∞)
CL (α, β) ≥ ΥCL(α, β) := − log Λ−ρ(2−α, 2−β). (8.22)

We next consider the LD and MD regimes. Although it is certainly
possible to set An and Bn to be Hamming balls to obtain achievability
results for these two regimes, we prefer not to do so here. This is because,
it is much easier to derive the same results by using Hamming spheres
or spherical shells. Therefore, we consider the LD and MD regimes in
the following subsection after we introduce Hamming spheres.

8.2.3 Hamming Spheres

A Hamming sphere centered at yn ∈ {0, 1}n with radius r ∈ {0, 1, . . . , n}
takes the form Sr(yn) := {xn ∈ {0, 1}n : dH(xn, yn) = r}. See Fig. 8.4
for an illustration. The definition of Hamming spheres differs from
that for Hamming balls in the condition dH(xn, yn) = r in which
equality is mandated. Similarly to the previous subsection, here we
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Figure 8.4: A Hamming sphere (shaded) in {0, 1}3 centered at (0, 0, 0) with radius 1

also only consider Hamming spheres centered at either 0n or 1n, for
which we can rewrite them respectively as {xn :

∑n
i=1 xi = r} and

{xn :
∑n

i=1 xi = n − r}. These Hamming spheres can be regarded as
type classes with types (λ̄, λ) and (λ, λ̄) respectively in Hamming space,
where λ := r

n and λ̄ := 1 − λ. Observe that Sr(0n) is the same as
Sn−r(1n). Notwithstanding this equivalence, we term a pair of spheres
Sr1(0n) and Sr2(0n) as a pair of concentric spheres if r1, r2 ≤ n/2 or
r1, r2 ≥ n/2, and as a pair of anti-concentric spheres if r1 ≤ n/2 ≤ r2
or r2 ≤ n/2 ≤ r1.

For the LD regime, we choose An and Bn to be a pair of concentric or
anti-concentric Hamming spheres, i.e., An = Srn(0n) and Bn = Ssn(0n)
with rn = ⌊λn⌋ or ⌈λn⌉ and sn = ⌊µn⌋ or ⌈µn⌉, where λ, µ ∈ [0, 1]. By
Sanov’s theorem [49] (stated in Theorem 1.1),

lim
n→∞

− 1
n

log πn
X(An) = D((λ̄, λ)∥πX) and

lim
n→∞

− 1
n

log πn
Y (Bn) = D((µ̄, µ)∥πY ).

Since X is uniform on {0, 1}, we can write D((λ̄, λ)∥πX) = 1− h(λ).
For the joint probability, observe that the set An × Bn is a union

of joint type classes with types TXY satisfying the condition that its
marginals TX and TY are equal to (λ̄, λ) and (µ̄, µ) respectively. Hence,
by Sanov’s theorem, the joint probability satisfies

lim
n→∞

− 1
n

log πn
XY (An × Bn) = D((λ̄, λ), (µ̄, µ)∥πXY ),
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where, in analogy to Definition 4.1, the minimal relative entropy with
respect to πXY over all couplings of QX and QY is defined as

D(QX , QY ∥πXY ) := min
QXY ∈C(QX ,QY )

D(QXY ∥πXY ). (8.23)

Optimizing the exponent D((λ̄, λ), (µ̄, µ)∥πXY ) over all feasible pairs
of (λ, µ), yields the following achievability result.

Proposition 8.2. For all α, β ∈ (0, 1),

Υ(∞)
LD (α, β) ≤ ΥLD(α, β)

:= min
QX ,QY :

D(QX∥πX)≥α, D(QY ∥πY )≥β

D(QX , QY ∥πXY ), (8.24)

and

Υ(∞)
LD (α, β) ≥ ΥLD(α, β)

:= min
QX ,QY :

D(QX∥πX)≤α, D(QY ∥πY )≤β

D(QX , QY ∥πXY ). (8.25)

The bounds in (8.24) and (8.25) are attained by sequences of concen-
tric and anti-concentric Hamming spheres respectively. By the method
of types, it is easy to observe that they also can be respectively attained
by sequences of concentric and anti-concentric balls (since a Hamming
ball consists of several spheres and there is one sphere that dominates
the others in the sense of the exponent). The above inequalities were
conjectured to be tight by Ordentlich, Polyanskiy, and Shayevitz [133].
We refer to this as the OPS conjecture in the sequel.

Conjecture 8.1 (OPS Conjecture). For the DSBS and α, β ∈ (0, 1),

Υ(∞)
LD (α, β) ?= ΥLD(α, β) and Υ(∞)

LD (α, β) ?= ΥLD(α, β).

In Section 8.5, we discuss the optimality of Hamming spheres in the
LD regime, leading to the proof this conjecture. However, before doing
this, we first focus on achievability results by Hamming spherical shells
in the MD regime.

For the MD regime, we choose the sets in the NICD problem to
be two spherical shells (annuli), with thickness in the order of

√
nθn.
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Specifically, for a fixed and small ϵ > 0, we choose

An =
⋃

r∈n/2+[λ,λ+ϵ]
√

nθn

Sr(0n) and Bn =
⋃

s∈n/2+[µ,µ+ϵ]
√

nθn

Ss(0n),

where {θn} is an MD sequence, and λ, µ ∈ R. In other words, we
choose An and Bn to be unions of type classes induced by types QX =
πX +

√
θn/n ηX and QY = πY +

√
θn/n ηY respectively, where ηX and

ηY are functions such that
∑

x∈{0,1} ηX(x) = 0 and
∑

y∈{0,1} ηY (y) = 0
and ηX(1) ∈ [λ, λ+ ϵ] and ηY (1) ∈ [µ, µ+ ϵ]. Let

χ̂2(η∥π) :=
∑

x∈{0,1}

η(x)2

π(x) .

and notice that χ̂2(Q− π∥π) is the chi-squared divergence from Q to π.
In analogy to the minimal relative entropy in (8.23), we define

X̂2(ηX , ηY ∥πXY ) := inf
ηXY ∈C(ηX ,ηY )

χ̂2(ηXY ∥πXY ),

where C(ηX , ηY ) is the set of all bivariate functions ηXY : {0, 1}2 → R
such that their X- and Y -marginals are equal to ηX and ηY respectively
and

∑
x,y ηXY (x, y) = 0. Then, letting θn →∞ and then ϵ ↓ 0, by the

moderate deviations theorem [49], [181],

lim
n→∞

− 1
θn

log πn
X(An) = 1

2 χ̂
2(ηX∥πX), (8.26)

lim
n→∞

− 1
θn

log πn
Y (Bn) = 1

2 χ̂
2(ηY ∥πY ), and

lim
n→∞

− 1
θn

log πn
XY (An × Bn) = 1

2 X̂2(ηX , ηY ∥πXY ). (8.27)

In fact, (8.27) requires the continuity of (ηX , ηY ) 7→ X̂2(ηX , ηY ∥πXY );
this follows from the following lemma.

Lemma 8.1. For ηX = (−λ, λ) and ηY = (−µ, µ), we have

X̂2(ηX , ηY ∥πXY ) = 2(λ+ µ)2

1 + ρ
+ 2(λ− µ)2

1− ρ . (8.28)

Proof. One can calculate that the optimal ηXY attaining the maximum
in the definition of X̂2(ηX , ηY ∥πXY ) is

ηXY =
[
p− λ− µ µ− p
λ− p p

]
,

where p = (λ+ µ)/2. Hence, (8.28) follows.
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Optimizing the exponent 1
2 X̂2(ηX , ηY ∥πXY ) over all feasible ηX =

(−λ, λ) and ηY = (−µ, µ) yields the following proposition.

Proposition 8.3. For α, β > 0,

Υ(∞)
MD (α, β) ≤ ΥMD(α, β) := inf X̂2(ηX , ηY ∥πXY ) and (8.29)

Υ(∞)
MD (α, β) ≥ ΥMD(α, β) := sup X̂2(ηX , ηY ∥πXY ). (8.30)

where the inf in (8.29) is over the set of functions ηX , ηY : {0, 1} → R
such that

∑
x ηX(x) =

∑
y ηY (y) = 0 and

χ̂2(ηX∥πX) ≥ α and χ̂2(ηY ∥πY ) ≥ β, (8.31)

and the sup in (8.30) is over the same set of functions (ηX , ηY ) but with
the directions of the inequalities in (8.31) reversed.

The bounds in (8.29) and (8.30) are respectively attained by se-
quences of concentric and anti-concentric Hamming spheres or balls.
The reader may have noticed that the constant 1/2 in (8.26)–(8.27) has
been removed in (8.29) and (8.30). This is because, by definition, ΥMD
and ΥMD are homogeneous (of degree 1), i.e., for any γ > 0,

ΥMD(γα, γβ) = γΥMD(α, β) and (8.32)
ΥMD(γα, γβ) = γΥMD(α, β). (8.33)

The bounds in (8.29) and (8.30) can be further simplified as follows.

Lemma 8.2. For α, β > 0,

ΥMD(α, β) =


α+ β − 2ρ

√
αβ

1− ρ2 ρ2α ≤ β ≤ α
ρ2

α β < ρ2α

β α < ρ2β

and (8.34)

ΥMD(α, β) = α+ β + 2ρ
√
αβ

1− ρ2 . (8.35)

Proof. Observe by the uniformity of πX and πY that χ̂2(ηX∥πX) = 4λ2

and χ̂2(ηY ∥πY ) = 4µ2. Combining these with Lemma 8.1 yields that

ΥMD(α, β) = min
λ,µ:4λ2≥α,4µ2≥β

2(λ+ µ)2

1 + ρ
+ 2(λ− µ)2

1− ρ and

ΥMD(α, β) = max
λ,µ:4λ2≤α,4µ2≤β

2(λ+ µ)2

1 + ρ
+ 2(λ− µ)2

1− ρ .
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By the rearrangement inequality and by symmetry, it suffices to consider
λ, µ ≥ 0 for ΥMD(α, β) and λ ≤ 0 ≤ µ for ΥMD(α, β). This results in

ΥMD(α, β) = min
λ≥

√
α

2 ,µ≥
√

β

2

2(λ+ µ)2

1 + ρ
+ 2(λ− µ)2

1− ρ and (8.36)

ΥMD(α, β) = max
−

√
α

2 ≤λ≤0≤µ≤
√

β

2

2(λ+ µ)2

1 + ρ
+ 2(λ− µ)2

1− ρ . (8.37)

By calculus, one can verify that the right-hand sides of (8.36) and (8.37)
are respectively equal to the right-hand sides of (8.34) and (8.35).

We conclude this section by discussing the relationships between
the MD and CL exponents as well as the MD and LD exponents. We
can recover the MD exponents from the CL or LD exponents if the
MD sequence {θn} additionally satisfies (logn)/θn → 0 as n → ∞.
Roughly speaking, in the MD regime, we chose the radii rn and sn of
Hamming spheres such that rn

n ≈
1
2 + λ

√
ϵ and sn

n ≈
1
2 + µ

√
ϵ, where

ϵ := θn
n → 0 as n → ∞. This implies that the types corresponding

to the spheres are QX ≈ πX +
√
ϵ ηX and QY ≈ πY +

√
ϵ ηY as ϵ ↓ 0.

Note that in Sanov’s theorem, the LD exponent of the probability of a
Hamming sphere with type QX is D(QX∥πX) +O

( log n
n

)
. Hence, if the

MD sequence {θn} additionally satisfies (logn)/θn → 0 as n→∞, this
LD exponent is dominated by the term D(QX∥πX), which allows us to
omit the O

( log n
n

)
term. Moreover, by Taylor’s theorem,

D(QX∥πX) = ϵ

2 χ̂
2(ηX∥πX) + o(ϵ),

D(QY ∥πY ) = ϵ

2 χ̂
2(ηY ∥πY ) + o(ϵ),

and similarly,

D(QX , QY ∥πXY ) = ϵ

2 X̂2(ηX , ηY ∥πXY ) + o(ϵ) as ϵ ↓ 0.

We obtain the MD exponents by replacing D and D in the LD exponents
with ϵ

2 χ̂
2 and ϵ

2 X̂2 respectively. Formally,

lim
ϵ↓0

1
ϵ

ΥLD(ϵα, ϵβ) = ΥMD(α, β) and (8.38)

lim
ϵ↓0

1
ϵ

ΥLD(ϵα, ϵβ) = ΥMD(α, β). (8.39)
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Furthermore, the MD exponents can be also recovered from the CL
exponents. By the Berry–Esseen theorem [19], [54], under the condition
that the MD sequence {θn} satisfies (logn)/θn → 0 as n → ∞, the
probability of a Hamming ball is dominated by the term involving the
Gaussian cumulative distribution function Φ(·). In other words, the
additive error term in the Berry–Esseen theorem, which scales as O( 1√

n
),

is negligible asymptotically. On the other hand, O’Donnell [131, Ex. 9.24
and 10.5] shows that

lim
θ→∞

1
θ

ΥCL(θα, θβ) = ΥMD(α, β) and (8.40)

lim
θ→∞

1
θ

ΥCL(θα, θβ) = ΥMD(α, β), (8.41)

where ΥCL and ΥCL are defined in (8.21) and (8.22) respectively.

8.2.4 Numerical Results and Comparisons

We now evaluate the various exponents for the DSBS with correlation
coefficient ρ. Define κ := (1+ρ

1−ρ)2,

Da,b(p) := D

([
1 + p− a− b b− p

a− p p

] ∥∥∥∥∥ πXY

)
and

D(a, b) := min
max{0,a+b−1}≤p≤min{a,b}

Da,b(p) = Da,b(p∗
a,b),

where h(·) is the binary entropy function, and

p∗
a,b := (κ− 1)(a+ b) + 1−

√
((κ− 1)(a+ b) + 1)2 − 4κ(κ− 1)ab

2(κ− 1) .

For the DSBS, ΥLD and ΥLD, defined in (8.24) and (8.25), respectively
can be written in closed form as

ΥLD(α, β) = D
(
h−1(1− α), h−1(1− β)

)
and

ΥLD(α, β) = D
(
h−1(1− α), 1− h−1(1− β)

)
,

where h−1 : [0, 1] → [0, 1/2] is the inverse of the binary entropy func-
tion h when its domain is restricted to [0, 1/2].

We plot the CL exponents achieved by Hamming balls, and the MD
and LD exponents achieved by Hamming balls, spheres, or spherical
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Figure 8.5: Forward and reverse CL, MD, and LD exponents induced by Hamming
balls (or spheres) for ρ = 0.9. Observe that ΥMD and ΥLD appear to be convex
while ΥMD and ΥLD appear to be concave. The convexity and concavity of ΥLD and
ΥLD respectively have implications for the OPS conjecture (Conjecture 8.1) whose
resolution is provided in Section 8.5.
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Table 8.1: Comparison of subcubes and Hamming balls or, equivalently, spheres

Regimes Central limit Moderate
deviations

Large
deviations

a, b Fixed
and large

Fixed
and small

Subexp.
vanishing

Exp.
vanishing

Subcubes Better Worse Worse Worse
Balls/Spheres Worse Better Better Better

shells in Fig. 8.5. By the homogeneity property in (8.32) and (8.33),
the surfaces corresponding to ΥMD and ΥMD are formed by an infi-
nite number of half-lines from the origin to infinity. Furthermore, by
the relation between the MD, LD and CL exponents in (8.38)–(8.39)
and (8.40)–(8.41), the surfaces of ΥMD and ΥMD can be recovered from
the surfaces of ΥCL and ΥCL by zooming them out, or recovered from
ΥLD and ΥLD by zooming into a neighborhood of the origin. However,
the surfaces of ΥCL and ΥCL as well as the surfaces of ΥLD and ΥLD
cannot be recovered from those of ΥMD and ΥMD. In other words, ΥMD
and ΥMD contain much less information compared to ΥCL and ΥCL as
well as ΥLD and ΥLD. This is not unexpected as the MD regime can
be thought of a limiting case of the LD and CL regimes. Numerical
results in Fig. 8.5 suggest that ΥMD and ΥLD are convex, and ΥMD and
ΥLD are concave, but ΥCL and ΥCL are neither convex nor concave. In
Section 8.5, we discuss these issues rigorously in the context of the OPS
conjecture (Conjecture 8.1).

We now compare the performances of subcubes, Hamming balls,
and Hamming spheres (or spherical shells). We illustrate the forward
joint probabilities achieved by subcubes and Hamming balls in Fig. 8.6.
As the gaps between the probabilities are visually imperceptible, we
also illustrate their differences on the right plot of Fig. 8.6. Based on
the numerical comparisons, we observe that for large a and b, subcubes
are better. However, for small a and b, Hamming balls are better. We
summarize the performances of various geometric structures under
different asymptotic regimes in Table 8.1. Based on these results, it
is natural to ask whether subcubes are optimal for large a and b, and
whether Hamming balls or spheres are optimal for small a and b. In the
following sections, we provide answers to these questions.
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Figure 8.6: Left: The forward joint probabilities achieved by subcubes and Hamming
balls with a = b and ρ = 0.5; Right: The difference between the logarithms of the
forward joint probabilities achieved by subcubes and Hamming balls which shows
that subcubes outperform balls for large a and vice versa.

8.3 Converses in the Central Limit Regime

In this and the next two sections, we discuss the optimality of sub-
cubes, Hamming balls, and spheres (or spherical shells) in the various
asymptotic regimes for the forward and reverse joint probabilities. In
this section, we consider the CL regime in which we are interested in
determining whether subcubes are optimal in for the NICD problem for
a = b ∈ {1/2, 1/4}. The case a = b = 1/2 is relatively well known and
solved by Witsenhausen [178]. The case a = b = 1/4, however, is more
challenging and, in fact, was posed as an open problem by E. Mossel in
2017 [119]; see also Mossel [120, Problem 2.6]. Here, we term the case
a = b = 1/4, as the mean-1/4 stability problem. In the CL regime, it is
also natural to ask whether Hamming balls are optimal for small but
fixed a and b (i.e., 0 < a, b < 1/4). Since this case behaves similarly to
that in the MD regime, we will discuss it in the next section concerning
the MD regime.

8.3.1 Case of a = b = 1/2: Maximal Correlation Method

We first consider the optimality of subcubes (or Boolean functions) for
the case a = b = 1/2 in the NICD problem. By using the properties
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of the maximal correlation, the non-asymptotic optimality of subcubes
for this basic case was confirmed positively by Witsenhausen [178]. We
recall from (1.2) in the introduction that the Hirschfeld–Gebelein–Rényi
(or HGR) maximal correlation [63], [84], [144] between two random
variables X and Y is defined as

ρm(X;Y ) := sup
f,g

ρ(f(X); g(Y )),

where ρ(U ;V ) denotes the correlation coefficient between U and V (de-
fined in (1.1)), and the supremum is taken over all real-valued functions
f and g such that 0 < Var(f(X)),Var(g(Y )) <∞. It is well-known that
the maximal correlation satisfies several desirable properties, including
tensorization and the data processing inequality.

1. Tensorization: For a sequence of independent pairs of random
variables (Xn, Y n) = {(Xi, Yi)}ni=1, we have

ρm(Xn;Y n) = max
i∈[n]

ρm(Xi;Yi). (8.42)

2. Data processing inequality (DPI): For the Markov chain U −X−
Y − V , we have

ρm(U ;V ) ≤ ρm(X;Y ). (8.43)

3. Binary random variables: For binary X and Y , we have

ρm(X;Y ) = |ρ(X;Y )| . (8.44)

Using these properties, Witsenhausen [178] proved the following theo-
rem.

Theorem 8.3. Let πXY be the doubly symmetric binary distribution
with correlation coefficient ρ as defined in (8.1). For any A and B with
πn

X(A) = a and πn
Y (B) = b,

ab− ρ
√
aābb̄ ≤ πn

XY (A× B) ≤ ab+ ρ
√
aābb̄. (8.45)
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Proof. Let (Xn, Y n) ∼ πn
XY . Define U := 1A(Xn) and V := 1B(Y n).

Then we have the Markov chain U −Xn − Y n − V . Consider,

|πn
XY (A× B)− ab|
√
aā
√
bb̄

= |ρ(U ;V )|

= ρm(U ;V ) (8.46)
≤ ρm(Xn;Y n) (8.47)
= ρm(X1;Y1) (8.48)
= ρ, (8.49)

where (8.46) and (8.49) follow from (8.44), (8.47) follows from the data
processing inequality in (8.43), and (8.48) follows from the tensorization
property in (8.42) (since all pairs of random variables are identically
distributed, the max in (8.42) is simply ρm(X1;Y1)).

From Theorem 8.3, one deduces that for a = b = 1/2,

1− ρ
4 ≤ πn

XY (A× B) ≤ 1 + ρ

4 . (8.50)

Based on the discussion around (8.13)–(8.14), the upper bound is
achieved by a pair of identical dictator functions, i.e., f(xn) = g(xn) = xi

(or 1− xi) for all i ∈ [n]. Moreover, the lower bound is achieved by a
pair anti-symmetric dictator functions, i.e., f(xn) = 1− g(xn) = xi for
all i ∈ [n]. Hence,

Γ(n)(1
2 ,

1
2
)

= 1 + ρ

4 and Γ(n)
(1

2 ,
1
2
)

= 1− ρ
4 for all n ≥ 1.

This result also can be proven by the hypercontractivity method
and Fourier analysis; these are discussed in the next two subsections.

8.3.2 Case of a = b = 1/2: Hypercontractivity Method

The classic hypercontractivity inequalities form an important class of
functional inequalities. These inequalities play a fundamental role in
the NICD problem when the means of the Boolean functions are as-
sumed to be either large or small. The forward and reverse parts of the
hypercontractivity inequalities for the DSBS are stated in Theorem 8.4
which follow from Gross [69], Borell [27], and O’Donnell [131].
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RFH(0.95)

RFH(0.05)

RRH(0.95)

RRH(0.05)

Figure 8.7: Plots of the forward (left) and reverse (right) hypercontractivity regions
in (8.51) and (8.52) for ρ = 0.05 and 0.95

We commence with some definitions. For f : X n → [0,∞) and
g : Yn → [0,∞), denote their inner product

⟨f, g⟩ := E[f(Xn)g(Y n)],

where the expectation is taken with respect to πn
XY . Define the Lp-norm

for p ∈ [1,∞) and the pseudo Lp-norm for p ∈ (−∞, 1)\{0} as

∥f∥p := (E[fp(Xn)])1/p.

For p ∈ {0,±∞}, ∥f∥p is defined by its continuous extensions. Specifi-
cally,

∥f∥0 := eE[ln f(Xn)],

∥f∥∞ := max
xn∈X n

f(xn), and

∥f∥−∞ := min
xn∈X n

f(xn),

where ∥f∥0 is known as the geometric mean of f . Note that ∥f∥p = 0
for p < 0 if f is not positive πX -almost everywhere.

For the DSBS (X,Y ) ∼ πXY with correlation coefficient ρ, define

RFH(ρ) :=
{
(p, q) ∈ [1,∞]2 : (p− 1)(q − 1) ≥ ρ2}, and (8.51)

RRH(ρ) :=
{
(p, q)∈ [−∞, 1]2 : (p− 1)(q − 1) ≥ ρ2}. (8.52)

These regions are respectively called the forward and reverse hypercon-
tractivity regions for the DSBS and are illustrated in Fig. 8.7.
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Theorem 8.4 (Hypercontractivity: DSBS and Two-Function Version). Let
(Xn, Y n) ∼ πn

XY be a source sequence generated by a DSBS with
correlation coefficient ρ.

1. The inequality

⟨f, g⟩ ≤ ∥f∥p∥g∥q (8.53)

holds for all f : {0, 1}n → [0,∞) and g : {0, 1}n → [0,∞), if and
only if (p, q) ∈ RFH(ρ).

2. The inequality

⟨f, g⟩ ≥ ∥f∥p∥g∥q (8.54)

holds for all f : {0, 1}n → [0,∞) and g : {0, 1}n → [0,∞), if and
only if (p, q) ∈ RRH(ρ).

These two inequalities (due to [27], [69], [131]) are known as the two-
function versions of the hypercontractivity inequalities for the DSBS.
These inequalities are equivalent to the following single-function versions
of the hypercontractivity inequalities for the DSBS.

Before we describe these single-function versions, we introduce some
additional notation. Denote q′ = q

q−1 as the Hölder conjugate of q for
q ̸= 1; for q = 1, both q = ±∞ are Hölder conjugates of q. For a DSBS
sequence (Xn, Y n) ∼ πn

XY = πn
X|Y × π

n
Y with correlation coefficient ρ,

the noise operator or conditional expectation operator Tρ (or πn
X|Y ) as

Tρf(yn) := E[f(Xn) | Y n = yn] =
∑

xn∈X n

f(xn)πn
X|Y (xn|yn). (8.55)

One can easily check that Tρ1ρ2 = Tρ1Tρ2 for all ρ1, ρ2 ∈ [0, 1].

Theorem 8.5 (Hypercontractivity: DSBS and Single-Function Version).
Let (Xn, Y n) ∼ πn

XY be a source sequence generated by a DSBS with
correlation coefficient ρ.

1. The inequality

∥Tρf∥q ≤ ∥f∥p (8.56)

holds for all f : {0, 1}n → [0,∞), if and only if (p, q′) ∈ RFH(ρ)
(with 1′ :=∞).
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2. The inequality

∥Tρf∥q ≥ ∥f∥p (8.57)

holds for all f : {0, 1}n → [0,∞), if and only if (p, q′) ∈ RRH(ρ)
(with 1′ := −∞).

Here we do not delve deeper into the equivalence between the single-
and two-function versions of hypercontractivity inequalities, since we
will discuss the equivalence in detail in Section 10.2.3.

By applying the hypercontractivity inequalities, Kamath and Anan-
tharam [94, Eqns. (28) and (29)] provided the following bounds.

Theorem 8.6 (Hypercontractivity bound for the DSBS). Define the func-
tion

φa,b(s, t, p) := (spa+ a)
1
p (tqb+ b)

1
q − 1

(s− 1)(t− 1) − a

t− 1 −
b

s− 1

with q := 1 + ρ2/(p− 1). Then, for any sets A and B with πn
X(A) = a

and πn
Y (B) = b,

sup
s,t>0,p:(s−1)(t−1)(p−1)<0

φa,b(s, t, p) ≤ πn
XY (A× B) (8.58)

≤ inf
s,t>0,p:(s−1)(t−1)(p−1)>0

φa,b(s, t, p). (8.59)

Proof. This theorem follows by setting f and g in Theorem 8.4 to
be {s, 1}-valued and {t, 1}-valued functions respectively. Note that
changing the range of the functions f and g from {0, 1} to the sets
{s, 1} and {t, 1} respectively does not affect the values of the probability
masses of the joint distribution of (f(Xn), g(Y n)).

It can be shown analytically that the hypercontractivity bounds
are no worse than the maximal correlation bounds in Theorem 8.3 for
any a, b ∈ [0, 1]; see Fig. 8.8 for a numerical comparison. Moreover, for
a = b = 1/2, the hypercontractivity bounds in (8.58) and (8.59) reduce
to the sharp bounds 1−ρ

4 ≤ πn
XY (A × B) ≤ 1+ρ

4 , which correspond to
the bounds given by the maximal correlation technique in (8.50).

Full text available at: http://dx.doi.org/10.1561/0100000122



8.3. Converses in the Central Limit Regime 173

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 8.8: Illustration the maximal correlation bounds in (8.45), the hypercon-
tractivity bounds in (8.58)–(8.59) as well as the performances of symmetric and
anti-symmetric subcube schemes

8.3.3 Case of a = b = 1/4: Boolean Fourier Analysis

We now consider the case a = b = 1/4, and we answer the forward part
of Mossel’s mean-1/4 stability problem. Mossel’s mean-1/4 stability
problem [119], [120] consists in the determination of Γ(n)(1/4, 1/4)
(forward part) and Γ(n)(1/4, 1/4) (reverse part) for n ≥ 2, and also the
optimal Boolean functions that attain the maximum and minimum that
define these two quantities.

The forward part of this problem was resolved by the present authors
in [198], [205] using elements of Boolean Fourier analysis. We recap
some fundamentals of this study here. Given a Boolean function f :
{0, 1}n → {0, 1}, its Fourier coefficients are defined as

f̂S := E[f(Xn)χS(Xn)] = 1
2n

∑
xn∈{0,1}n

f(xn)χS(xn) for all S⊂ [n],

where the (Fourier) basis functions are

χS(xn) := (−1)
∑

i∈S xi for all xn ∈ {0, 1}n,

and Xn ∼ Unif{0, 1}n. The function f can be expressed in terms of the
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Fourier coefficients as

f(xn) =
∑

S⊂[n]
f̂S χS(xn) for all xn ∈ {0, 1}n,

which is known as the Fourier expansion of f . For 0 ≤ k ≤ n, define
the degree-k Fourier weight of f as

Wk[f ] :=
∑

S⊂[n]:|S|=k

f̂2
S . (8.60)

It is easy to check that if we define the degree-k part of f as fk(xn) :=∑
S⊂[n]:|S|=k f̂S χS(xn), then E[fk(Xn)2] = Wk[f ]. Hence, Wk[f ] rep-

resents the “energy” of the degree-k part in f ’s Fourier expansion.
The Fourier weights satisfy the following properties. Proofs of these

properties can be found in the delightful exposition of Boolean functions
by O’Donnell [131].

Lemma 8.7. For a Boolean function f : {0, 1}n → {0, 1} with mean a,

W0[f ] = a2 and
n∑

k=0
Wk[f ] = a. (8.61)

Furthermore, if (Xn, Y n) ∼ πn
XY is a source sequence of the DSBS

with correlation coefficient ρ, then for any pair of Boolean functions
f, g : {0, 1}n → {0, 1},

Pr(f(Xn) = g(Y n) = 1) =
n∑

k=0
ρk

∑
S⊂[n]:|S|=k

f̂S ĝS and

Pr(f(Xn) = f(Y n) = 1) =
n∑

k=0
Wk[f ] ρk.

For ρ ∈ (0, 1), lower degree Fourier weights have a higher contri-
bution to the joint probability Pr(f(Xn) = f(Y n) = 1) than higher
degree weights. Hence, to bound this joint probability, we can focus on
bounding the lower degree Fourier weights of f . Observe from (8.61)
that given the mean of f , the degree-0 Fourier weight is fully spec-
ified. Hence, it is instructive to estimate the second most important
Fourier weight. In particular, we are interested in the degree-1 Fourier
weight W1[f ] under the condition that the mean of f is specified. In the
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literature, there exist several bounds on W1[f ]. These include Chang’s
bound, which can be found in [131, Level-1 Inequality] and [35] and the
linear programming (LP) bounds of Fu, Wei, and Yeung [59] and Yu
and Tan [198]. In particular, the LP bounds state that

W1[f ] ≤ φ(a) :=

2a(
√
a− a) 0 ≤ a ≤ 1/4

a/2 1/4 < a ≤ 1/2
. (8.62)

By the Cauchy–Schwarz inequality, one easily observes that

Pr(f(Xn) = g(Y n) = 1)
≤ max

{
Pr(f(Xn)=f(Y n)=1),Pr(g(Xn)=g(Y n)=1)

}
. (8.63)

This inequality implies that in the determination of Γ(n)(a, a) (the
symmetric case in which a = b), it suffices to consider a pair of identical
Boolean functions.

By combining the ideas in Lemma 8.7, the LP bound in (8.62)
and (8.63), the present authors proved the following result [198], [205].

Theorem 8.8. For all a ∈ [0, 1] and n ≥ 2,

Γ(n)(a, a) ≤ a2 + ρφ(a) + ρ2(a− a2 − φ(a)
)
.

Particularizing this upper bound to a = b = 1/4, we obtain
Γ(n)(1/4, 1/4) ≤ (1+ρ

4 )2. Per the discussion leading to (8.13), this upper
bound is attained by a pair of identical (n− 2)-subcubes. Hence,

Γ(n)(1
4 ,

1
4
)

=
(1 + ρ

4
)2

for all n ≥ 2,

resolving the forward part of Mossel’s mean-1/4 stability problem.
However, the reverse part of the same problem (i.e., which Boolean
functions attain Γ(n)(1/4, 1/4)) remains open.

8.4 Converse in the Moderate Deviations Regime

We now consider the optimality of Hamming balls and spheres in the
MD regime and the CL regime with small a and b. To address this
question, we resort to two key ideas, namely the hypercontractivity
inequalities in Theorem 8.4 and the small set expansion (SSE) theorem.
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A well-known result to address the optimality of Hamming balls
and spheres in the MD regime and the CL regime with small a and b is
the SSE theorem [124], [131], which is a consequence of the hypercon-
tractivity inequalities in Theorem 8.4.

Theorem 8.9 (Small set expansion: DSBS version). For any n ≥ 1 and
α, β > 0,

Υ(n)
MD(α, β) ≥ ΥMD(α, β) and

Υ(n)
MD(α, β) ≤ ΥMD(α, β),

where ΥMD and ΥMD are expressed in closed form for the DSBS in (8.34)
and (8.35) respectively.

The reader might wonder about the term “small set expansion”
that is used to describe Theorem 8.9. This term refers to a curious
phenomenon of the Hamming cube being a “small set expander” in
the sense that any small subset A ⊂ {0, 1}n has an usually large (or
expanded) boundary. Here, the Hamming cube is regarded as an edge-
weighted complete graph, known as the ρ-stable hypercube graph, in
which each edge (xn, yn) is assigned a weight equal to the probability
πn

XY (xn, yn). The limiting case as ρ ↓ 0 of this phenomenon is quantified
by the edge-isoperimetric inequality which will be stated in Theorem 9.5.
We refer readers to O’Donnell [131] for more intuition about the term
“small set expansion”.

Proof Sketch of Theorem 8.9. Substituting the indicator functions f ←
1A and g ← 1B into (8.53) and (8.54) respectively, and optimizing over
(p, q), we obtain the inequalities as stated in the SSE theorem.

Due to the equivalence among the CL, MD, and LD exponents for
all n ∈ N (as discussed after Definition 8.2) and the homogeneity prop-
erty in (8.32) and (8.33), Υ(n)

MD(α, β) and Υ(n)
MD(α, β) in Theorem 8.9 can

be replaced by Υ(n)
CL(α, β) and Υ(n)

CL(α, β) respectively, or by Υ(n)
LD(α, β)

and Υ(n)
LD(α, β) respectively.

The bounds in the SSE theorem are achieved by sequences of Ham-
ming balls or spherical shells. Hence, these geometric objects are optimal
in attaining the MD exponents.
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8.5 Converse in the Large Deviations Regime

We now address the final asymptotic regime of interest, namely, the large
deviations regime. First, we introduce some terminology. Let I ⊂ Rd be
a convex subset of d-dimensional Euclidean space. We recall that for a
function f : I → R, its lower convex envelope L[f ] is the function defined
at each point of I as the supremum of all convex functions that lie under
f , i.e., for every x ∈ Rd, L[f ](x) := sup{g(x) : g is convex, g ≤ f on I}.
By Carathéodory’s theorem, equivalently,

L[f ](x) = inf
{xi}d+1

i=1 ⊂I, {λi}d+1
i=1

d+1∑
i=1

λif(xi), (8.64)

where {λi}d+1
i=1 is a (d+ 1)-dimensional probability mass function with∑d+1

i=1 λixi = x. The upper concave envelope U[f ] is defined as −L[−f ].
The SSE theorem in Theorem 8.9 can be strengthened to the following
result, known as the strong SSE theorem; see Yu, Anantharam, and
Chen [195] and Yu [192].

Theorem 8.10 (Strong small set expansion: DSBS version). For any n ≥ 1
and α, β ∈ (0, 1],

Υ(n)
LD(α, β) ≥ L[ΥLD](α, β) and (8.65)

Υ(n)
LD(α, β) ≤ U[ΥLD](α, β). (8.66)

The proof of this theorem (and also its generalization to the fi-
nite alphabet case in Theorem 8.11) will be provided in Section 10.3.
The proof is based on the information-theoretic characterizations of
hypercontractivity inequalities (also discussed in Section 10).

By Carathéodory’s representation of the lower convex and upper
concave envelopes in (8.64), the bounds in Theorem 8.10 can be asymp-
totically achieved by “time-sharing” at most three (since d = 2 in our
case) concentric or anti-concentric Hamming spheres (or balls) for each
length n. Specifically, let (λ1, λ2, λ3) be a PMF, i.e., λi ≥ 0 for all
i ∈ [3] and

∑3
i=1 λi = 1. For each blocklength n ∈ N, this strategy

uses certain concentric or anti-concentric Hamming spheres S(i) for a
period of length ⌊nλi⌋, i ∈ [3]. Since time-sharing of certain Hamming
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spheres is optimal in the LD regime, this confirms a weaker version
of the OPS conjecture (Conjecture 8.1) in which the convexification
and concavification operations in (8.65) and (8.66) respectively are
permitted.

Theorem 8.10 is known as the strong SSE theorem because the
bounds given in Theorem 8.10 are asymptotically sharp in the LD
regime. This is in contrast to the ones given in the vanilla SSE theorem
(Theorem 8.9) which are not sharp in the LD regime. Furthermore,
both these two theorems are asymptotically sharp in the MD regime,
since the bounds in the strong SSE theorem reduce to the ones in the
SSE theorem, as shown in (8.38) and (8.39). Hence, Theorem 8.10 is
stronger than the SSE theorem (Theorem 8.9), in the sense that for all
α, β ∈ [0, 1] and γ > 0,

L[ΥLD](α, β) ≥ ΥMD(γα, γβ) and
U[ΥLD](α, β) ≤ ΥMD(γα, γβ).

To prove the OPS conjecture, we need to remove the operations of
taking the lower convex and upper concave envelopes in the strong SSE
theorem. This was done by the first author of this monograph [193]. In
particular, he showed that ΥLD is convex and ΥLD is concave. Combining
this result with the strong SSE theorem (Theorem 8.10) allows us to
conclude that the OPS conjecture is unconditionally true and that
Hamming balls or spheres (without time-sharing) are optimal in the
LD regime [193]. That is, for the DSBS and α, β ∈ (0, 1),

Υ(∞)
LD (α, β) = ΥLD(α, β) and Υ(∞)

LD (α, β) = ΥLD(α, β). (8.67)

Several special cases of (8.67) were established in the literature prior
to the most general result of Yu [193]. The limiting cases as ρ ↓ 0
and ρ ↑ 1 were shown by Ordentlich, Polyanskiy, and Shayevitz [133].
The “symmetric” special case with α = β was shown by Kirshner and
Samorodnitsky [97]. We introduce these results in Section 10, since they
are consequences of strengthened versions of the hypercontractivity
inequalities.

We summarize all converse results discussed in Sections 8.3–8.5 and
techniques used to prove them in Table 8.2.
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Table 8.2: Converse (optimality) results and techniques for the 2-user NICD problem
in the CL, MD, and LD regimes

Regimes Central Limit Moderate
Deviations

Large
Deviations

Fixed and
large a, b

Fixed but
small a, b

Subexp.
vanishing a, b

Exp.
vanishing a, b

Maximal
Correlation

Sharp for
a = b = 1/2 Not sharp Not sharp Not sharp

Fourier
Analysis

Sharp for
a = b = 1/2

and
a = b = 1/4

Not sharp Not sharp Not sharp

SSE Not sharp Essentially
sharp Sharp Not sharp

Strong SSE Not sharp Sharp

8.6 Extensions to Sources Beyond the DSBS

Thus far, we have only considered the DSBS. Can the results in Sections
8.2-8.5 be extended to other bivariate memoryless sources? Indeed, the
SSE and strong SSE theorems, can be extended to sources on Polish
spaces (separable completely metrizable topological space). We refer
the reader to [192] for details. Here for simplicity, we discuss analogues
of the preceding results for the finite alphabet and bivariate Gaussian
cases. The NICD problem for the latter case has been completely solved
by Borell [28] and Mossel and Neeman [121].

8.6.1 Finite Alphabets

In this section, we generalize the NICD problem to the finite alphabet
case in which X and Y are finite sets. Let πXY ∈ P(X × Y). For
simplicity, we assume that the supports of πX and πY are X and Y
respectively. Given πX and πY , define their maximum exponents of
“atomic events” as

αmax(πX) := max
x∈X

log 1
πX(x) and

βmax(πY ) := max
y∈Y

log 1
πY (y) .

(8.68)
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For n ≥ 1, α ∈ (0, αmax(πX)] and β ∈ (0, βmax(πY )], re-define the
forward and reverse LD exponents respectively as

Υ(n)
LD(α, β) := − 1

n
log max

A⊂X n,B⊂Yn:
πn

X(A)≤2−nα,πn
Y (B)≤2−nβ

πn
XY (A× B) and (8.69)

Υ(n)
LD(α, β) := − 1

n
log min

A⊂X n,B⊂Yn:
πn

X(A)≥2−nα,πn
Y (B)≥2−nβ

πn
XY (A× B). (8.70)

Let Υ(∞)
LD and Υ(∞)

LD be their pointwise limits as n→∞. These are the
same as the forward and reverse LD exponents in (8.9) and (8.10) but
here, πXY is no longer restricted to be a DSBS.

Theorem 8.11 (Strong small set expansion: General version). For any
joint distribution on a finite alphabet πXY , any blocklength n ≥ 1,
α ∈ (0, αmax(πX)], and β ∈ (0, βmax(πY )], (8.65) and (8.66) remain
true, with ΥLD and ΥLD defined in (8.24) and (8.25) for πXY , i.e.,

ΥLD(α, β) = min
QX ,QY :D(QX∥πX)≥α,D(QY ∥πY )≥β

D(QX , QY ∥πXY )

and analogously for ΥLD. Moreover, the inequalities in (8.65) and (8.66)
remain asymptotically tight in the limit as n→∞.

However, in general, ΥLD and ΥLD are not necessarily convex and
concave, respectively. Hence, unlike the case of the DSBS, for sources
on finite alphabets, the operations of taking the lower convex and
upper concave envelopes in (8.65) and (8.66) cannot be removed in
general. Nevertheless, the bounds L[ΥLD](α, β) and U[ΥLD](α, β) can
be asymptotically attained by time-sharing the use of at most three
type classes (cf. the discussion after Theorem 8.10).

Theorem 8.11 was first proven by Yu, Anantharam, and Chen [195]
by using information-theoretic and coupling techniques. In this mono-
graph, we will provide a simple proof of Theorem 8.11, which is based
on the information-theoretic characterizations of hypercontractivity
inequalities as discussed in Section 10.3.

Similarly, one can generalize the DSBS-specific definitions in (8.11)
and (8.12) to an arbitrary distribution πXY on a finite alphabet. Then,
the SSE theorem (Theorem 8.9) can be also generalized to the finite
alphabet case.
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Theorem 8.12 (Small set expansion: General version). For any n ≥ 1
and α, β > 0,

Υ(n)
MD(α, β) ≥ lim

ϵ↓0

1
ϵ
L[ΥLD](ϵα, ϵβ) and (8.71)

Υ(n)
MD(α, β) ≤ lim

ϵ↓0

1
ϵ
U[ΥLD](ϵα, ϵβ). (8.72)

Moreover, the inequalities in (8.71) and (8.72) are asymptotically tight
in the limit as n→∞.

Since, in general, ΥLD and ΥLD are not necessarily convex and
concave, respectively, the operations of taking the lower convex and
upper concave envelopes in (8.71) and (8.72) cannot be removed as well.
As a consequence, for this case, (8.71) and (8.72) cannot be written as
in the variational expressions that appear on right-hand sides of (8.29)
and (8.30).

8.6.2 Gaussian Sources

We next consider memoryless bivariate Gaussian sources with correlation
coefficient ρ ∈ (−1, 1) \ {0}. For such sources, the NICD problem was
completely solved by Borell [28] (for the symmetric cases in which a = b)
and Mossel and Neeman [121] (for the asymmetric cases) for all (a, b) ∈
[0, 1]2 and non-asymptotically, i.e., for all n. Let πXY be the bivariate
Gaussian distribution with mean (0, 0) and covariance matrix K given
in (8.17), where the correlation coefficient ρ ∈ (−1, 1) \ {0}. As usual,
let (Xn, Y n) ∼ πn

XY .

Theorem 8.13 (Borell’s isoperimetric theorem). For any n ≥ 1 and
a, b ∈ [0, 1],

Γ(n)(a, b) = Λρ(a, b) and Γ(n)(a, b) = Λ−ρ(a, b),

where the bivariate normal copula Λρ(·, ·) is defined in (8.19).

Moreover, it has been shown by Mossel and Neeman [121] that the
optimal subsets (A,B) attaining Γ(n) or Γ(n) must be equal to parallel
halfspaces (almost everywhere).

Full text available at: http://dx.doi.org/10.1561/0100000122



182 Non-Interactive Correlation Distillation

Specialized to the case of a = b = 1/2, this theorem implies that

Γ(n)(1
2 ,

1
2
)

= 1
2 −

arccos ρ
2π and Γ(n)

(1
2 ,

1
2
)

= arccos ρ
2π . (8.73)

The optimal (A,B) attaining Γ(n)(1/2, 1/2) correspond to a pair of
identical halfspaces through the origin. In contrast, the optimal (A,B)
attaining Γ(n)(1/2, 1/2) correspond to a pair of complementary halfs-
paces through the origin.

Next, we provide a proof sketch of Theorem 8.13 which is due
to Mossel and Neeman [121]. In fact, they also proved the following
equivalent form of Theorem 8.13.

Theorem 8.14. For any n ≥ 1, any pair of measurable functions f, g :
Rn → [0, 1], and any 0 < ρ < 1,

E
[
Λρ(f(Xn), g(Y n))

]
≤ Λρ

(
E[f(Xn)],E[g(Y n)]

)
. (8.74)

If −1 < ρ < 0, the inequality in (8.74) is reversed.

To see that Theorem 8.14 implies Theorem 8.13, set f = 1A and
g = 1B for two sets A,B ⊂ Rn such that E[f(Xn)] = a and E[g(Y n)] = b

in Theorem 8.14. Observe that Λρ(0, 0) = Λρ(1, 0) = Λρ(0, 1) = 0, and
Λρ(1, 1) = 1. Therefore, Λρ(f(Xn), g(Y n)) = 1A×B(Xn, Y n), which
implies that Γ(n)(a, b) ≤ Λρ(a, b). Obviously, by definition, Γ(n)(a, b) ≥
Λρ(a, b) follows by setting A and B to be two parallel halfspaces. Hence,
Γ(n)(a, b) = Λρ(a, b).

We now argue that Theorem 8.13 implies Theorem 8.14. For this
purpose, given f, g : Rn → [0, 1], define A and B (subsets of Rn+1) to be
the respective hypographs1 of Φ−1 ◦ f : Rn → R and Φ−1 ◦ g : Rn → R,
where recall that Φ(·) is the cumulative distribution function of the
standard Gaussian and Φ−1 : (0, 1)→ R is its inverse. It can be readily
checked that

E
[
Λρ(f(Xn), g(Y n))

]
= Pr

(
Xn+1≤Φ−1 ◦ f(Xn), Yn+1≤Φ−1 ◦ g(Y n)

)
= πn+1

XY (A× B),

1The hypograph hyp(h) of a function h : X → R is the set of points of X × R
lying on or below its graph, i.e., hyp(h) := {(x, r) ∈ X × R : r ≤ h(x)}.
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where (Xn+1, Y n+1) ∼ πn+1
XY . On the other hand, E[f(Xn)] = πn+1

X (A)
and E[g(Y n)] = πn+1

Y (B), and hence, the right-hand side of (8.74)
satisfies

Λρ
(
E[f(Xn)],E[g(Y n)]

)
= Λρ(πn+1

X

(
A), πn+1

Y (B)
)
.

Thus, Theorem 8.13 in n + 1 dimensions implies Theorem 8.14 in n

dimensions.
Hence, to prove Theorem 8.13, it suffices to prove Theorem 8.14. In

their proof of Theorem 8.14, Mossel and Neeman [121] first constructed
an Ornstein–Uhlenbeck semigroup, then defined Rt, an auxiliary func-
tion for this semigroup that connects the two sides of (8.74) as limiting
cases. Lastly, they showed that Rt is monotone. A similar idea was also
used in Bakry and Ledoux [10].

Proof Sketch of Theorem 8.14. For every t ≥ 0, define the operator Pt

that acts on functions f : Rn → [0, 1] as

(Ptf)(xn) :=
∫
Rn
f
(
e−t xn +

√
1− e−2t yn)dπn

Y (yn).

This operator is known as the Ornstein–Uhlenbeck semigroup operator.
Note that Ptf→f pointwise as t→0 and Ptf→E[f ] pointwise as t→∞.

Let ft := Ptf and gt := Ptg, and consider the quantity

Rt := E
[
Λρ(ft(Xn), gt(Y n))

]
. (8.75)

As t → 0, Rt converges to the left-hand side of (8.74); as t → ∞, Rt

converges to the right-hand side of (8.74). Hence, to establish Theo-
rem 8.14, it suffices to prove that dRt/dt ≥ 0 for all t > 0. This point
can be checked by careful calculations, as shown in the following lemma
due to Mossel and Neeman [121].

Lemma 8.15. The function t ∈ [0,∞) 7→ Rt, defined in (8.75), satisfies
dRt

dt = ρ

2π
√

1− ρ2 E
[

exp
(
− v2

t + w2
t − 2ρvtwt

2(1− ρ2)

)]
∥∇vt −∇wt∥2 ,

where vt := Φ−1 ◦ ft : Rn → R, wt := Φ−1 ◦ gt : Rn → R, and ∇
denotes the gradient operator. Hence, the derivative of Rt for t ≥ 0 is
nonnegative.

This completes the proof sketch of Theorem 8.14.
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q-Stability

In Section 8, we discussed the 2-user NICD problem. In this section,
we extend the NICD problem to the multi-user case, and consider two
versions of these extensions. In the symmetric version, we maximize the
agreement probability of the random bits generated individually by the
users. In the asymmetric version, we maximize the joint probability that
all the random bits are equal to 1. These two maximization problems
are equivalent in the 2-user setting (see discussion following (8.3)),
but are not equivalent in the setting involving 3 or more users. This
distinction results in the upcoming set of problems being significantly
more challenging, but they provide more insight into the NICD and
related problems.

Indeed, these extensions have inspired researchers to define a more
general concept known as the q-stability. This is done by generalizing
the number of users in the NICD problem from an integer k to an
arbitrary real number q ≥ 1. The max q-stability problem concerns the
identification of Boolean functions that most “stable”—measured in
terms of the q-stability—under the action of a noise operator. Such a
problem not only significantly generalizes the 2-user NICD problem to
a version parametrized by an arbitrary real number q ≥ 1, but more

184
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importantly, it seamlessly connects to several interesting contemporary
conjectures in information theory and discrete probability, including
the Mossel–O’Donnell conjecture [122], the Courtade–Kumar conjec-
ture [40], and the Li–Médard conjecture [110]. Hence, the study of
q-stability provides us a comprehensive and unified understanding of
these conjectures.

Similar to Section 8, in this section, we focus mainly on the doubly
symmetric binary source (DSBS) with correlation coefficient ρ ∈ (−1, 1).
In Section 9.1, we formulate the multi-user NICD problem for the DSBS.
We define the asymmetric and symmetric forward joint probabilities,
and also generalize them to various max q-stabilities by relaxing the
number of users to an arbitrary real number q ≥ 1. In Section 9.2, we
introduce several important conjectures concerning the max q-stability
problem for the case in that the Boolean functions in question are
balanced. These include the Mossel–O’Donnell, Courtade–Kumar, and
Li–Médard conjectures. In Section 9.3, we describe resolutions for the
conjectures in the extreme cases in which the correlation coefficient
ρ ↓ 0 or ρ ↑ 1. Interestingly, in these two extreme cases, the conjectures
are characterized by the classic edge-isoperimetric inequality and the
maximal degree-1 Fourier weight. Hence, related concepts in discrete
geometry, e.g., influences and edge boundaries, will also be introduced.
In Section 9.4, we describe recent progress on partial resolutions of
these conjectures. In Section 9.5, we introduce the solutions to the
max q-stability problem in the moderate and large deviations regimes.
Finally, in Section 9.6, we discuss known results on the max q-stability
problem for sources beyond the DSBS including bivariate Gaussian
sources.

9.1 The Multi-User NICD Problem and q-Stability

9.1.1 Formulation

Before formally introducing the k-user NICD problem, we first introduce
a class of Boolean functions, known as majority functions. For an odd
number m ∈ [n], let Majm : {0, 1}n → {0, 1} be the majority function
on the first m bits which is given by Majm(xn) := 1 {

∑m
i=1 xi ≥ m/2}

for each xn ∈ {0, 1}n. Then, clearly, Maj1 is a dictator function, and
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Y n ∼ Bern(1
2)n

Independent BSC
(

1−ρ
2

)n

Xn
1 Xn

2 Xn
k

U1 U2 Uk

......

......

max Pr(U1 = U2 = . . . = Uk = 1)

∼ Bern(a) ∼ Bern(a) ∼ Bern(a)

Asymmetric Version:

max Pr(U1 = U2 = . . . = Uk)Symmetric Version:

Figure 9.1: The Non-Interactive Correlation Distillation problem with k users

Majn is the indicator of the Hamming ball Bn/2(1n) (as introduced in
Section 8.2.2). Hence, majority functions are generalizations of dictator
functions and indicators of Hamming balls. Furthermore, we say that a
Boolean function f : {0, 1}n → {0, 1} is anti-symmetric (or odd) if

f(xn) + f(x̄n) = 1 for all xn ∈ {0, 1}n, (9.1)

where x̄n := 1n − xn is the bitwise negation of xn. Equivalently, for an
anti-symmetric Boolean function f , supp(f)c = 1n − supp(f), where
1n−A := {1n−xn : xn ∈ A} for any set A ⊂ {0, 1}n. By definition, for
any odd m ∈ [n], the majority function Majm is anti-symmetric.

The k-user NICD problem, which is illustrated in Fig. 9.1, was
investigated by Mossel and O’Donnell [122] for the symmetric version,
and by Li and Médard [110] for the asymmetric version. There are k
correlated memoryless sources X1, X2, . . . , Xk generated from a common
memoryless Bernoulli source Y ∼ Bern(1

2) through k independent binary
symmetric channels with crossover probability p = (1 − ρ)/2; hence,
0 < ρ < 1 is the correlation coefficient between Xj,i and Yi for all j ∈ [k]
and i ∈ [n]. A Boolean function fi : {0, 1}n → {0, 1} is applied to each
source sequence1 Xn

i to generate a random bit Ui = fi(Xn
i ).

1Here, we use the notation Xn
i to denote the ith (out of k) length-n correlated
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Definition 9.1. For a dyadic rational a = M/2n ∈ [0, 1] (in which
M ∈ {0, 1, . . . , 2n}), define the forward joint probability at mean a as

Γ(k)
ρ (a) := max

Boolean fi,1≤i≤k:
Pr(fi(Xn

i )=1)=a

Pr
(
f1(Xn

1 ) = . . . = fk(Xn
k ) = 1

)
. (9.2)

Since we do not consider the reverse counterpart of the forward joint
probability in (9.2) throughout this section, we omit the overline on Γ
(cf. the notation Γ(n) used for the forward joint probability in (8.2))
but we make the number of users k and the correlation coefficient ρ
explicit in the notation. To avoid notational overload, we also omit the
superscript n that indexes the blocklength. Table 9.1 lists commonly
encountered operational quantities in this section.

Table 9.1: Table of commonly used operational quantities in this section

Name Symbol Definition(s)

Forward joint probability at a Γ(k)
ρ (a) (9.2), (9.7)

q-stability of f S(q)
ρ [f ] (9.4)

Asymmetric max q-stability at a Γ(q)
ρ (a) (9.8)

Symmetric max q-stability at a Γ̆(q)
ρ (a) (9.14)

Symmetric q-stability of f S̆(q)
ρ [f ] (9.15)

Symmetric forward joint probability at a Γ̆(k)
ρ (a) (9.19)

Φ-stability of f S(Φ)
ρ [f ] (9.22)

Φ-asymmetric max q-stability at a Π(q)
ρ (a) (9.23)

Φ-symmetric max q-stability at a Π̆(q)
ρ (a) (9.24)

LD exponent Υ(n)
q,LD(α) (9.51)

MD exponent Υ(n)
q,MD(α) (9.52)

It clearly holds that every pair (Xn
j , X

n
ℓ ) with j ̸= ℓ is a source

sequence generated by a DSBS with correlation coefficient ρ2 (because
Xj−Y −Xℓ). This implies that Γ(2)

ρ (a) corresponds to the forward joint
probability defined in (8.2) for the DSBS with correlation coefficient ρ2.

Due to the apparent symmetry of the problem, one may naturally
wonder whether the k functions f1, . . . , fk that attain the forward joint
source sequences instead of the random vector (Xi, Xi+1, . . . , Xn).
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probability are necessarily identical. This is positively confirmed in the
following proposition which can be proved using either the idea in [122,
Proposition 3] or [110]. We provide a self-contained proof.

Proposition 9.1. Let F be any class of Boolean functions. Let k, n ≥ 1
and ρ ∈ (0, 1). Every tuple of functions (f1, . . . , fk) ∈ Fk that maximizes
Pr
(
f1(Xn

1 ) = . . . = fk(Xn
k ) = 1

)
satisfies f1 = f2 = . . . = fk.

Proof. Since F is finite, we may enumerate its elements as F = {gj :
j ∈ [M ]} where M ≥ 2 to avoid the trivial case in which M = 1.
Suppose that among the k users, gj is used by kpj of them. Then clearly,
{pj : j ∈ [M ]} forms a distribution on F or, isomorphically, on [M ]. On
the other hand, the joint probability induced by this scheme is

Pr
(
f1(Xn

1 ) = . . . = fk(Xn
k ) = 1

)
= EY n

[ M∏
j=1

(Tρgj(Y n))kpj

]
, (9.3)

where Tρ is the noise operator defined in (8.55). On the other hand, given
a1, . . . , aM > 0, the map (p1, . . . , pM ) ∈ P([M ]) 7→

∏M
j=1 a

pj

j is convex.
Hence, the expression in (9.3) is convex in (p1, . . . , pM ). Maximizing (9.3)
over (p1, . . . , pM ) on the probability simplex P([M ]), we see that the
maximum is attained at a vertex of P([M ]). This in turn implies that the
maximum of Pr

(
f1(Xn

1 ) = . . . = fk(Xn
k ) = 1

)
over all (f1, . . . , fk) ∈ Fk

is attained by some (f1, . . . , fk) such that f1 = f2 = . . . = fk. The
necessity of the identity of Boolean functions in attaining this maximum
can also be verified; see Mossel and O’Donnell [122].

By particularizing F in Proposition 9.2 to be the set of Boolean
functions with mean a, any tuple of k functions (f1, . . . , fk) that attains
the forward joint probability necessarily satisfies f1 = f2 = . . . = fk.
This observation draws our attention to the following related quantity
known as the q-stability [52], [110].

Definition 9.2. For any q ∈ [1,∞) and a Boolean function f : {0, 1}n →
{0, 1}, the q-stability of f is defined as

S(q)
ρ [f ] := EY n

[
(Tρf(Y n))q]. (9.4)
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For q = 2, the q-stability reduces to the correlation E[f(Xn)f(X̂n)],
or equivalently, the joint probability Pr(f(Xn) = f(X̂n) = 1), where
(Xn, X̂n) is a source sequence of the DSBS with correlation coefficient ρ2.
Hence, E[f(Xn)f(X̂n)] is termed the noise stability of the Boolean
function f with parameter ρ2, which is denoted as Sρ2 [f ]. As mentioned
in the discussion following (9.2),

Sρ2 [f ] = S(2)
ρ [f ]. (9.5)

To better understand the concept of the q-stability, we now compute
it for two functions.

Example 9.1. For the dictator function Maj1,

S(q)
ρ [Maj1] = S(q)

ρ [X1]
= EY1

[
(E[X1|Y1])q]

= 1
2
(1 + ρ

2
)q

+ 1
2
(1− ρ

2
)q
.

Example 9.2. For the indicator of the Hamming ball Majn, it is not
easy to derive the exact value of its q-stability for each dimension n ∈ N.
However, one can determine the limit of the q-stability of Majn as
n→∞. By the (multivariate) central limit theorem,

2√
n

( n∑
i=1

[
Xi

Yi

]
− n

2

[
1
1

])
d−→ N

([0
0

]
,K
)
,

where the covariance matrix K is defined in (8.17). Define the Gaussian
q-stability function Λ(q)

ρ : [0, 1]→ [0, 1] as

Λ(q)
ρ (a) := E

[
Pr(U ≤ Φ−1(a)|V )q] = E

[
Φ
(Φ−1(a)− ρV√

1− ρ2

)q
]
, (9.6)

where (U, V ) is a pair of jointly Gaussian random variables with zero
mean and covariance matrix K. Therefore, for every (ρ, q) ∈ (−1, 1)×
[0, 1], the limit of the q-stability of Majn is

lim
n→∞

S(q)
ρ [Majn] = Λ(q)

ρ (1/2).

We relate the q-stability to the NICD problem by observing that for
an integer k, the forward joint probability in (9.2) can be rewritten as

Γ(k)
ρ (a) = max

Boolean f :E[f(Xn)]=a
S(k)

ρ [f ]. (9.7)
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Hence, it is natural to term Γ(k)
ρ (a) as the asymmetric max k-stability

at mean a. If we replace the integer k in (9.7) with an arbitrary real
number q ∈ [1,∞), we can define the asymmetric max q-stability at
mean a [52], [110] as follows.

Definition 9.3. For q ∈ [1,∞), the asymmetric max q-stability at mean a
is defined as

Γ(q)
ρ (a) := max

Boolean f :E[f(Xn)]=a
S(q)

ρ [f ] (9.8)

= max
A⊂{0,1}n:πn

X(A)=a
EY n

[
πn

X|Y (A|Y n)q]. (9.9)

The equality in (9.9) follows because for a Boolean function f , Tρf(yn) =
πn

X|Y (A|yn) with A being the support of f ; see (8.55).

A few remarks concerning this definition are in order. First, for fixed
a ∈ [0, 1], the function q ∈ [1,∞) 7→ Γ(q)

ρ (a) is nonincreasing. Second,
given q ≥ 1 and two correlation coefficients 0 ≤ ρ ≤ ρ̂ ≤ 1, for any
yn ∈ {0, 1}n, we have

(Tρf)q(yn) = (Tρ/ρ̂Tρ̂f)q(yn) ≤ Tρ/ρ̂(Tρ̂f)q(yn), (9.10)

where the equality follows from the fact that Tρ1ρ2 = Tρ1Tρ2 for all
ρ1, ρ2 ∈ [0, 1], and the inequality follows by Jensen’s inequality (x 7→ xq

is convex for q ≥ 1). From (9.10), we obtain

S(q)
ρ [f ] ≤ EY n

[
Tρ/ρ̂(Tρ̂f)q(Y n)

]
(9.11)

= EZn

[
(Tρ̂f)q(Zn)

]
(Zn ∼ Unif{0, 1}n) (9.12)

= S(q)
ρ̂ [f ], (9.13)

where (9.12) follows because if the input to a binary symmetric channel
is uniform, so is its output.2 Hence, given q ≥ 1 and a ∈ [0, 1], the
function ρ ∈ [0, 1] 7→ Γ(q)

ρ (a) is nondecreasing. Finally, if ρ = 1 (i.e.,
there is no noise), then Γ(q)

1 (a) = a. If instead ρ = 0, then Γ(q)
0 (a) = aq.

2The block of inequalities in (9.11)–(9.13) can also be re-interpreted as follows.
Given a DSBS (X, Y ) with correlation coefficient ρ ∈ [0, 1], we can construct a Markov
chain X − Z − Y with correlation coefficient between X and Z being ρ̂ ∈ [0, ρ] such
that for any q ≥ 1, we have E[E[f(X)|Y ]q] ≤ E[E[E[f(X)|Z]q]|Y ]] = E[E[f(X)|Z]q].
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To find the solution to the asymmetric max q-stability problem
(i.e., the equivalent optimization problems in Definition 9.3), we have
to identify Boolean functions that are the “most stable” under the
action of the noise operator Tρ, with the stability being measured by
the q-stability S(q)

ρ [f ].
Analogously to the asymmetric max q-stability at mean a, one can

define a symmetric version of this stability notion by maximizing the
sum of the q-stabilities of f and 1− f .

Definition 9.4. For q > 1, the symmetric max q-stability at mean a is3

Γ̆(q)
ρ (a) := max

Boolean f :E[f(Xn)]=a
S̆(q)

ρ [f ], (9.14)

where

S̆(q)
ρ [f ] := S(q)

ρ [f ] + S(q)
ρ [1− f ] (9.15)

is the symmetric q-stability of f .

Let f be an anti-symmetric Boolean function. Consider,

S(q)
ρ [1− f ] = S(q)

ρ [f(1n − ·)] (9.16)

= 1
2n

∑
yn∈{0,1}n

(
E[f(X̄n)|Y n = yn]

)q
= 1

2n

∑
ȳn∈{0,1}n

(
E[f(X̄n)|Ȳ n = ȳn]

)q
= S(q)

ρ [f ], (9.17)

where (9.16) follows from (9.1), and (9.17) follows because (X̄n, Ȳ n) has
the same joint distribution as (Xn, Y n). Hence, for an anti-symmetric
Boolean function f ,

S̆(q)
ρ [f ] = 2 S(q)

ρ [f ]. (9.18)

Furthermore, similarly to the asymmetric case, the symmetric max
q-stability also admits an important operational interpretation in the

3We use the breve accent on symbols that signify symmetric quantities (e.g.,
Γ̆(q)

ρ ). The breve serves as a mnemonic as it is symmetric about a vertical axis.

Full text available at: http://dx.doi.org/10.1561/0100000122



192 q-Stability

k-user NICD problem; see (9.19). To describe this, we need to first
introduce the following proposition, which is the symmetric counterpart
of Proposition 9.1 and is due to Mossel and O’Donnell [122]. The proof
is almost the same as that of Proposition 9.1 and hence, is omitted.

Proposition 9.2. Let F be any class of Boolean functions. Let k, n ≥ 1
and ρ ∈ (0, 1). Every tuple of functions (f1, . . . , fk) ∈ Fk that maximizes
Pr
(
f1(Xn

1 ) = . . . = fk(Xn
k )
)

satisfies f1 = f2 = . . . = fk.

By choosing F in Proposition 9.2 to be the set of Boolean functions
with mean a, we deduce that the symmetric max q-stability with q = k

(an integer) satisfies

Γ̆(k)
ρ (a) = max

Boolean fi,1≤i≤k:
Pr(fi(Xn

i )=1)=a

Pr
(
f1(Xn

1 ) = . . . = fk(Xn
k )
)
. (9.19)

This is also called the symmetric forward joint probability in the k-user
NICD problem. Thus, the symmetric max k-stability Γ̆(k)

ρ quantifies the
maximum agreement probability over all Boolean functions with a fixed
mean in the k-user NICD problem (Fig. 9.1). In contrast, the forward
joint probability or asymmetric max k-stability Γ(k)

ρ (in (9.2) and (9.7))
quantifies the maximum agreement probability when the generated bits
take on the value 1.

9.1.2 Variants of q-Stabilities

The reader will notice that the definitions of the asymmetric and sym-
metric max q-stabilities in (9.9) and (9.14) are trivial for the case q = 1,
since for this case, any Boolean f such that E[f(Xn)] = a satisfies

S(1)
ρ [f ] = a and S̆(1)

ρ [f ] = 1. (9.20)

Hence, the asymmetric and symmetric max 1-stabilities at mean a are
attained by any Boolean functions with mean a. Are there any “more
meaningful” notions of asymmetric and symmetric max q-stabilities for
q = 1? We answer this question in the affirmative by defining variants
of the max q-stabilities. These variants connect the q-stabilities to the
most informative Boolean functions problem of Courtade and Kumar
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[40], one of the most important open problems in information theory at
the time of the writing of this monograph.

To introduce these variants, for q ≥ 1, define4 Φq, Φ̆q : (0, 1)→ R as

Φq(t) := t · lnq(t)
ln 2 and Φ̆q(t) := Φq(t) + Φq(1− t), (9.21)

where lnq : (0,∞)→ R is defined as

lnq(t) :=


ln(t) q = 1
tq−1 − 1
q − 1 q > 1

and is known as the q-logarithm introduced by Tsallis [164], but with a
slight reparameterization. Note that for Φq and Φ̆q, the case of q = 1 is
the continuous extension of the case q > 1.

Definition 9.5. For a Boolean function f : {0, 1}n → {0, 1} and another
function Φ : (0, 1) → R, define the Φ-stability of f with respect to a
correlation parameter ρ as

S(Φ)
ρ [f ] = EY n

[
Φ(Tρf(Y n))

]
. (9.22)

Thus, this definition is analogous to that of the q-stability (Defini-
tion 9.2) as we recover the latter when we instantiate Φ(t) = tq. We are,
however, going to consider Φ to be the functions in (9.21).

Definition 9.6. Define the Φ-asymmetric and Φ-symmetric max q-
stabilities at mean a as

Π(q)
ρ (a) := max

Boolean f :E[f(Xn)]=a
S(Φq)

ρ [f ] and (9.23)

Π̆(q)
ρ (a) := max

Boolean f :E[f(Xn)]=a
S(Φ̆q)

ρ [f ]. (9.24)

For q > 1, it is easy to verify that

Π(q)
ρ (a) = Γ(q)

ρ (a)− a
(q − 1) ln 2 and Π̆(q)

ρ (a) = Γ̆(q)
ρ (a)− 1

(q − 1) ln 2 , (9.25)

4These functions are not to be confused with the Gaussian cumulative distribution
function which is also denoted as Φ(·).
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where Γ(q)
ρ (a) and Γ̆(q)

ρ are the asymmetric and symmetric max q-
stabilities defined in (9.9) and (9.14) respectively. For q = 1, the
Φ-asymmetric and Φ-symmetric max 1-stabilities at mean a can be
expressed respectively as

Π(1)
ρ (a) = max

Boolean f :E[f(Xn)]=a
EY n

[
Tρf(Y n) log Tρf(Y n)

]
, (9.26)

and

Π̆(1)
ρ (a) = max

Boolean f :E[f(Xn)]=a
−H(f(Xn)|Y n) (9.27)

= max
Boolean f :E[f(Xn)]=a

I(f(Xn);Y n)− h(a). (9.28)

The objective function in (9.26) is known as the entropy (functional)
of the noisy Boolean function Tρf , and the objective function in (9.27)
is the negative conditional Shannon entropy of f(Xn) given Y n. For
dictator functions f , the conditional Shannon entropy H(f(Xn)|Y n) is
equal to H(X1|Y1) = h((1− ρ)/2).

The maximization in (9.28) for a = 1/2 corresponds to the balanced
version of the most informative Boolean function problem which was
first studied in the papers of Courtade and Kumar [40], [102]. They
conjectured that the maximum in (9.28) is attained by dictator functions
(cf. Section 8.2.1). In the following section, we provide more details on
this conjecture, and we also review several related conjectures concerning
the q-stabilities. Observe from the one-to-one relationships in (9.25)
that for q > 1, the original definitions of the asymmetric and symmetric
max q-stabilities Γ(q)

ρ and Γ̆(q)
ρ in (9.9) and (9.14) are “equivalent” to

their Φ-versions Π(q)
ρ and Π̆(q)

ρ defined respectively in (9.23) and (9.24),
in the sense that once the former (resp. the latter) has been determined,
the latter (resp. the former) will also be determined. Hence, throughout
this section, for q > 1, we refer to Γ(q)

ρ and Π(q)
ρ interchangeably for the

asymmetric case. We will also refer to Γ̆(q)
ρ and Π̆(q)

ρ interchangeably for
the symmetric case. However, for q = 1, we only consider the quantities
Π(1)

ρ and Π̆(1)
ρ since the definitions of Γ(1)

ρ and Γ̆(1)
ρ are trivial for this

case; see (9.20).
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9.2 Related Conjectures

In this section, we introduce several prominent conjectures on the max
q-stabilities. We first consider the optimality of dictator functions in
attaining the asymmetric and symmetric max q-stabilities at mean
a = 1/2 (also called the balanced case). For ease of reference, we first
state a corollary to Witsenhausen’s classical result [178] in Theorem 8.3.
This corollary implies that dictator functions are optimal in attaining
asymmetric or symmetric max q-stabilities for q = 2 and a = 1/2 (the
2-user NICD problem in the CL regime with a = b = 1/2).

Corollary 9.1. For q = 2 and ρ ∈ (0, 1), both Γ(q)
ρ (1/2) and Γ̆(q)

ρ (1/2)
are attained by dictator functions.

There was no further progress on the max q-stability problem for
almost 30 years since Witsenhausen’s seminal work [178] in 1975. In 2005,
Mossel and O’Donnell [122] considered the symmetric max q-stability
problem with q ∈ {3, 4, 5, . . .} and made progress on this problem. They
resolved the case of q = 3 for the balanced case (i.e., a = 1/2) using a
cute reduction argument.

Theorem 9.2. For q = 3 and ρ ∈ (0, 1), Γ̆(q)
ρ (1/2) is attained by dictator

functions.

Proof. Theorem 9.2 can be proved by reducing the problem involving
q = 3 to the (simpler) problem in which q = 2. By the equivalence
between the NICD problem and max q-stability, we consider the 3-
user NICD problem with 3 (possibly) distinct functions (f1, f2, f3). For
brevity, denote the values of the joint probability mass function of
(U1, U2, U3) = (f1(Xn

1 ), f2(Xn
2 ), f3(Xn

3 )) as {p000, p001, . . . , p111}. Then,
we see that the following identity holds:

3 +
∑

(i,j)∈[3]2:i̸=j

Pr(Ui = Uj) = 5 + 4 Pr(U1 = U2 = U3). (9.29)

This identity can be verified by bookkeeping the probability masses.
For example, note that Pr(U1 = U2) = p000 + p001 + p110 + p111 and
Pr(U1 = U2 = U3) = p000 + p111. Having established this, leveraging the
case for q = 2 (Corollary 9.1), we know that the left-hand side of (9.29)
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is maximized by identical dictator functions over all balanced Boolean
functions (i.e., E[fi(Xn

i )] = 1/2); hence, so is the right-hand side.

Based on Corollary 9.1 and Theorem 9.2, one may naïvely conjecture
that dictator functions are optimal in attaining the asymmetric or
symmetric max q-stability at mean 1/2 for any integer q ≥ 2. However,
this was disproved by Mossel and O’Donnell [122]. Specifically, using
computer-assisted calculations, they constructed counterexamples, as
shown in the following proposition, such that when q = 10, dictator
functions are not optimal in attaining the asymmetric and symmetric
max q-stabilities at mean a = 1/2.

Proposition 9.3. For q = 10 and ρ = 0.48, it holds that

S(q)
ρ [Maj3] > max

{
S(q)

ρ [Maj1],S(q)
ρ [Maj5]

}
and (9.30)

S̆(q)
ρ [Maj3] > max

{
S̆(q)

ρ [Maj1], S̆(q)
ρ [Maj5]

}
. (9.31)

Proof. By computer-assisted calculations, for q = 10 and ρ = 0.48, one
finds that S̆(q)

ρ [Maj1] ≤ 0.0493, S̆(q)
ρ [Maj5] ≤ 0.0488, and S̆(q)

ρ [Maj3] ≥
0.0496. Hence, the inequality in (9.31) holds. The inequality in (9.30)
follows from (9.31) since S̆(q)

ρ [Majm] = 2 S(q)
ρ [Majm] for any odd m ≤ n;

see (9.18).

Since S(q)
ρ [Maj3] > S(q)

ρ [Maj1] and Maj1 is a dictator function, dic-
tators are not optimal for q = 10 and ρ = 0.48. Furthermore, since the
indicators of subcubes and the indicators of Hamming balls (or spheres)
have been shown to be optimal or asymptotically optimal in several
cases for the NICD problem (Sections 8.3–8.5), one may wonder whether
the max q-stability is always exactly attained by these functions. The
inequality S(q)

ρ [Maj3] > S(q)
ρ [Maj5] implies a negative answer to this

question. For n = 5, q = 10, a = 1/2, and ρ = 0.48, both the indicators
of subcubes and Hamming balls in the 5-dimensional Hamming cube
are not optimal. In fact, Maj3 corresponds to the indicator of a set
formed by multiplying Hamming balls in the 3-dimensional cube and
the 2-dimensional cube.

Now things have become relatively clearer. For small q, e.g., q = 2
or q = 3, dictator functions are optimal in attaining the asymmetric
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(for q = 2) or symmetric (for q = 2, 3) max q-stabilities at mean
a = 1/2. On the other hand, for large q, e.g., q = 10, dictator functions
are not optimal. Mossel and O’Donnell [122] conjectured that for all
q ∈ {4, 5, . . . , 9}, dictator functions maximize the symmetric q-stability
Γ̆(q)

ρ (1/2) over all balanced Boolean functions.
The symmetric max 1-stability problem at mean a = 1/2 (i.e.,

Π̆(1)
ρ (1/2)) was studied by Kumar and Courtade [102] and [40]. This

question concerns the identification of the class of balanced Boolean
functions that maximize the mutual information I(f(Y n);Xn); cf. (9.28).
The authors conjectured that dictator functions maximize the symmetric
1-stability. We note that this is a weaker version of the original conjecture
posed by Courtade and Kumar. In the original version of their conjecture,
the Boolean functions are not restricted to be balanced. Along these
lines, Li and Médard [110] conjectured that for q ∈ (1, 2) (non-integer),
the max asymmetric q-stability is still attained by dictator functions.
Here we summarize and generalize this family of conjectures in the
following two conjectures.

Conjecture 9.1 (Asymmetric max q-stability). For ρ ∈ [0, 1] and q ∈ [1, 9],
Π(q)

ρ (1/2) is attained by dictator functions.

Conjecture 9.2 (Symmetric max q-stability). For ρ ∈ [0, 1] and q ∈ [1, 9],
Π̆(q)

ρ (1/2) is attained by dictator functions.

Observe that dictator functions are anti-symmetric. Hence, (9.18)
holds for dictator functions, which implies that if Conjecture 9.1 is true,
so is Conjecture 9.2. Conjectures 9.1 and 9.2 together consist of three
(named) conjectures, as summarized in Table 9.2.

Barnes and Özgür [11] proved an interesting dichotomy concerning
these conjectures.

Lemma 9.3. For a = 1/2, there are two thresholds qmin and qmax
satisfying 1 ≤ qmin ≤ 2 ≤ qmax such that dictator functions are optimal
in attaining the asymmetric max q-stability with q ≥ 1 if and only
if q ∈ [qmin, qmax]. This statement also holds for the symmetric max
q-stability but with possibly different thresholds q̆min and q̆max satisfying
the same condition 1 ≤ q̆min ≤ 2 ≤ q̆max.
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Table 9.2: Illustration of the various named conjectures on max q-stabilities; these
constitute Conjectures 9.1 and 9.2

q Are dictators optimal in attaining
Π(q)

ρ (1/2) (or Π̆(q)
ρ (1/2))?

q = 1 Courtade–Kumar conjecture
(balanced version) [40]

1 < q < 2 Li–Médard conjecture [110]
q = 2 (2-User NICD) True and shown by Witsenhausen

[178] (cf. Section 8.3.1)
2 < q ≤ 9 Mossel–O’Donnell conjecture [122]

Proof Sketch of Lemma 9.3. For any q ∈ R (not necessarily greater
than or equal to 1), define

Nq(f) := 2n
∥∥Tρf

∥∥q

q
=

∑
yn∈{0,1}n

(
Tρf(yn)

)q
.

Let f0 be a dictator function, e.g., f0 = Maj1. Define

gf (q) := Nq(f)−Nq(f0). (9.32)

By using a result due to Laguerre [104], one can find that the sum of
exponentials gf (q) has at most four roots. Observe that

gf (0) = 0, gf (1) = 0, gf (2) ≤ 0, and
gf (q), gf (−q) > 0 for sufficiently large q.

From these observations, we know that gf (q) has a root at q1 ≥ 2,
another at q2 = 1, and another at q3 = 0. Moreover, the remaining
root q4 satisfies q4 ≤ 2. Hence, gf (q) ≤ 0 for all q in the interval
[max{q4, 1}, q1]; see Fig. 9.2. Taking the intersection of these intervals
for all non-dictator functions f , we obtain the interval [qmin, qmax], where
qmin and qmax are the desired thresholds. The symmetric case follows
similarly.
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Figure 9.2: Example of a function gf in (9.32).
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Figure 9.3: Illustration of Lemma 9.3.

This lemma is illustrated in Fig. 9.3.

Remark 9.1. This lemma has several important implications.

(a) Firstly, this lemma implies that both the Courtade–Kumar con-
jecture and the Li–Médard conjecture are equivalent to the state-
ments that qmin = 1 for the asymmetric version and q̆min = 1 for
the symmetric version. Hence, the Courtade–Kumar conjecture
and the Li–Médard conjecture are also equivalent (to each other).

(b) Secondly, it also implies that the Mossel–O’Donnell conjecture is
equivalent to the statements that qmax ≥ 9 for the asymmetric
version and q̆max ≥ 9 for the symmetric version. On the other
hand, from Proposition 9.3, we see that max{qmax, q̆max} < 10.
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(c) Lastly, by Lemma 9.3 and Theorem 9.2 (i.e., Conjecture 9.2 holds
for q = 3), Conjecture 9.2 also holds for any q ∈ [2, 3]. In other
words, Conjecture 9.2 is only open for q ∈ [1, 2) ∪ (3, 9].

Combining all points in Remark 9.1 yields that 2 ≤ qmax < 10 and
3 ≤ q̆max < 10. If Conjectures 9.1 and 9.2 hold, then the estimates of
qmax and q̆max can be improved to 9 ≤ qmax, q̆max < 10, as shown in
Fig. 9.4.

2
×

qqmaxqmin = 1
× ××

9
×
10

Dictators optimal Dictators not optimal

Figure 9.4: Illustration of the range of q for the optimality of dictator functions if
Conjectures 9.1 and 9.2 are true.

9.3 Extreme Cases of the Correlation Coefficient

To better understand the max q-stabilities, and also to connect them
to several well-known concepts in the analysis of Boolean functions, we
first focus our attention on the extreme cases in which the correlation
coefficient ρ tends to 0 or 1, but the dimension (or blocklength) n is
kept fixed. To illustrate the intuition as to why some results hold, we
introduce the concepts of influences and edge-isoperimetric inequalities.

9.3.1 Influences

For a vector xn ∈ {0, 1}n, we denote the vector with the ith bit flipped as
(xn)⊕i := (x1, . . . , xi−1, 1− xi, xi+1, . . . , xn). Denote the length-(n− 1)
with the ith component removed as x\i := (x1, . . . , xi−1, xi+1, . . . xn).

Definition 9.7. The influence of coordinate i ∈ [n] on a Boolean function
f : {0, 1}n → {0, 1} is defined as

Ii[f ] := Pr
(
f(Xn) ̸= f((Xn)⊕i)

)
,

where Xn ∼ Unif{0, 1}n.
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Let f be a Boolean function that depends only on x\i. This means
that the value of f evaluated at every xn is independent of the ith
component xi. For such an f , clearly, Ii[f ] = 0. On the other hand,
if f depends only on the ith component, i.e., the dictator functions
f(xn) = xi or 1−xi, then Ii[f ] = 1. Hence, the influence of coordinate i
measures how much a function is influenced by the ith coordinate of the
input; this coincides with the literal meaning of “influence”. Furthermore,
the influence can be also expressed in terms of the discrete derivative
operator as follows:

Definition 9.8. Let xi7→b := (x1, . . . , xi−1, b, xi+1, . . . , xn). The ith dis-
crete derivative operator Di maps a function f : {0, 1}n → R to the
function Dif : {0, 1}n → R defined as

Dif(xn) := f(xi7→1)− f(xi7→0).

One observes that

Ii[f ] = E
[
Dif(Xn)2] = ∥Dif∥22. (9.33)

This formula enables us to generalize the definition of the influence
from a Boolean function to an arbitrary real-valued function defined on
{0, 1}n; see O’Donnell [131]. We do not discuss this generalization here,
since we only mainly focus on Boolean functions.

Definition 9.9. The total influence (or average sensitivity) of a Boolean
function f : {0, 1}n → {0, 1} is defined as

I[f ] :=
n∑

i=1
Ii[f ].

The quantities Dif , Ii[f ], and I[f ] admit the following Fourier-
analytic representations.

Theorem 9.4. For a Boolean function f : {0, 1}n → {0, 1} and i ∈ [n],

Dif(xn) = −2
∑

S⊂[n]:S∋i

f̂S · χS\{i}(xn), (9.34)

Ii[f ] = 4
∑

S⊂[n]:S∋i

f̂2
S , and (9.35)

I[f ] = 4
∑

S⊂[n]
|S|f̂2

S = 4
n∑

k=0
k ·Wk[f ]. (9.36)

where Wk[f ] denotes the degree-k Fourier weight of f defined in (8.60).
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Figure 9.5: Hamming graph for n = 3. For the dictator function Maj1(x3) = x1,
the set A = {(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)} (indicated in red balls). The edge
boundary ∂A of A is indicated as the four thick edges. Each boundary edge is a
dimension-1 edge.

Proof. Since Di is a linear operator, (9.34) follows by expressing f in
terms of its Fourier coefficients, and then applying the following identity

DiχS(xn) =

−2χS\{i}(xn) i ∈ S

0 i /∈ S
.

The identity in (9.35) follows from (9.33) and (9.34), and the fact that
for any sets S, T ⊂ [n],

E[χS(Xn)χT (Xn)] = 1{S = T }. (9.37)

The identity in (9.36) follows from (9.35) and Definition 9.9.

The quantities Ii[f ] and I[f ] also admit interesting graph-theoretic
interpretations. Consider the undirected graph in which the vertices
consist of all vectors in {0, 1}n, and two vertices xn, yn ∈ {0, 1}n are
joined by an edge if the Hamming distance between them is exactly 1,
i.e., dH(xn, yn) = 1. This graph is known as the Hamming graph; see
Fig. 9.5 for the Hamming graph when n = 3.

Definition 9.10. For a set A ⊂ {0, 1}n, define its edge boundary ∂A as
the set of edges in the Hamming graph such that one of its endpoints
belongs to A while the other one belongs to Ac. Every edge that belongs
to ∂A is called a boundary edge. An boundary edge {xn, yn} ∈ ∂A is
known as a dimension-i edge if yn = (xn)⊕i, i.e., xn and yn are identical
except in their ith coordinates.

Full text available at: http://dx.doi.org/10.1561/0100000122



9.3. Extreme Cases of the Correlation Coefficient 203

For a set A ⊂ {0, 1}n, one observes the following facts.

1. The fraction of dimension-i edges that are boundary edges of A
in the Hamming graph is equal to Ii[1A].

2. The fraction of edges in the Hamming graph that are boundary
edges of A is equal to 1

nI[1A]. This implies that |∂A| = 2n−1I[1A],
since the total number of edges in the Hamming graph is n 2n−1.

Example 9.3. Let n = 3. The Hamming graph is shown in Fig. 9.5. This
graph has 3·23−1 = 12 edges. Consider the dictator function Maj1(x3) =
x1. The support of f is the set A = {(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}.
Both A and ∂A are indicated in Fig. 9.5 and |∂A| = 4. For this dictator
function, I1[1A] = 1 and I2[1A] = I3[1A] = 0 (as discussed after
Definition 9.7). Note from Fig. 9.5 that there are four dimension-1
edges and no dimension-2 and dimension-3 edges. Thus, the fractions
of dimension-1, dimension-2 and dimension-3 edges that are boundary
edges ofA are 1, 0, and 0 respectively, corroborating Fact 1. Furthermore,
I[1A] =

∑3
i=1 Ii[1A] = 1 and the fraction of edges that belong to ∂A is

1/3 = 4/12, corroborating Fact 2.

9.3.2 Edge-Isoperimetric Inequalities

From Fact 2, we see that the total influence of f is related to the
cardinality of the edge boundary of its support set A. A classical
result due to Harper [74] quantifies this relation via the so-called edge-
isoperimetric inequality.

Theorem 9.5 (Edge-isoperimetric inequality). For f : {0, 1}n → {0, 1}
with a = min{E[f ], 1− E[f ]},

I[f ] ≥ 2a log
(1
a

)
. (9.38)

This inequality can be seen as a Boolean function version of the
log-Sobolev inequality. The relationship between this edge-isoperimetric
inequality and the real-valued function version of log-Sobolev inequalities
will be discussed extensively in Section 10.4.

This inequality in (9.38) is sharp for a = 2−k with 1 ≤ k ≤ n,
since for this case, the indicator function of an (n− k)-subcube attains
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the lower bound. If a, a dyadic rational, is the mean of f , I[f ] is
minimized when f is the indicator of a lexicographic set of size 2na (cf.
Section 8.2.1). The edge-isoperimetric inequality will be used to resolve
the extreme cases of the max q-stability problem via the following two
theorems that establish a connection between the q-stability and the
total influence.

Theorem 9.6. For f : {0, 1}n → {0, 1},

S(2)
ρ [f ] =

∑
S⊂[n]

ρ2|S| f̂2
S =

n∑
k=0

ρ2k Wk[f ].

Proof. This theorem follows by (9.37) and the facts that

S(2)
ρ [f ] = ⟨Tρf, Tρf⟩ and (T̂ρf)S =

∑
S⊂[n]

ρ|S| f̂S , (9.39)

where {(T̂ρf)S}S⊂[n] are the Fourier coefficients of Tρf .

This theorem implies that

d
dρS(2)

ρ [f ]
∣∣∣
ρ=1

= I[f ]
2 ,

d
dρS(2)

ρ [f ]
∣∣∣
ρ=0

= 0, and

d2

dρ2 S(2)
ρ [f ]

∣∣∣
ρ=0

= 2 W1[f ].

Theorem 9.6 pertains to q = 2. For general q > 1, the derivatives of
S(q)

ρ [f ] at ρ = 0 and 1 are given in the following theorem which is due
to Li and Médard [110].

Theorem 9.7. For f : {0, 1}n → {0, 1} with mean a ∈ (0, 1],

d
dρS(q)

ρ [f ]
∣∣∣
ρ=1

= q

4 I[f ], (9.40)

d
dρS(q)

ρ [f ]
∣∣∣
ρ=0

= 0, and

d2

dρ2 S(q)
ρ [f ]

∣∣∣
ρ=0

= q(q − 1) aq−2 W1[f ].
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Proof. By using the Fourier-analytic relations in (9.39), we obtain

Tρf(yn) =
∑

S⊂[n]
ρ|S| f̂S χS(yn).

By the definition of the q-stability in (9.4)

S(q)
ρ [f ] = EY n

[( ∑
S⊂[n]

ρ|S|f̂SχS(Y n)
)q
]
.

Differentiating this with respect to ρ yields

d
dρS(q)

ρ [f ]=q EY n

[(
Tρf(Y n)

)q−1 ∑
S⊂[n]:|S|≥1

|S|ρ|S|−1f̂SχS(Y n)
]
.

Setting ρ = 1, we obtain

d
dρS(q)

ρ [f ]
∣∣∣
ρ=1

= q EY n

[
f(Y n)q−1 ∑

S⊂[n]:|S|≥1
|S|f̂SχS(Y n)

]

= q EY n

[
f(Y n)

∑
S⊂[n]:|S|≥1

|S|f̂SχS(Y n)
]

(9.41)

= q
∑

S⊂[n]:|S|≥1
|S|f̂2

S

= q

4 I[f ], (9.42)

where (9.41) follows since f only takes values in {0, 1}, and hence,
f q−1 = f , and (9.42) follows from (9.36). This proves (9.40). The other
equalities can be proved similarly.

9.3.3 Max q-Stabilities in Extreme Cases of ρ

Based on the concept of the total influence and the results stated in
Sections 9.3.1 and 9.3.2, we are now ready to analyze the extreme cases
of the max q-stability as ρ ↓ 0 and ρ ↑ 1. We first state a lower bound
on the derivative of the q-stability with respect to ρ evaluated at ρ = 1.
This result is due to Mossel and O’Donnell [122] for integer q and Li
and Médard [110] for real q > 1.
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Theorem 9.8. Let q > 1. For a Boolean function f : {0, 1}n → {0, 1}
with mean a,

∂

∂ρ
S(q)

ρ [f ]
∣∣∣
ρ=1
≥ q

2 a log
(1
a

)
.

This lower bound is attained if a = 2−k for any 1 ≤ k ≤ n and f is the
indicator of an (n− k)-subcube.

This theorem follows by the edge-isoperimetric inequality in (9.38)
and (9.40).

Note that if ρ = 1, then for any f : {0, 1}n → {0, 1} with mean a,
it holds that S(q)

ρ [f ] = a (cf. (9.20)). Hence, from Theorem 9.8, it is
plausible, via “continuity arguments”, that if a = 2−k for integer k and ρ
is sufficiently close to 1, then S(q)

ρ [f ] is maximized by the indicator of an
(n− k)-subcube. This can be proven rigorously using the fact that the
number of Boolean functions for a given n is finite, some approximation
arguments involving Taylor’s theorem, and bounds on the derivative
of S(q)

ρ evaluated at ρ = 1 (Theorem 9.8). This is stated formally in
the following theorem which is due to Mossel and O’Donnell [122] for
integer q and Li and Médard [110] for real q.

Theorem 9.9. Fix n ≥ 1, q > 1, and a = 2−k with 1 ≤ k ≤ n. There
exists an ϵ ∈ (0, 1) such that for all ρ ∈ [1− ϵ, 1], Γ(q)

ρ (a) is attained by
the indicator of an (n− k)-subcube.

Proof Sketch of Theorem 9.9. Fix a Boolean function f and ρ ∈ (0, 1).
Using Taylor’s theorem, we can write

S(q)
ρ [f ] = S(q)

1 [f ] + (ρ− 1) ∂
∂ρ

S(q)
ρ [f ]

∣∣∣
ρ=1

+ ϕf (ρ̃)(ρ− 1)2,

where ϕf : [0, 1]→ R is a bounded function induced by f and ρ̃ ∈ (ρ, 1).
Since n is fixed, the number of Boolean functions f : {0, 1}n → {0, 1} is
finite. From this fact, we deduce that ϕ(ρ) := maxf :{0,1}n→{0,1} ϕf (ρ),
then ϕ is bounded, i.e., there is some constant c2 such that |ϕ(ρ)| ≤ c2
for all ρ ∈ [0, 1]. Moreover, if f is not the indicator of an (n−k)-subcube,
it holds that (cf. Theorem 9.8)

∂

∂ρ
S(q)

ρ [f ]
∣∣∣∣
ρ=1

>
q

2 a log
(1
a

)
.
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By again exploiting that fact that the number of Boolean functions is
finite,

c1 := min
f∈F

∂

∂ρ
S(q)

ρ [f ]
∣∣∣∣
ρ=1

>
q

2 a log
(1
a

)
,

where F denotes the set of Boolean functions f : {0, 1}n → {0, 1} that
cannot be written as the indicator of an (n− k)-subcube. Therefore, for
any f ∈ F ,

S(q)
ρ [f ] ≤ a+ c1(ρ− 1) + c2(ρ− 1)2. (9.43)

By Taylor’s theorem, one can lower bound the q-stability for the
indicator of an (n− k)-subcube Cn−k as

S(q)
ρ [1Cn−k

] ≥ a+ (ρ− 1)q2 a log
(1
a

)
+ c3(ρ− 1)2, (9.44)

where c3 is an absolute constant independent of ρ. Comparing (9.43)
and (9.44), we observe that there exists a constant ϵ > 0 such that
the right-hand side of (9.44) is larger than (9.43) for all ρ ∈ [1− ϵ, 1],
concluding the proof sketch of Theorem 9.9.

Concerning the other extreme case, i.e., the limiting case as ρ ↓ 0,
following the proof ideas used in Theorems 9.8 and 9.9, one can also
show the following result, which is due to Mossel and O’Donnell [122]
and Li and Médard [110].

Theorem 9.10. Fix n ≥ 1, q > 1, and a dyadic rational a ∈ (0, 1). There
exists an ϵ ∈ (0, 1) such that for all ρ ∈ [0, ϵ], Γ(q)

ρ (a) is attained by some
Boolean function that maximizes the degree-1 Fourier weight W1. In
particular, for a = 1/2, there exists an ϵ > 0 such that for all ρ ∈ [0, ϵ],
Γ(q)

ρ (1/2) is attained by dictator functions.

Theorems 9.8, 9.9, and 9.10 can be extended to their symmetric
counterparts of the max q-stability. For q = 1, they can also be ex-
tended to the Φ-versions of the max q-stabilities (cf. Definition 9.6); see
Courtade and Kumar [40], Ordentlich, Shayevitz, and Weinstein [134],
and Yang and Wesel [187].
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9.4 The Balanced Case

In this section, we consider the balanced case, i.e., a = 1/2, and discuss
recent progress on Conjectures 9.1 and 9.2. We first focus on the case
q = 1, i.e., the balanced version of the Courtade–Kumar conjecture,
which can be stated as follows.

Conjecture 9.3. For any n ∈ N and ρ ∈ (0, 1),

max
Boolean f :E[f(Xn)]=1/2

I(f(Xn);Y n) ?= 1− h
(1− ρ

2
)
. (9.45)

In the original version of Courtade–Kumar conjecture, the Boolean
function f is not required to satisfy E[f(Xn)] = 1/2. It has been
numerically verified to be true for all n ≤ 7 [40]. An old result by
Witsenhausen and Wyner [176] (also see Erkip [53]) yields the following
bound.

Proposition 9.4. It holds that

max
Boolean f :E[f(Xn)]=1/2

I(f(Xn);Y n) ≤ ρ2. (9.46)

This proposition can be proved via the so-called Mrs. Gerber’s
lemma [184] or the hypercontractivity inequality in (8.56). Here, we
provide a short justification based on the latter. By (8.56), we obtain
that for q > 1 and any Boolean function f with mean a,

S(q)
ρ [f ] ≤ a

q

1+(q−1)ρ2 .

In other words,

Γ(q)
ρ (a) ≤ a

q

1+(q−1)ρ2 and Γ̆(q)
ρ (a) ≤ a

q

1+(q−1)ρ2 + ā
q

1+(q−1)ρ2 .

Substituting the latter into (9.25) and setting a = 1/2 yields

Π̆(q)
ρ (1/2) ≤ 2

(1−q)(1−ρ2)
1+(q−1)ρ2 − 1
(q − 1) ln 2 .

Letting q ↓ 1, we obtain Π̆(1)
ρ (1/2) ≤ ρ2−1. Substituting this into (9.28)

and noting that h(1/2) = 1 yields (9.46) as desired.
Considering small ρ, and using Fourier analysis and hypercontrac-

tivity, Ordentlich, Shayevitz, and Weinstein [134] improved the bound
in (9.46) to the following.
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Proposition 9.5. For 0 ≤ ρ ≤ 1/
√

3,

max
Boolean f :E[f(Xn)]=1/2

I(f(Xn);Y n) ≤ log e
2 ρ2 + 9

(
1− log e

2
)
ρ4. (9.47)

The bounds in (9.46) and (9.47) are illustrated in Fig. 9.6. The bound
in (9.47) is better than (9.46) in the range 0 < ρ < 1/3. Moreover, the
bound in (9.47) is asymptotically tight as ρ ↓ 0, i.e., the ratio of the
bound in (9.47) and the right-hand side of (9.45) converges to 1 as ρ ↓ 0.
This point can be seen from the fact that by Taylor’s theorem, as ρ ↓ 0,

1− h
(1− ρ

2
)

= log e
2 ρ2 + log e

12 ρ4 +O(ρ6).

In 2016, Samorodnitsky [149] made a significant breakthrough on
the Courtade–Kumar conjecture. Specifically, he proved the existence
of a dimension-independent interval for which Conjecture 9.3 holds for
all ρ in the interval.
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Figure 9.6: Illustration bounds on max I(f(Xn); Y n) by Witsenhausen and Wyner
[176] in (9.46), Ordentlich, Shayevitz, and Weinstein [134] in (9.47), and the Courtade–
Kumar conjecture in (9.45)

Theorem 9.11. There exists a constant 0 < ρ0 < 1 (independent of n),
such that (9.45) holds for any n ∈ N and any ρ ∈ (0, ρ0].

The proof by Samorodnitsky [149] is based on Fourier analysis,
random restrictions, techniques in Ordentlich, Shayevitz, and Weinstein
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[134], the Friedgut–Kalai–Naor (FKN) theorem [90], among others.
Samorodnitsky’s proof is highly technical, so we do not present it here.
However, we should note that in the proof of Theorem 9.11, ρ0, which
is not explicitly provided, is assumed to be “sufficiently small”. It is also
worth noting that the conclusion that the value ρ0 is independent of
n (resulting in a dimension-independent interval (0, ρ0]) is the crux of
this theorem. Indeed, if we allow ρ0 to vary with n, then the resulting
theorem is merely an extension of Theorem 9.10 to the case q = 1,
which can be proved by combining the bound in (9.47) by Ordentlich,
Shayevitz, and Weinstein [134] and the discreteness of the space of
Boolean functions; see [134, Corollary 1]. This fact can also be deduced
using calculus [187].

Using Fourier analysis and optimization theory, the first author of
this monograph [191] provided an explicit threshold for Theorem 9.11.
Specifically, he showed that (9.45) holds for any n and any ρ ∈ (0, ρ1],
where ρ1 be the solution in (0, 1) to the equation

(1 + ρ2) log
(1 + ρ

2
)
− (1− ρ)2 log

(1− ρ
2

)
= 0.

The value of ρ1 ≈ 0.461491.
In the Courtade–Kumar conjecture, if the Boolean function is set

to a dictator function f(xn) = x1 (say), then the objective function
I(f(Xn);Y n) = I(X1;Y1). Motivated by this, in addition to the original
Courtade–Kumar conjecture (in which f is an arbitrary Boolean function
and not required to satisfy E[f(Xn)] = 1/2), Courtade and Kumar also
proposed a weaker version of this conjecture. They conjectured that for
any n ∈ N and ρ ∈ (0, 1),

max
Boolean f,g

I(f(Xn); g(Y n)) = 1− h
(1− ρ

2
)
. (9.48)

This weaker version was proven by Pichler, Piantanida, and Matz [136]
by using Fourier analysis and a novel partitioning technique.

Theorem 9.12. The equality in (9.48) holds for all (n, ρ) ∈ N× (0, 1).

Since the Li–Médard conjecture was only recently posed (at the time
of writing), there is less progress on it compared to the Courtade–Kumar
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conjecture. Hence, we do not elaborate on it apart from mentioning
some partial progress by Yu [191] for a certain set of (q, ρ).

Finally, we summarize some recent progress on the Mossel–O’Donnell
conjecture, which states that dictator functions are optimal in attaining
both the asymmetric and symmetric max q-stabilities for 2 < q ≤ 9
(and for any n ∈ N and any ρ ∈ (0, 1)). As discussed in Theorems 9.9
and 9.10, the limiting cases as ρ ↓ 0 and ρ ↑ 1 (with fixed n) were resolved
in [122] for the symmetric case and in [110], [122] for the asymmetric
case. However, for other intermediate values of ρ, there has been fairly
limited progress. For the symmetric case, the best known result is
Mossel and O’Donnell’s result in Theorem 9.2; this result resolved the
eponymous conjecture for q = 3 and for any ρ ∈ (0, 1). Combining this
with the result of Barnes and Özgür [11] (in Lemma 9.3) yields the
conclusion the Mossel–O’Donnell conjecture holds for all 2 < q ≤ 3.
There is even less progress for the asymmetric case in which the best
known result remains that of Witsenhausen’s result in Corollary 9.1 for
the case q = 2. Recently, in [191], the first author of this monograph
made some progress on the Mossel–O’Donnell conjecture. He showed
that the symmetric version of the Mossel–O’Donnell conjecture holds
for 2 < q ≤ 5, and the asymmetric version holds for 2 < q ≤ 3. These
imply that 3 ≤ qmax < 10 and 5 ≤ q̆max < 10. The proofs are based on
Fourier analysis and optimization theory.

9.5 Moderate and Large Deviations Regimes

In this section, we consider the max q-stabilities in the MD and LD
regimes. Recall the definition of the asymmetric max q-stability with
q ∈ [1,∞) in (9.9). It can be rewritten as

Γ(q)
ρ (a) =

(
max

A⊂{0,1}n:πn
X(A)≤a

∥πn
X|Y (A|Y n)∥q

)q

, (9.49)

where the maximization is over all subsets of {0, 1}n. We now extend
the asymmetric max q-stability to the case of q ∈ (−∞, 1)\{0}. For
q ∈ (−∞, 1)\{0}, define

Γ(q)
ρ (a) :=

(
min

A⊂{0,1}n:πn
X(A)≥a

∥πn
X|Y (A|Y n)∥q

)q

. (9.50)
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We note that even though a min is present in (9.50), we still term this
quantity as the asymmetric max q-stability.

We are now interested in the MD and LD asymptotics of (9.49)
and (9.50). Similarly to the 2-user NICD problem, in the LD regime,
the parameter a is assumed to vanish exponentially fast as n→∞, i.e.,
a = 2−nα for some fixed constant α ∈ (0, 1). In the MD regime, a is
assumed to vanish subexponentially fast, i.e., a = 2−θnα for an MD
sequence {θn}n∈N.

Definition 9.11. We define the LD and MD exponents corresponding
to the quantities in (9.49) and (9.50) as follows.

1. For n ≥ 1, α ∈ [0, 1], and q ≥ 1, define the LD exponent as

Υ(n)
q,LD(α) := − 1

n
log max

A:πn
X(A)≤2−nα

∥πn
X|Y (A|Y n)∥q. (9.51)

For q ∈ (−∞, 1)\{0}, Υ(n)
q,LD(α) is defined similarly but with

the maximization in (9.51) replaced by a minimization, and the
inequality reversed.

2. For n ≥ 1, α ∈ [0,∞), q ≥ 1, and an MD sequence {θn}n∈N, define
the MD exponent as

Υ(n)
q,MD(α) := − 1

θn
log max

A:πn
X(A)≤2−θnα

∥πn
X|Y (A|Y n)∥q. (9.52)

For q ∈ (−∞, 1)\{0}, Υ(n)
q,MD(α) is defined similarly but with

the maximization in (9.52) replaced by a minimization, and the
inequality reversed.

3. Define Υ(∞)
q,MD and Υ(∞)

q,LD as the pointwise limits of (9.51) and (9.52)
as n→∞.

Note that in the definitions in (9.51)–(9.52), we remove the qth power
in (9.49)–(9.50). This slight modification will result in a multiplicative
factor of q in the characterizations of these exponents. We deliberately
choose such definitions since the bounds on the exponents in Defini-
tion 9.11 provided in the following two theorems will be consistent with
the bounds for the 2-user NICD problem. We also remark that these
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quantities depend on ρ but these dependencies are suppressed to avoid
notational clutter in what follows.

For q ∈ (1− ρ−2,∞)\{0} and α > 0, let

Υq,MD(α) := α

1 + (q − 1)ρ2 . (9.53)

By using the single-function versions of hypercontractivity inequalities
(Theorem 8.5), we can obtain the following result.

Theorem 9.13 (q-stability). Let n ≥ 1 and α > 0. For q ≥ 1,

Υ(n)
q,MD(α) ≥ Υq,MD(α), (9.54)

and for q ∈ (1− ρ−2, 1)\{0},

Υ(n)
q,MD(α) ≤ Υq,MD(α). (9.55)

Moreover, these two bounds are asymptotically tight, i.e., for q ∈
(1− ρ−2,∞)\{0},

Υ(∞)
q,MD(α) = Υq,MD(α). (9.56)

Lastly, for q ∈ (−∞, 1−ρ−2], Υ(∞)
q,MD(α) =∞. The equalities are achieved

by sequences of Hamming balls or spherical shells.

The function Υq,MD, defined in (9.53), is plotted in Fig. 9.7.

Proof of Theorem 9.13. This theorem is a consequence of the classic
hypercontractivity inequalities in (8.56) and (8.57). Substituting f ←
1A into (8.56) and (8.57), we obtain for q ≥ 1,

∥πn
X|Y (A|Y n)∥q ≤ πn

X(A)
1

1+(q−1)ρ2 ,

and for q ∈ (1− ρ−2, 1)\{0},

∥πn
X|Y (A|Y n)∥q ≥ πn

X(A)
1

1+(q−1)ρ2 .

These inequalities immediate imply (9.54) and (9.55).
The asymptotic tightness of (9.54) and (9.55) can be verified by

choosing the sets A in the definition of the MD exponent to be sequences
of Hamming balls or spherical shells. The asymptotic tightness for
q ∈ (−∞, 1− ρ−2] follows by the monotonicity of the Lq-norm in q, and
taking limits as q ↓ 1− ρ−2 in (9.56). We omit the details.
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Figure 9.7: The MD exponent of the q-stability Υq,MD for ρ = 0.9. Observe that
Υq,MD is linear given each q ̸= 0 and diverges as q ↓ 1 − ρ−2 ≈ −0.2346.

We now turn our attention to the LD exponent. For q ̸= 0, define

θq(QX , QY ) := D(QX , QY ∥πXY )− D(QY ∥πY )
q′ . (9.57)

where q′ is the Hölder conjugate of q Define

Υq,LD(α) := inf
QX ,QY :D(QX∥πX)≥α

θq(QX , QY ) (9.58)

for q ≥ 1, and

Υq,LD(α) :=


sup

QX :D(QX∥πX)≤α
inf
QY

θq(QX , QY ) 0 < q < 1

sup
QX :D(QX∥πX)≤α

sup
QY

θq(QX , QY ) q < 0
(9.59)

for q ∈ (−∞, 1)\{0}. It can be verified that Υq,LD(α) ≥ 0 for all q ̸= 0.
Asymptotically tight bounds are provided in the following theorem,
which is known as the strong q-stability theorem and was proved by the
first author of this monograph [192].

Theorem 9.14 (Strong q-stability). For any n ≥ 1 and α ∈ (0, 1), it
holds that for q ≥ 1,

Υ(n)
q,LD(α) ≥ L[Υq,LD](α), (9.60)
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and for q ∈ (−∞, 1)\{0},

Υ(n)
q,LD(α) ≤ U[Υq,LD](α). (9.61)

Moreover, these two bounds are asymptotically tight, i.e.,

Υ(∞)
q,LD(α) = L[Υq,LD](α) and Υ(∞)

q,LD(α) = U[Υq,LD](α), (9.62)

and these equalities are achieved by sequences of Hamming balls or
spheres.

It has been shown in [193] that for q ≥ 1, Υq,LD is convex, and
for q ∈ (−∞, 1)\{0}, Υq,LD is concave. Combining this result with
the strong q-stability theorem (Theorem 9.14) tells us that the lower
convex envelope and upper concave envelope operations in (9.62) can be
removed and Hamming balls or spheres are optimal in the LD regime.
That is, for the DSBS and α ∈ (0, 1),

Υ(∞)
q,LD(α) = Υq,LD(α) and Υ(∞)

q,LD(α) = Υq,LD(α).

This is parallel to the discussion of the resolution of the OPS conjecture
in Section 8.5; also see (8.67). The asymptotically tight bound Υq,LD,
defined in (9.59), is plotted in Fig. 9.8 for various q’s.

9.6 Extensions to Sources Beyond the DSBS

Similarly to the discussion in Section 8.6, the q-stability and strong
q-stability theorems can be extended to sources defined on arbitrary
finite alphabets as well as jointly Gaussian sources. We discuss these
extensions here.

9.6.1 Finite Alphabets

Let πXY be a joint distribution defined on a finite alphabet. We now
consider its q-stability. For α ∈ [0, αmax(πX)] (defined in (8.68)), we
reuse the definitions in (9.51)–(9.52) for Υ(n)

q,MD and Υ(n)
q,LD, but with the

underlying distribution set to be πXY . The strong q-stability theorem
(Theorem 9.13) can be extended to the following general version, which
was first shown in [192], as a consequence of the strong version of
hypercontractivity inequalities derived in [192]. We provide a simple
proof of Theorem 9.15 in Section 10.3.
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Figure 9.8: The LD exponent of the q-stability Υq,LD for ρ = 0.9. Observe that
Υq,LD appears to be (“only slightly”) convex for q > 1, concave for q ∈ (−∞, 1) \ {0},
and linear for q = 1. Also Υq,LD(0) vanishes when q ≤ 1 − ρ−2 ≈ −0.2346.

Theorem 9.15 (Strong q-stability: General version). For any n ≥ 1
and α ∈ (0, αmax(πX)], (9.60) holds for q ≥ 1, and (9.61) holds for
q ∈ (−∞, 1) \ {0}. Moreover, (9.60) and (9.61) are asymptotically tight,
i.e., (9.62) holds.

The q-stability theorem (Theorem 9.14) can be also generalized to
the finite alphabet case, but for general sources on finite alphabets, a
limiting operation is needed.

Theorem 9.16 (q-Stability: General version). For any n ≥ 1, α > 0, and
q ≥ 1,

Υ(n)
q,MD(α) ≥ lim

ϵ↓0

1
ϵ
L[Υq,LD](ϵα). (9.63)

If instead q ∈ (−∞, 1) \ {0} and Υq,LD(0) = 0, then

Υ(n)
q,MD(α) ≤ lim

ϵ↓0

1
ϵ
U[Υq,LD](ϵα). (9.64)

Moreover, the inequalities in (9.63)–(9.64) are asymptotically tight.

9.6.2 Gaussian Sources

Finally, we turn our attention to memoryless bivariate Gaussian sources
with correlation coefficient ρ ∈ (0, 1). For this class of sources, the
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max q-stability problem was completely solved by Borell [28] for all
a ∈ [0, 1]. Let πXY be a bivariate Gaussian distribution with zero mean
and covariance matrix K given in (8.17). Let (Xn, Y n) ∼ πn

XY . For this
distribution, a real number q > 1, and a ∈ [0, 1], we define

Γ(q)
ρ (a) := sup ∥πn

X|Y (A|Y n)∥qq,

where the supremum runs over all measurable sets A ⊂ Rn such that
πn

X(A) = a. The following theorem is due to Borell [28].

Theorem 9.17 (Borell’s q-stability theorem). For any n ≥ 1, q > 1,
0 ≤ ρ < 1, and a ∈ [0, 1], one has

Γ(q)
ρ (a) = Λ(q)

ρ (a), (9.65)

where Λ(q)
ρ , the Gaussian q-stability function, is defined in (9.6). More-

over, optimal subsets A (i.e., those attaining Γ(q)
ρ ) are parallel halfspaces.

The proof of this theorem can be found in Borell [28] and Eldan
[52]. Moreover, the proof of this theorem with q being an integer can
also be found in Isaksson and Mossel [87] and Neeman [129]. We remark
that Neeman’s proof in [129] is an extension of the one for Borell’s
isoperimetric theorem given in Section 8.6.2 to the multi-user case.

We now consider the Gaussian version of the Courtade–Kumar
conjecture. Substituting (9.65) into the Φ-symmetric max q-stability
in (9.24) and taking limits as q ↓ 1, one can deduce that Π̆(1)

ρ (a) is
attained by halfspaces with πn

X -probability a. This implies that

max
f :Rn→{0,1} measurable:

E[f(Xn)]=a

−H
(
f(Xn)

∣∣Y n)

= −H
(
1{X1≤Φ−1(a)}

∣∣Y1
)

= −EY1

[
h

(
Φ
(Φ−1(a)−ρY1√

1− ρ2

))]
. (9.66)

That is, given a ∈ [0, 1], the indicator of any half-space with πn
X -

probability a (e.g., (−∞,Φ−1(a)] × Rn−1) maximizes the mutual in-
formation between f(Xn) and Y n over all {0, 1}-valued measurable
functions f . This statement was also proved by Kindler, O’Donnell,
and Witmer [96] using a different method. If we do not fix a, then
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similarly to the original Courtade–Kumar conjecture for the DSBS, it is
natural to conjecture that for this Gaussian version of Courtade–Kumar
conjecture, the mutual information is also maximized at a = 1/2 for
every ρ ∈ (0, 1). This point can be confirmed numerically as shown in
Fig. 9.9 in which we plot the right-hand side of (9.66) plus h(a) as a
function of a ∈ [0, 1/2] for different ρ’s. Note that we only focus on the
case a ∈ [0, 1/2] in Fig. 9.9, since the function considered is symmetric
with respect to a = 1/2. It is easily seen that the maxima of these
curves occur at a = 1/2.
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Figure 9.9: The mutual information, i.e., the right-hand side of (9.66) plus h(a).
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Functional Inequalities

In this section, we consider functional extensions of the NICD and the
max q-stability problems as described in Sections 8 and 9 respectively.
Recall that in the 2-user NICD problem, we optimize the probability
of agreement between two random bits that are generated in a dis-
tributed manner via Boolean functions from a joint source (Xn, Y n). In
this section, we replace the Boolean functions f, g ∈ {0, 1}n → {0, 1}
with arbitrary nonnegative functions, and obtain corresponding func-
tional inequalities. Specifically, we will introduce the Brascamp–Lieb
inequalities, the hypercontractivity inequalities, and the log-Sobolev
inequalities, as well as their strengthened counterparts. We provide
information-theoretic characterizations of these inequalities, and also
use them to prove the strong SSE theorem and the strong q-stability
theorem stated respectively in Sections 8.6 and 9.6. Analogously to
the forward and reverse joint probabilities in the NICD problem (Def-
inition 8.1), the optimal constants or exponents in these inequalities
can be also regarded as refinements of GKW’s common information
when the latter is equal to zero, but with the “information” measured
by the entropy of a nonnegative function, rather than the Shannon
entropy.

219
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This section concerning functional inequalities (or inequalities involv-
ing functionals) starts by formally defining some convenient quantities,
such as the minimum relative entropy region, in Section 10.1. Using
these new definitions, we provide alternative representations of the for-
ward and reverse large deviations exponents in the NICD and q-stability
problems. These quantities are then used in Section 10.2 to express
the hypercontractivity regions (which generalize and strengthen the
classic Hölder inequalities) and Brascamp–Lieb exponents in terms of
single-letter, information-theoretic quantities. We then connect these ex-
ponents to the NICD and q-stability problems in Section 10.3, leading to
a short proof of the strong SSE theorem (Theorem 8.11). In Section 10.4,
we discuss the log-Sobolev inequalities, provide single-letter expressions
for their optimal constants, and use the results as a bridge to connect
the hypercontractivity inequalities to their strengthened counterparts,
which are presented in Section 10.5. In Section 10.5, our discussion
culminates with expressions for the strong log-Sobolev constant and
a strengthened hypercontractivity inequality for the DSBS. Through-
out this section, we focus on information-theoretic characterizations of
optimal constants and exponents in various functional inequalities.

As there are several interconnected results in this section and Sec-
tions 8 and 9, we illustrate their relationships by means of a graph in
Fig. 10.1.

10.1 Preliminary Definitions

Throughout this section, we assume that X and Y are finite sets and
πXY is a joint distribution on X × Y.

Assumption 10.1 (Full support of marginals). The supports of πX and
πY are X and Y respectively.

Definition 10.1. Define the minimum relative entropy region with
respect to a joint distribution πXY ∈ P(X × Y) as

D(πXY ) :=
⋃

QX ,QY

{
(D(QX∥πX), D(QY ∥πY ),D(QX , QY ∥πXY ))

}
,

where D(QX , QY ∥πXY ) is the minimal relative entropy with respect
to πXY over all couplings of QX and QY , defined in (8.23). Due to
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Thm. 10.1

Thm. 10.5 Thm. 10.8

Thm. 8.11

Thm. 10.6

Thm. 9.15

Log-Sobolev

Thm. 10.10

Thm. 10.9

Prop. 10.2

Brascamp–Lieb/
Hypercontractivity (HC)

Strengthened HC

Strong SSE/q-Stability
Edge-Isoperimetric

Thm. 9.5

Figure 10.1: A graph of the main results in this and Sections 8 and 9, where −→
denotes an implication and ⇐⇒ denotes a close relationship.

Assumption 10.1, any QX and QY defined on X and Y respectively are
absolutely continuous with respect to πX and πY respectively.

The minimum relative entropy region is the subset of R3 that is
formed by the pair of relative entropies (D(QX∥πX), D(QY ∥πY )) and
the minimal relative entropy D(QX , QY ∥πXY ) as QX and QY run over
all distributions that are absolutely continuous with respect to πX and
πY respectively.

Definition 10.2. For (s, t) ∈ [0, αmax(πX)]×[0, βmax(πY )] (refer to (8.68)
for definitions), define the upper and lower envelopes of the minimal
relative entropy region D(πXY ) respectively as

φ(s, t) := min
QX ,QY :D(QX∥πX)=s,D(QY ∥πY )=t

D(QX , QY ∥πXY ), (10.1)

and

φ(s, t) := max
QX ,QY :D(QX∥πX)=s,D(QY ∥πY )=t

D(QX , QY ∥πXY ). (10.2)
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Fix (α, β) ∈ [0, αmax(πX)] × [0, βmax(πY )]. Recall that the upper
bound on the forward LD exponent, previously defined in (8.24), is

ΥLD(α, β) = min
QX ,QY :D(QX∥πX)≥α,D(QY ∥πY )≥β

D(QX , QY ∥πXY ), (10.3)

and the lower bound on the reverse LD exponent, is

ΥLD(α, β) = max
QX ,QY :D(QX∥πX)≤α,D(QY ∥πY )≤β

D(QX , QY ∥πXY ). (10.4)

Based on the functions presented in Definition 10.2, we may modify the
definitions of ΥLD and ΥLD for the DSBS to a source (X,Y ) ∼ πXY

defined on a finite alphabet as follows

Υ(α, β) := min
s≥α,t≥β

L[φ](s, t) and (10.5)

Υ(α, β) := max
s≤α,t≤β

U[φ](s, t). (10.6)

Note that ΥLD and ΥLD in (10.3) and (10.4) may not be convex and
concave respectively for arbitrary πXY (see the discussion following
Theorem 8.11). Hence, in the modified definitions in (10.5) and (10.6),
we take the lower convex envelope for φ and the upper concave envelope
for φ. With these operations, Υ(α, β) is convex and nondecreasing in
(α, β), and Υ(α, β) is concave and nondecreasing in (α, β).1 Henceforth,
we omit the subscript LD in (10.5) and (10.6).

Before presenting the next definition, we recall the definition of θq

in (9.57) as

θq(QX , QY ) := D(QX , QY ∥πXY )− D(QY ∥πY )
q′ ,

but now, instead of being a DSBS, πXY is an arbitrary distribution
defined on the finite set X × Y.

Definition 10.3. For q ≥ 1 and for s ∈ [0, αmax(πX)], define

φq(s) := min
QX ,QY :D(QX∥πX)=s

θq(QX , QY ),

1We say a function of two variables is nondecreasing if it is nondecreasing in one
argument when the other is fixed.
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and for q ∈ (−∞, 1)\{0}, define

φq(s) :=


max

QX :D(QX∥πX)=s
min
QY

θq(QX , QY ) 0 < q < 1

max
QX :D(QX∥πX)=s

max
QY

θq(QX , QY ) q < 0
.

We denote Υq as the lower convex envelope of φq for q ≥ 1 and
the upper concave envelope of φq for q ∈ (−∞, 1)\{0}. Specifically, for
α ∈ [0, αmax(πX)],

Υq(α) :=


min
s≥α

L[φq](s) q ≥ 1

max
s≤α

U[φq](s) q ∈ (−∞, 1)\{0}
.

Observe that Υq is an alternative representation of Υq,LD defined
in (9.58) and (9.59). By definition, Υq(α) is convex and nondecreasing
in α for each q ≥ 1, and concave and nondecreasing in α for each
q ∈ (−∞, 1)\{0}.

To avoid having to deal with the undefined arithmetic operation
∞−∞, we adopt the following convention.

Convention 10.1. When we write an optimization problem with distri-
butions as decision variables, we implicitly require that the distributions
satisfy the condition that all the integrals and relative entropies (appear-
ing in the constraints and the objective function) to be finite. Otherwise,
the value of the optimization problem is set to +∞ if it is an infimization,
and −∞ if it is a supremization.

To keep notation uncluttered, we also adopt the following convention.

Convention 10.2. When we write an optimization over functions f
and g, we implicitly require these functions to be nonnegative.

10.2 Classic Hypercontractivity and Brascamp–Lieb Inequalities

In this section, we introduce a class of functional inequalities, known
as Brascamp–Lieb (BL) inequalities. We also review the well-known
Hölder and hypercontractivity inequalities which are special cases of the
BL inequalities. We introduced the hypercontractivity inequalities in
the context of of the DSBS in Section 8.3.1. In contrast, here we study
these inequalities for arbitrary sources defined on finite alphabets.
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10.2.1 Hölder and Hypercontractivity Inequalities

We review the well-known forward and reverse Hölder inequalities here.
Given a joint distribution πXY and an extended real number p ∈
R∪{±∞}, for any pair of nonnegative functions (f, g), the forward and
reverse Hölder inequalities are respectively

⟨f, g⟩ ≤ ∥f∥p∥g∥q if p ≥ 1 and (10.7)
⟨f, g⟩ ≥ ∥f∥p∥g∥q if p ≤ 1, (10.8)

where q is the Hölder conjugate of p. Since the (pseudo) Lq-norms
∥ · ∥q are nondecreasing in q ∈ R ∪ {±∞}, the scalar q in (10.7) can be
replaced by any q ≥ p′. Similarly, q in (10.8) can be replaced by any
q ≤ p′.

If X = Y (i.e., PY |X(·|x) places all its mass at x for every x ∈
X ), then the forward and reverse Hölder inequalities are sharp in the
following sense. If p > 1, then (10.7) becomes an equality if and only if
|f |p and gp′ are linearly dependent, i.e., there exist real numbers a, b ≥ 0,
not both zero, such that a|f |p = b|g|p′ holds (πX -almost everywhere).
If p < 1, ⟨f, g⟩ < ∞ and ∥g∥p′ > 0, then (10.8) is an equality if and
only if the equality |f |p = a|g|p′ holds (πX -almost everywhere) for some
a ≥ 0. Moreover, for the case X = Y , the parameters (p, q) in (10.7)
and (10.8) cannot be improved in the sense that given p ≥ 1, for any
q < p′, there exists a pair of (f, g) that violates (10.7); similarly, given
p ≤ 1, for any q > p′, there exists a pair of (f, g) that violates (10.8).

However, the Hölder inequalities are not sharp in general when X ̸=
Y (which is the case of interest to us). If X ̸= Y , then the parameters
(p, q) in the Hölder inequalities can be “improved”. Specifically, given
a joint distribution πXY and p ≥ 1, we are interested in how small
q ∈ R ∪ {±∞} can be such that for any nonnegative functions f : X →
[0,∞) and g : Y → [0,∞), it holds that

⟨f, g⟩ ≤ ∥f∥p∥g∥q. (10.9)

By the forward Hölder inequality, the infimum of all such q’s is at most p′,
the Hölder conjugate of p. Similarly, given p ≤ 1, we are interested in

Full text available at: http://dx.doi.org/10.1561/0100000122



10.2. Classic Hypercontractivity and Brascamp–Lieb Inequalities 225

how large q ∈ R∪{±∞} can be such that for any nonnegative functions
f and g, it holds that

⟨f, g⟩ ≥ ∥f∥p∥g∥q. (10.10)

For this case, the supremum of all such q’s is at least p′. Inequali-
ties (10.9) and (10.10) for the case X ̸= Y are respectively termed the
forward and reverse hypercontractivity inequalities, since the forward
and reverse Hölder inequalities in (10.7) and (10.8) respectively are
regarded as the (usual) contractivity inequalities, and inequalities (10.9)
and (10.10) with improved (p, q) are strengthenings of the forward and
reverse Hölder inequalities.

Inequalities (10.9) and (10.10) motivate the following definitions.

Definition 10.4. The forward and reverse hypercontractivity regions
[15], [112] are respectively defined as

RFH(πXY ) :=
{
(p, q) ∈ [1,∞)2 : ⟨f, g⟩ ≤ ∥f∥p∥g∥q, ∀ f, g ≥ 0

}
and

RRH(πXY ) :=
{
(p, q) ∈ (−∞, 1]2 : ⟨f, g⟩ ≥ ∥f∥p∥g∥q, ∀ f, g ≥ 0

}
.

By definition, these two regions correspond to the sets of parameters
(p, q) for which the forward or reverse hypercontractivity inequalities
in (10.9) and (10.10) hold. We remark that the notion of hypercontrac-
tivity ribbons was introduced in Anantharam et al. [5, Eqn. (6.117)]
and Kamath [92], prior to the hypercontractivity regions being intro-
duced in Beigi and Gohari [15] and Liu [112]. The hypercontractiv-
ity ribbons correspond to the hypercontractivity regions apart from
the exclusions of the Hölder regions {(p, q) ∈ [1,∞)2 : q ≥ p′} and
{(p, q) ∈ (−∞, 1]2 : q ≤ p′}, and that the Hölder conjugate of q is taken.

We can write RRH(πXY ) as the disjoint union of four sets

R++
RH(πXY ) := (0, 1]2 ∩RRH(πXY ), (10.11)
R+−

RH(πXY ) :=
(
(0, 1]× (−∞, 0)

)
∩RRH(πXY ), (10.12)

R−+
RH(πXY ) :=

(
(−∞, 0)× (0, 1]

)
∩RRH(πXY ), and (10.13)

R−−
RH(πXY ) := (−∞, 0]2.

Full text available at: http://dx.doi.org/10.1561/0100000122



226 Functional Inequalities

The forward hypercontractivity region and the first three subregions
of the reverse hypercontractivity region in (10.11), (10.12), and (10.13)
admit the following information-theoretic characterizations; see [1], [16],
[33], [92], [112], [192].

Theorem 10.1 (Information-theoretic characterizations of hypercontrac-
tivity regions). The forward hypercontractivity region RFH(πXY ) can
be expressed in terms of the minimal relative entropy as the set of
(p, q) ∈ [1,∞)2 such that

D(QX , QY ∥πXY ) ≥ 1
p
D(QX∥πX) + 1

q
D(QY ∥πY ).

In addition, R++
RH(πXY ) is the set of all (p, q) ∈ (0, 1]2 such that

D(QX , QY ∥πXY ) ≤ 1
p
D(QX∥πX) + 1

q
D(QY ∥πY ).

Finally, R+−
RH(πXY ) is the set of all (p, q) ∈ (0, 1]× (−∞, 0) such that

min
QY

{
D(QX , QY ∥πXY )− 1

q
D(QY ∥πY )

}
≤ 1
p

(QX∥πX). (10.14)

By symmetry, R−+
RH(πXY ) can be characterized in an analogous man-

ner to R+−
RH(πXY ) in (10.14). The proof of Theorem 10.1 is provided

in Section 10.2.2, since it is a special case of the information-theoretic
characterizations of the BL inequalities, which we present therein. The-
orem 10.1 can be specialized to Theorem 8.4 (the two function version
of the hypercontractivity inequalities for the DSBS); see [127], [128].

Hypercontractivity inequalities were investigated in [1], [25]–[27], [69],
[95], [125], [152] among others. Information-theoretic characterizations
of the hypercontractivity (and BL) inequalities can be traced back to
the seminal work of Ahlswede and Gács [1] in which, instead of the
hypercontractivity regions, the hypercontractivity constants (which are
quantities induced by the hypercontractivity regions) were characterized
in terms of relative entropies. The information-theoretic characterization
of the forward hypercontractivity region is implied by the information-
theoretic characterization of the forward BL inequalities on Euclidean
spaces in Carlen and Cordero-Erausquin [33]; this was independently
discovered later by Nair [126] in the case of finite alphabets.
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An information-theoretic characterization of R++
RH(πXY ) for finite

alphabets was provided by Kamath [92]. Subsequently, an information-
theoretic characterization of the entire reverse hypercontractivity region
for finite alphabets was shown by Beigi and Nair [16]. Extensions of
these characterizations to Polish spaces were studied by Liu [112] using
a minimax theorem known as the Fenchel–Rockafellar duality.

As a consequence of Definitions 10.2, 10.3, and Theorem 10.1, the
regionsRFH(πXY ),R++

RH(πXY ), andR+−
RH(πXY ) also admit the following

equivalent characterizations:

RFH(πXY ) =
{

(p, q) ∈ [1,∞)2 : φ(α, β) ≥ α

p
+ β

q
, ∀α, β ≥ 0

}
=
{

(p, q) ∈ [1,∞)2 : Υ(α, β) ≥ α

p
+ β

q
, ∀α, β ≥ 0

}
,

R++
RH(πXY ) =

{
(p, q) ∈ (0, 1]2 : φ(α, β) ≤ α

p
+ β

q
, ∀α, β ≥ 0

}
=
{

(p, q) ∈ (0, 1]2 : Υ(α, β) ≤ α

p
+ β

q
, ∀α, β ≥ 0

}
,

and

R+−
RH(πXY ) =

{
(p, q) ∈ (0, 1]× (−∞, 0) : φq′(α) ≤ α

p
, ∀α ≥ 0

}
=
{

(p, q) ∈ (0, 1]× (−∞, 0) : Υq′(α) ≤ α

p
, ∀α ≥ 0

}
,

where q′ is the Hölder conjugate of q.

10.2.2 Brascamp–Lieb Inequalities

The Brascamp–Lieb (BL) inequalities constitute a class of inequalities
that generalizes the families of Hölder and hypercontractivity inequal-
ities. The forward and reverse BL inequalities are defined as follows.
Given a distribution πXY and p, q ∈ R, for any pair of nonnegative
functions f : X → [0,∞) and g : Y → [0,∞),

⟨f, g⟩ ≤ C ∥f∥p∥g∥q and (10.15)
⟨f, g⟩ ≥ C ∥f∥p∥g∥q, (10.16)

where C = Cp,q and C = Cp,q depend only on p and q given the distri-
bution πXY . The hypercontractivity inequalities in (10.9) and (10.10)

Full text available at: http://dx.doi.org/10.1561/0100000122



228 Functional Inequalities

correspond to the BL inequalities with C = 1 in (10.15) and C = 1
in (10.16) respectively.

The forward version of the BL inequalities in (10.15) was originally
studied in the 1970s by Brascamp and Lieb [29], who were motivated by
problems in particle physics. The reverse version in (10.16) was initially
studied by Barthe [12]. In fact, the inequalities in (10.15) and (10.16)
are special cases of the original forward and reverse BL inequalities. We
only discuss these special cases.

Definition 10.5. The (optimal) forward and reverse BL constants are
respectively defined as

C
∗
p,q(X;Y ) := sup

f,g:∥f∥p∥g∥q>0

⟨f, g⟩
∥f∥p∥g∥q

and

C∗
p,q(X;Y ) := inf

f,g:∥f∥p∥g∥q>0

⟨f, g⟩
∥f∥p∥g∥q

.

Additionally, define the forward and reverse BL exponents respectively
as

Λp,q(X;Y ) := − logC∗
p,q(X;Y ) and

Λp,q(X;Y ) := − logC∗
p,q(X;Y ).

It is well-known that the forward and reverse BL exponents possess
the important tensorization and the data processing properties.

Lemma 10.2 (Tensorization). Let (Xn, Y n) = {(X1, Y1), . . . , (Xn, Yn)}
be a collection of pairs of random variables that are mutually indepen-
dent. Then

Λp,q(Xn;Y n) =
n∑

i=1
Λp,q(Xi;Yi) and (10.17)

Λp,q(Xn;Y n) =
n∑

i=1
Λp,q(Xi;Yi). (10.18)

Proof. The proof here is due to Beigi and Nair [16] and is based on
applying the one-dimensional BL inequality in (10.15) to each pair
of random variables iteratively. To prove (10.17), it suffices to show
that if for each i ∈ [n], there exist a constant Ci such that ⟨fi, gi⟩ ≤
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Ci∥fi∥p∥gi∥q holds for all nonnegative fi and gi defined on X and Y,
then ⟨f, g⟩ ≤ C∥f∥p∥g∥q holds for all nonnegative f and g defined on
X n and Yn, where C =

∏n
i=1Ci. This point can be shown as follows:

⟨f, g⟩ = EXn−1,Y n−1
[
EXn,Yn [f(Xn)g(Y n) | Xn−1, Y n−1]

]
≤ CnEXn−1,Y n−1

[
∥f(Xn−1, ·)∥p∥g(Y n−1, ·)∥q

]
≤ CnCn−1EXn−2,Y n−2

[
∥f(Xn−2, ·)∥p∥g(Y n−2, ·)∥q

]
...
≤ C∥f∥p∥g∥q.

Hence, we have (10.17). The inequality in (10.18) follows similarly.

Lemma 10.3 (Data processing inequalities). Assume random variables
U,X, Y, and V form a Markov chain U −X−Y −V in this order. Then
for p, q ≥ 1,

Λp,q(X;Y ) ≤ Λp,q(U ;V ), (10.19)

and for p, q ≤ 1,
Λp,q(X;Y ) ≥ Λp,q(U ;V ). (10.20)

Moreover, if U and V are deterministic functions ofX and Y respectively,
then the two inequalities hold for all p, q ∈ R.

Proof. For any f : U → [0,∞) and g : V → [0,∞), let f̂ : x ∈ X 7→
E[f(U) | X = x] and ĝ : y ∈ Y 7→ E[g(V ) | Y = y]. Then we have
⟨f, g⟩ = ⟨f̂ , ĝ⟩, and by Jensen’s inequality, ∥f∥p ≥ ∥f̂∥p and ∥g∥q ≥ ∥ĝ∥q
for p, q ≥ 1, and the directions of these two inequalities are reversed for
p, q ≤ 1. These facts establish (10.19) and (10.20).

Similarly to the hypercontractivity regions (see Definition 10.4 and
Lemma 10.1), the BL exponents also admit rather natural information-
theoretic characterizations. Define the function

ϕ(QX , QY ) := inf
RX ,RY

{
D(RX , RY ∥πXY )+ 1

p
D(RX∥QX)− 1

p
D(RX∥πX)

+ 1
q
D(RY ∥QY )− 1

q
D(RY ∥πY )

}
, (10.21)
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where according to Convention 10.1, the infimization is taken over all
pairs of distributions (RX , RY ) ∈ P(X )×P(Y) such that all the relative
entropies in the objective function are finite. Then we have the following
information-theoretic characterizations of the forward and reverse BL
exponents.

Proposition 10.1. For p, q ∈ R\{0}, if (X,Y ) ∼ πXY , then

Λp,q(X;Y ) = inf
QX ,QY

ϕ(QX , QY ) and (10.22)

Λp,q(X;Y ) = sup
QX ,QY

ϕ(QX , QY ).

Proof. The proof leverages the following “duality” lemma.

Lemma 10.4 (Duality of Relative Entropy). Let {Pi}ni=1 be n probability
mass functions on a finite set X . Let {si}ni=1 ⊂ R \ {0} be nonzero real
numbers such that

∑n
i=1 si = 1. Let c : X → R be a function. Define

β :=
∑
x∈X

2−c(x)
( n∏

i=1
Pi(x)si

)
.

Then we have2

− log β = inf
Q≪Pi,∀ i∈[n]

{
n∑

i=1
siD(Q∥Pi) + EQ[c(X)]

}
. (10.23)

Moreover, if 0 < β <∞, the infimization in (10.23) is uniquely attained
by the distribution

Q∗(x) = 2−c(x)

β

( n∏
i=1

Pi(x)si

)
for all x ∈ X .

This lemma was stated by Shayevitz [154]. It can be proved by using
Lagrange multipliers. The generalization of this lemma to arbitrary
measurable spaces can be proven by using the nonnegativity of the
relative entropy; see [112, Theorem 2.2.3] or [192].

We may assume, by homogeneity, that ∥f∥p = ∥g∥q = 1. Without
loss of generality, we may also assume, due to Assumption 10.1, that
supp(f) ⊂ supp(πX) and supp(g) ⊂ supp(πY ). Hence, we can write

f(x)p = QX(x)
πX(x) and g(y)q = QY (y)

πY (y) , (10.24)

2We adopt the convention inf∅ = ∞, 0 · ∞ = 0, and 0s = ∞ for s < 0.
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for some probability mass functions QX and QY . Moreover, since f
and g are finite on their supports, QX and πX are mutually absolutely
continuous if p < 0, and QY and πY are mutually absolutely continuous
if q < 0. From (10.24), we see that

⟨f, g⟩ =
∑

(x,y)∈X ×Y
πXY (x, y)

(QX(x)
πX(x)

)1/p(QY (y)
πY (y)

)1/q
. (10.25)

Now substituting (10.25) into the definitions of Λp,q and Λp,q, and
using Lemma 10.4 (with the identifications c ← 0, s1 ← 1, s2 ← 1/p,
s3 ← −1/p, s4 ← 1/q, s5 ← −1/q, and P1 ← πXY , P2 ← QXπY |X ,
P3 ← πXY , P4 ← QY πX|Y , P5 ← πXY ), we obtain Proposition 10.1.

Define the following linear combination of relative entropies

θ(QX , QY ) := D(QX , QY ∥πXY )− 1
p
D(QX∥πX)− 1

q
D(QY ∥πY ).

By using the tensorization property, the BL exponents also can be
written in the following alternative information-theoretic forms in terms
of variational characterizations of θ(QX , QY ).

Theorem 10.5. For p, q ∈ R\{0}, if (X,Y ) ∼ πXY , then

Λp,q(X;Y ) =


inf

QX ,QY

θ(QX , QY ) p, q > 0

−∞ p < 0 or q < 0
(10.26)

and

Λp,q(X;Y ) =



sup
QX ,QY

θ(QX , QY ) p, q > 0

sup
QX

inf
QY

θ(QX , QY ) q < 0 < p

sup
QY

inf
QX

θ(QX , QY ) p < 0 < q

0 p, q<0

. (10.27)

For Euclidean spaces, the forward part of this theorem, i.e., (10.26),
was derived in Carlen and Cordero-Erausquin [33]. The reverse part of
this theorem, i.e., (10.27), for finite alphabets was derived in Beigi and
Nair [16] for all p, q ̸= 0, and also by Liu et al. [113] for p, q > 0.
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The characterizations in (10.26) and (10.27) are consistent with the
ones for the hypercontractivity regions given in Theorem 10.1. This
can be seen observing that Λp,q ≥ 1 if and only if (p, q) ∈ RFH(πXY ),
and Λp,q ≤ 1 if and only if (p, q) ∈ RRH(πXY ). Hence, Theorem 10.1 is
indeed a consequence of Theorem 10.5.

Proof of Theorem 10.5. The characterization in (10.26) follows directly
from (10.22) by swapping the two infima. We now prove the charac-
terization in (10.27). We first consider the case of p, q > 0. On one
hand, by setting (RX , RY ) in (10.21) to be (QX , QY ), we have that
ϕ(QX , QY ) ≤ θ(QX , QY ). Hence,

Λp,q(X;Y ) ≤ sup
QX ,QY

θ(QX , QY ). (10.28)

On the other hand, by the tensorization property stated in (10.18) in
Lemma 10.2, for (Xn, Y n) ∼ πn

XY ,

Λp,q(X;Y ) = 1
n

Λp,q(Xn, Y n)

= sup
f,g:∥f∥p∥g∥q>0

− 1
n

log ⟨f, g⟩
∥f∥p∥g∥q

≥ max
An⊂X n,Bn⊂Yn

− 1
n

log πn
XY (An × Bn)

πn
X(An)1/pπn

Y (Bn)1/q
, (10.29)

where in the last line, we restrict f and g to be the indicators of two
non-empty sets An ⊂ X n and Bn ⊂ Yn, respectively.

To further lower bound (10.29), we take (An,Bn) therein to be a
pair of type classes (T

T
(n)
X

, T
T

(n)
Y

) in which the sequence of pairs of types

{(T (n)
X , T

(n)
X )}n∈N converges to some pair of distributions (QX , QY ) as

n→∞. Then, by Sanov’s theorem (see Theorem 1.1),

lim
n→∞

− 1
n

log
πn

XY

(
T

T
(n)
X

× T
T

(n)
Y

)
πn

X

(
T

T
(n)
X

)1/p
πn

Y

(
T

T
(n)
Y

)1/q
= θ(QX , QY ). (10.30)

Hence, we obtain Λp,q(X;Y ) ≥ θ(QX , QY ). Since (QX , QY ) is arbitrary,
we have Λp,q(X;Y ) ≥ supQX ,QY

θ(QX , QY ). Therefore, (10.27) holds.
We omit the proofs for other cases, since they are similar to the

above argument.
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An interesting observation arising from this proof is the following.
For p, q > 0, by combining (10.28) and (10.29), we obtain

max
An⊂X n,Bn⊂Yn

− 1
n

log πn
XY (An × Bn) + 1

np
log πn

X(An) + 1
nq

log πn
Y (Bn)

≤ sup
QX ,QY

θ(QX , QY ). (10.31)

Furthermore, as shown in (10.30), by appealing to Sanov’s theorem,
this inequality is asymptotically tight (which means that as n→∞, the
limits of the left- and right-hand sides are equal). Similarly, for p, q > 0,
one can observe that

min
An⊂X n,Bn⊂Yn

− 1
n

log πn
XY (An × Bn) + 1

np
log πn

X(An) + 1
nq

log πn
Y (Bn)

≥ inf
QX ,QY

θ(QX , QY ), (10.32)

and this inequality is also asymptotically tight by Sanov’s theorem [49].
As a consequence of (10.31) and (10.32), we find that certain se-

quences of {0, 1}-valued functions attain the BL exponents. Hence, a
BL inequality holds for all nonnegative functions if and only if any of
its multi-dimensional extensions hold for any {0, 1}-valued functions.
In addition to the set of {0, 1}-valued functions, one can also use the
following construction of functions to assert the (asymptotic) optimality
of a BL inequality. We can first identify a optimal pair (f∗, g∗) for the
one-dimensional case. By the tensorization property of the BL expo-
nents (Theorem 10.2), the n-fold product of (f∗, g∗) also constitutes an
optimal pair that allows us to assert the optimality of a BL inequality. In
contrast, the asymptotic optimality of {0, 1}-valued functions is advan-
tageous in our quest to prove the strong SSE theorem (Theorem 8.11)
as will be done in Section 10.3.

10.2.3 Single-Function Versions

The BL inequalities discussed in Section 10.2.2 involve two nonnegative
functions. In the literature, there exist single-function versions of BL
inequalities and they have been shown to be equivalent to their two-
function counterparts (as was discussed in the context of the DSBS
in Section 8.3.2). We now introduce the single-function versions of BL
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inequalities. First recall from (8.55) that the conditional expectation
operator induced by πX|Y is the operator that maps a function f : X → R
to the function

y ∈ Y 7→ πX|Y =y(f) := E
[
f(X)

∣∣Y = y
]

=
∑
x∈X

πX|Y (x|y)f(x).

Then, given a joint distribution πXY and two real numbers p and q, for
any nonnegative function f : X → [0,∞), the single-function versions
of the BL inequalities read

∥πX|Y (f)∥q ≤ C ∥f∥p and (10.33)
∥πX|Y (f)∥q ≥ C ∥f∥p (10.34)

for some constants C and C.
We remark that (10.33) and (10.34) are in fact equivalent to the

strong data processing inequalities for the Rényi divergence [142]. The lat-
ter concerns the tradeoff between Dp(QX∥πX) and Dq(QY ∥πY ), where
QY represents the output distribution induced by the input distribu-
tion QX and the stochastic kernel πY |X , i.e., QX → πY |X → QY . The
equivalence follows since we can set f = QX/πX and observe that

log ∥f∥p = 1
p′ Dp(QX∥πX) (10.35)

and

log ∥πX|Y (f)∥q = 1
q

log
∑
y∈Y

( ∑
x∈X

QX(x)
πX(x) πX|Y (x|y)

)q

πY (y)

= 1
q

log
∑
y∈Y

(QY (y)
πY (y)

)q
πY (y)

= 1
q′ Dq(QY ∥πY ).

For more details, see the papers by Raginsky [142] and Yu [192].
The promised equivalence between the single- and two-function

versions of the BL inequalities is formalized in the following proposition.

Proposition 10.2. Inequality (10.33) for q ≥ 1 holds if and only if (10.15)
holds but with q in the latter replaced by its Hölder conjugate q′ = q

q−1 .
Similarly, inequality (10.34) for q ≤ 1 holds if and only if (10.16) holds
but with q in the latter replaced by its Hölder conjugate q′.
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Proof. By Hölder’s inequality, for any ĝ : Y → [0,∞), it holds that

∥ĝ∥q =


sup

g:∥g∥q′ >0

⟨ĝ, g⟩
∥g∥q′

q ≥ 1

inf
g:∥g∥q′ >0

⟨ĝ, g⟩
∥g∥q′

q ≤ 1
,

where 1′ =∞ and 1′ = −∞ for the first and second clauses respectively.
Setting ĝ to be πX|Y (f), we obtain the following equivalences: For q ≥ 1,

sup
f :∥f∥p>0

∥πX|Y (f)∥q
∥f∥p

= sup
(f,g):∥f∥p>0,∥g∥q′ >0

⟨f, g⟩
∥f∥p∥g∥q′

, (10.36)

and for q ≤ 1,

inf
f :∥f∥p>0

∥πX|Y (f)∥q
∥f∥p

= inf
(f,g):∥f∥p>0,∥g∥q′ >0

⟨f, g⟩
∥f∥p∥g∥q′

. (10.37)

By the equivalence in (10.36), for q ≥ 1, the single-function version
of BL inequality in (10.33) is equivalent to the two-function version
in (10.15) with C and p unchanged but with q replaced by its Hölder
conjugate q′. Similarly, for q ≤ 1, by the equivalence in (10.37), the
single-function version of BL inequality in (10.34) is equivalent to the
two-function version in (10.16) with C and p unchanged but with q

replaced by q′.

10.3 Connections to the NICD Problem and q-Stability

As observed in the proof of Theorem 10.5, certain sequences of {0, 1}-
valued functions attain the BL exponents. We now provide a detailed
discussion on this observation. We also discuss the connections between
the BL exponents and the NICD problem (Section 8), as well as the
q-stability problem (Section 9).

Recall the general version of the strong SSE theorem (Theorem 8.11)
and the general version of the strong q-stability theorem (Theorem 9.15).
For the LD exponents Υ(n)

LD and Υ(n)
LD defined in (8.69) and (8.70), the
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strong SSE theorem states that for πXY defined on a finite alphabet,
any n ≥ 1, α ∈ (0, αmax(πX)], and β ∈ (0, βmax(πY )], it holds that

Υ(n)
LD(α, β) ≥ L[ΥLD](α, β) and (10.38)

Υ(n)
LD(α, β) ≤ U[ΥLD](α, β). (10.39)

Moreover, the inequalities in (10.38) and (10.39) are asymptotically
tight in the limit as n → ∞. We now provide a proof of the strong
SSE theorem by leveraging its connections to the information-theoretic
characterizations of BL exponents.

Proof of Theorem 8.11. Observe that (10.31) and (10.32) for p, q > 0
can be rewritten as follows. For all An ⊂ X n and Bn ⊂ Yn,

− 1
n

log πn
XY (An × Bn) + 1

np
log πn

X(An) + 1
nq

log πn
Y (Bn)

≥ inf
s,t≥0

φ(s, t)− s

p
− t

q
≥ inf

s,t≥0
Υ(s, t)− s

p
− t

q
, (10.40)

where φ and Υ are defined in (10.1) and (10.5) respectively. Analogously,
for all An ⊂ X n and Bn ⊂ Yn,

− 1
n

log πn
XY (An × Bn) + 1

np
log πn

X(An) + 1
nq

log πn
Y (Bn)

≤ sup
s,t≥0

φ(s, t)− s

p
− t

q
≤ sup

s,t≥0
Υ(s, t)− s

p
− t

q
, (10.41)

where φ and Υ are defined in (10.2) and (10.6) respectively. For any
(An,Bn), set a := − 1

n log πn
X(An) and b := − 1

n log πn
Y (Bn). Let (u, v)

be a subgradient3 of Υ at (a, b). Since Υ is convex and nondecreasing,
u, v ≥ 0. Hence, by definition of the subgradient,

inf
s,t≥0

Υ(s, t)− us− vt = Υ(a, b)− ua− vb. (10.42)

Substituting p = 1/u and q = 1/v into (10.40) and utilizing (10.42), we
have

− 1
n

log πn
XY (An × Bn) ≥ Υ(a, b).

3Let I ⊂ Rd be convex. A vector g ∈ Rd is a subgradient of f : I → R at x ∈ I
if for all z ∈ I, f(z) ≥ f(x) + ⟨g, z − x⟩.
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Similarly, by using (10.41), we have

− 1
n

log πn
XY (An × Bn) ≤ Υ(a, b).

Hence,

Υ(n)(α, β) ≥ min
a≥α,b≥β

Υ(a, b) = Υ(α, β) and

Υ(n)(α, β) ≤ max
a≤α,b≤β

Υ(a, b) = Υ(α, β).

Finally, the asymptotic tightness of (8.65) and (8.66) can be verified by
appealing to Sanov’s theorem (Theorem 1.1).

The strong SSE theorem (Theorem 8.11) can be further strengthened
if the exact values of the marginal probabilities are given, instead of
only bounds as in the definitions of Υ(n) and Υ(n). It has been shown
in [192] that for all An ⊂ X n and Bn ⊂ Yn,

Υ(a, b) ≤ − 1
n

log πn
XY (An × Bn) ≤ U[φ](a, b), (10.43)

where a = − 1
n log πn

X(An), b = − 1
n log πn

Y (Bn), and φ was defined
in (10.2). Moreover, the lower and upper bounds in (10.43) are asymp-
totically tight as n→∞.

A similar relation can be found between the single-function version of
the BL exponents and the notion of q-stability discussed in Section 9.1.1.
Following steps similar to the proof for the strong SSE theorem, one
can prove the strong q-stability theorem (Theorem 9.15). We omit the
details here. Furthermore, similarly to the strong SSE theorem, the
strong q-stability theorem can be further strengthened if the marginal
probabilities are specified. For details, see [192].

10.4 Logarithmic Sobolev Inequalities

We discuss the logarithmic Sobolev (or log-Sobolev) inequalities in this
section. It will be seen (from Theorem 10.6) that such inequalities
turn out to be equivalent, in sense to be made precise, to the hyper-
contractivity inequalities (cf. Section 10.2.1). We will also focus on
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information-theoretic characterizations of certain log-Sobolev inequal-
ities. For more details on the classical aspects of this rich topic, the
reader is referred to Raginsky and Sason [143] and Ledoux [105]. The
results in this section serve as important elements of the proofs of the
main results in Section 10.5 in which the classic hypercontractivity in-
equalities are strengthened. This section thus forms a bridge between the
classic hypercontractivity inequalities and their strengthened versions.

10.4.1 Preliminaries on Dirichlet forms and Entropies

Let X = Y . As assumed, X is a finite set. Let L be a |X |×|X | matrix (a
linear operator acting on real-valued functions defined on X ) such that
Lx,y ≥ 0 for x ̸= y and

∑
y∈X Lx,y = 0 for all x. Let Tt := etL (t ≥ 0)

be a matrix induced by L, where eA denotes the matrix exponential
of A. The operator Tt is known as a Markov operator, which is one that
sends a real-valued function on X to another real-valued function on
X . In addition, {Tt}t≥0 forms a Markov semigroup, since it satisfies the
semigroup property, namely that Tt+s = TtTs = TsTt for all s, t ≥ 0. For
more details on Markov operators and Markov semigroups, the reader
is referred to Bakry, Gentil, and Ledoux [9] and Rudnicki, Pichór, and
Tyran-Kamińska [145].

Let π be a stationary distribution corresponding to {Tt}t≥0, i.e.,
π = πTt for all t ≥ 0 or, equivalently, πL = 0. We can regard π and
Tt (for a fixed t ≥ 0) as corresponding to πY and πX|Y respectively. As
such, the yth row of the matrix Tt is πX|Y (·|y). As usual, denote the
inner product for two real-valued functions f and g defined on X as
⟨f, g⟩π := Eπ[fg] =

∑
x∈X π(x)f(x)g(x).

Definition 10.6. The Dirichlet form of {Tt}t≥0 is

E(f, g) := −
∑

(x,y)∈X 2

Lx,yf(y)g(x)π(x) = −⟨Lf, g⟩π, (10.44)

where (Lf)(x) :=
∑

y∈X Lx,yf(y). The normalized Dirichlet form of
{Tt}t≥0 is

E(f, g) := E(f, g)
⟨f, g⟩π

.
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We now extend the definitions of the Dirichlet form and its normal-
ized version to the n-dimensional Cartesian product space X n. Let T⊗n

t

be the product semigroup on X n induced by Tt. Recall from Section 9.3.1,
that given a vector xn ∈ X n, let x\k := (x1, . . . , xk−1, xk+1, . . . , xn) ∈
X n−1 be the subvector of xn with the kth coordinate removed. For two
real-valued functions f and g defined on X n, let

ψ(x\k) := E
(
f(x\k, ·), g(x\k, ·)

)
be the action of the Dirichlet form E on the kth coordinates of f and g
with other coordinates held fixed. Then, the Dirichlet form of f and g

and its normalized version are respectively given by

En(f, g) :=
n∑

k=1

∑
x\k∈X n−1

ψ(x\k)
∏

j∈[n]\{k}
π(xj) and

En(f, g) := En(f, g)
⟨f, g⟩πn

.

In addition to the Dirichlet form, the other quantity involved in
log-Sobolev inequalities is the entropy of a nonnegative function f .

Definition 10.7. For a nonnegative function f , the entropy and the
normalized entropy of f are respectively defined as

Ent(f) := Eπ[f ln f ]− Eπ[f ] lnEπ[f ] and Ent(f) := Ent(f)
Eπ[f ] .

Note that these notions of entropy and normalized entropy are
commonly encountered in functional analysis; see, for example, Ledoux
[105]. They are related to, but not the same as the Shannon entropy
in classical information theory. Indeed, they bear more similarity to
the relative entropy, in the sense that if f is the Radon–Nikodym
derivative dQ/dπ of a distribution Q with respect to π (i.e., the function
x ∈ X 7→ Q(x)/π(x) for the finite alphabet case), then the entropy (and
also the normalized entropy) of f is equal to the relative entropy of Q
from π, i.e., D(Q∥π). By Jensen’s inequality, both the entropy and the
normalized entropy are nonnegative.
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10.4.2 Log-Sobolev Inequalities and Their Properties

The log-Sobolev inequalities quantify the relation between the Dirichlet
form of a Markov semigroup for an arbitrary nonnegative function f

and a composite function g = φ ◦ f for some given φ : [0,∞)→ [0,∞),
and the entropy of f . For p ∈ R \ {0, 1}, let

cp := p2

4(p− 1) .

Following the definitions in Mossel, Oleszkiewicz, and Sen [125], we
define log-Sobolev inequalities as follows.

Definition 10.8. For p ∈ R\{0, 1}, the p-log-Sobolev inequality with
constant C is

Ent(fp) ≤ C cp E(f, fp−1) (10.45)
for nonnegative f if p > 1 and for positive f if p < 1.For p = 1, the
1-log-Sobolev inequality with constant C for positive f is

Ent(f) ≤ C

4 E(f, ln f).

For p = 0, the 0-log-Sobolev inequality with constant C for positive f is

Var(ln f) ≤ −C2 E
(
f,

1
f

)
.

The cases corresponding to p = 0 and p = 1 of the p-log-Sobolev
inequality are the limiting cases of the p-log-Sobolev inequality for
p ∈ R\{0, 1} with the same constant C.

We now connect the log-Sobolev inequality and the classic hyper-
contractivity inequalities in (10.33) and (10.34) with C and C set to 1.
Indeed, we will see from Theorem 10.6 that the log-Sobolev inequalities
are differential versions of the hypercontractivity inequalities evaluated
at t = 0. This theorem is a classical result due to Gross [69], and various
proofs can be found in [6]–[8], [69], [125].

Here we provide a short self-contained proof.

Theorem 10.6 (Differential relationship between log-Sobolev and hypercon-
tractivity inequalities). Let C be a positive constant. Let q : [0,∞)→ R
be defined as

q(t) = 1 + (p− 1) e4t/C . (10.46)
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(a) Fix p > 1. If for any r ∈ [p,∞), the r-log Sobolev inequality is
satisfied with constant C, then for any t > 0,

∥Ttf∥q(t) ≤ ∥f∥p for all f ≥ 0, (10.47)

where (Ttf)(x) =
∑

y Tt(x, y)f(y).

(b) Fix p < 1. If for any r ∈ (−∞, p], the r-log-Sobolev inequality is
satisfied with constant C, then for any t > 0,

∥Ttf∥q(t) ≥ ∥f∥p for all f ≥ 0. (10.48)

(c) Conversely, if (10.47) holds for p > 1 or (10.48) holds for p < 1,
then the p-log-Sobolev inequality is satisfied with constant C.

The inequalities in (10.47) and (10.48) are respectively equivalent
to the fact that4 (p, q(t)′) belongs to the forward and reverse hypercon-
tractivity regions of the joint distributions (Definition 10.4) induced by
(Tt, π) for any t > 0. In fact, the relations between the BL inequalities
and generalized p-log-Sobolev inequalities can also be established. For
details, the reader is referred to [6]–[8], [69], [125].

Proof Sketch of Theorem 10.6. We first prove Statement (a) in which
we assume that p > 1. Define the function ζ : [0,∞)2 → R as

ζ(t, s) := ln ∥Ttf∥ 1
s
.

Then, one can check by direct differentiation that
∂ζ

∂s
= −Ent

(
(Ttf)

1
s
)

and ∂ζ

∂t
= −En

(
Ttf, (Ttf)

1
s

−1). (10.49)

We define ξ(t) := 1/q(t), and hence, ξ(0) = 1/p (refer to (10.46)).
Therefore, by (10.49) and the chain rule,

d
dtζ(t, ξ(t)) = −Ent

(
(Ttf)

1
ξ(t)
)
ξ′(t)− En

(
Ttf, (Ttf)

1
ξ(t) −1

)
. (10.50)

Observe that
ξ′(t) = −4(p− 1)e4t/C

C q(t)2 .

4Here q(t)′ denotes the the Hölder conjugate of q(t). In contrast, we use q′(t) to
denote the derivative of q evaluated at t.

Full text available at: http://dx.doi.org/10.1561/0100000122



242 Functional Inequalities

It also holds that ξ′(t) ≥ −1/(C cq(t)) for all t ≥ 0. Combining this
with (10.50) yields

d
dtζ(t, ξ(t)) ≤ Ent

(
(Ttf)

1
ξ(t)
) 1
C cq(t)

− En
(
Ttf, (Ttf)

1
ξ(t) −1)

. (10.51)

On the other hand, by assumption, for any r ∈ [p,∞), the r-log-Sobolev
inequality holds, i.e.,

Ent(gr) ≤ C cr En(g, gr−1) for all g ≥ 0. (10.52)

Substituting g and r for Ttf and q(t) = 1/ξ(t) respectively into (10.52)
and combining the resultant inequality with (10.51) yields

d
dtζ(t, ξ(t)) ≤ 0 for all t ≥ 0. (10.53)

Finally, by integrating both sides of (10.53) from 0 to t, we have

ln ∥Ttf∥ 1
ξ(t)
− ln ∥f∥ 1

ξ(0)
≤ 0,

which is precisely the hypercontractivity inequality in (10.47).
Statement (b) follows analogously but the directions of the inequal-

ities above are reversed. Statement (c) follows by first differentiating
the hypercontractivity inequalities and evaluating them at t = 0. Then,
we can recover the p-log-Sobolev inequalities from them.

It is also well-known (see, for example, Ledoux [105]) that the
p-log-Sobolev inequality satisfies the tensorization property.

Proposition 10.3. If a certain p-log-Sobolev inequality with constant C
holds for (Tt, π), then the p-log-Sobolev inequality with the same con-
stant holds for the product semigroup (T⊗n

t , πn).

Proof. We provide an information-theoretic proof for this proposition.
We start by characterizing the optimal constant in the p-log-Sobolev
inequality in terms of information-theoretic quantities. For the product
semigroup (T⊗n

t , πn), the optimal constant is for p ∈ R\{0, 1}

C∗
p,n := sup

f : cp En(f,fp−1)>0

Ent(fp)
cp En(f, fp−1) .
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Since (Tt, π) is a special case of (T⊗n
t , πn) with n set to 1, C∗

p,1 is the
optimal constant for the semigroup (Tt, π).

For a given QXn , define the kth “likelihood ratio”

ℓk(y, x\k) :=
QXk|X\k(y|x\k)

π(y) for all (y, x\k) ∈ X × X n−1.

If we write fp/E[fp] = QXn/πn for a distribution QXn ≪ πn, then

Ent(fp) = D(QXn∥πn) and (10.54)

En(f, fp−1) =
n∑

k=1
Eπn−1

[
η(X\k)

]
, (10.55)

where

η(x\k) := −QX\k(x\k)
πn−1(x\k)

∑
x,y

Lx,y
(
ℓk(y, x\k)

)1/p (
ℓk(x, x\k)

)1/p′
π(x).

Uniting (10.54) and (10.55), one can obtain the following information-
theoretic characterization of C∗

p,n.

Lemma 10.7. For n ∈ N and p ∈ R\{0, 1}, it holds that

C∗
p,n = sup

QXn : cp

∑n

k=1 Eπn−1 [η(X\k)]>0

D(QXn∥πn)
cp
∑n

k=1 Eπn−1 [η(X\k)]
. (10.56)

Continuing the proof of Proposition 10.3, we notice that, on one
hand, by the data processing inequality for the relative entropy, we have

D(QXn∥πn) =
n∑

k=1
D
(
QXk|Xk−1

∥∥π∣∣QXk−1
)

≤
n∑

k=1
D
(
QXk|X\k

∥∥π∣∣QX\k

)
= nD

(
QXK |X\KK

∥∥π∣∣QX\K |KQK

)
= nD

(
QX|U

∥∥π∣∣QU

)
, (10.57)

where K ∼ QK := Unif[n] is independent of Xn and U := (X\K ,K).
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On the other hand, using the definitions of η and ℓk, consider,
n∑

k=1
Eπn−1 [η(X\k)]

= −
n∑

k=1
EQ

X\k

[∑
x,y

Lx,y
(
ℓk(y,X\k)

)1/p(
ℓk(x,X\k)

)1/p′
π(x)

]

= −nEQK

[
EQ

X\K

[∑
x,y

Lx,y
(
ℓK(y,X\K)

)1/p(
ℓK(x,X\K)

)1/p′
π(x)

∣∣∣∣K]
]

= n
∑

u

QU (u)E
((QX|U=u

π

)1/p
,
(QX|U=u

π

)1/p′)
, (10.58)

where the penultimate equality follows from the uniformity of K and the
final equality follows from the definition of the Dirichlet form in (10.44)
and that of U = (X\K ,K). From (10.57) and (10.58), we conclude that
the objective function in (10.56) satisfies

D(QXn∥πn)
cp
∑n

k=1 Eπn−1
[
η(X\k)

]
≤

D(QX|U∥π|QU )

cp
∑

uQU (u)E
((QX|U=u

π

)1/p
,
(QX|U=u

π

)1/p′)
≤ max

u

D(QX|U=u∥π)

cp E
((QX|U=u

π

)1/p
,
(QX|U=u

π

)1/p′) (10.59)

≤ C∗
p,1, (10.60)

where in (10.59), the maximum is over all u in the alphabet of U (i.e.,
X n−1 × [n]) such that the denominator is positive, and (10.60) follows
from Lemma 10.7 (with n set to 1). Therefore, C∗

p,n ≤ C∗
p,1 for any n

and p ∈ R\{0, 1}.
On the other hand, setting QXn to be a product distribution Qn

X in
Lemma 10.7, we find that C∗

p,n ≥ C∗
p,1 for all n ∈ N. Combining these

two bounds yields C∗
p,n = C∗

p,1 for p ∈ R\{0, 1}. By taking limits in p

(toward 0 and 1), one deduces that C∗
p,n ≥ C∗

p,1 for p ∈ {0, 1}. Hence,
the tensorizaton property holds.

The information-theoretic method employed in the proof of Propo-
sition 10.3 can be also used to study certain nonlinear versions of
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log-Sobolev inequalities. These inequalities were proposed as a topic
for research by Kalai and Linial [91] in 1995. However, there was no
progress for over twenty years since the initial proposal of these inequal-
ities until recent works by Samorodnitsky [148], Samorodnitsky [149],
and Polyanskiy and Samorodnitsky [139].

Note that (10.45) delineates a certain linear relationship between
the entropy Ent(fp) and the Dirichlet form E(f, fp−1). For α ≥ 0 and
n ∈ N, let

F (n)
α :=

{
f : cp En(f, fp−1) = nα

}
.

To study the nonlinear tradeoff between the normalized Dirichlet form
and the normalized entropy, we define the log-Sobolev function as

Ξp(α) := sup
f∈F(1)

α

Ent(fp). (10.61)

Extending the definition of Ξp(α) from Tt to T⊗n
t , we define

Ξ(n)
p (α) := sup

f∈F(n)
α

1
n

Ent(fp). (10.62)

It would be useful to provide a tight dimension-independent bound for
Ξ(n)

p (α). As mentioned in Section 9.4, by dimension-independent, we
mean that the bound on Ξ(n)

p (α) does not depend on n; in informa-
tion theory parlance, this is known as a single-letter bound. A tight
dimension-independent bound for Ξ(n)

p (α) was shown by Polyanskiy and
Samorodnitsky [139] in the following theorem.

Theorem 10.8. It holds that for p ∈ R\{0, 1},

Ξ(n)
p (α) ≤ U[Ξp](α). (10.63)

Moreover, this upper bound is asymptotically tight as n→∞, which
means that

lim
n→∞

Ξ(n)
p (α) = U[Ξp](α). (10.64)

If additionally, Ξp in (10.61) is concave, then the upper bound in (10.63)
is also tight for all finite n ≥ 1.

This theorem is a strengthening of the (linear) p-log-Sobolev inequal-
ity in (10.45) with optimal constant C∗

p := C∗
p,1 given in (10.56). Here
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we set n in (10.56) to 1 since the tensorization property holds. Since
the function U[Ξp] is nonlinear in general, the inequality in (10.63) is
known as the nonlinear p-log-Sobolev inequality.

To appreciate the relation between the linear and nonlinear p-log-
Sobolev inequalities, one can demonstrate that the optimal constant C∗

p

in the (linear) p-log-Sobolev inequality in (10.45) is the right-derivative
of U[Ξp](α) at α = 0 if Ξp(0) = 0. If Ξp(0) > 0, then the linear
p-log-Sobolev inequality in (10.45) does not hold for any finite C.

Proof of Theorem 10.8. We follow the same steps as in the proof of
Lemma 10.3 up to (10.58). Then, combining these steps with the defini-
tion of Ξ(n)

p (α) in (10.62), we find that

Ξ(n)
p (α) ≤ sup

QXU : cp EQU

[
E
(

(
QX|U

π
)1/p,(

QX|U
π

)1/p′
)]

=α

D(QX|U∥πX |QU )

= U[Ξp](α).

The asymptotic tightness of (10.64) can be verified by a time-sharing
argument (cf. the discussion after Theorem 8.10).

10.5 Strengthened Hypercontractivity Inequalities

The tools we reviewed in the preceding sections serve as ingredients for
the culmination of this section—namely, a strengthened version of the
hypercontractivity inequality. For the sake of clarity, we focus on the
DSBS. Before doing so, we provide explicit expressions for the linear
and nonlinear p-log-Sobolev inequalities particularized to the DSBS.

For the DSBS, X = {0, 1}, π = πY = Bern(1/2) and Tt is the
Markov operator induced by πX|Y and is given by

Ttf(y) = f(y)1 + e−t

2 + f(1− y)1− e−t

2 y ∈ {0, 1}. (10.65)

Note that the operator T⊗n
t is the same as Tρ in Section 8 with ρ = e−t.

From (10.65), we know that Lx,y = 1{x ̸= y} − 1/2 which is obtained
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by differentiating Tt with respect to t and evaluating the derivative at
t = 0. Moreover, the Dirichlet form for this case is

En(f, g) = −1
2⟨∆f, g⟩ and (10.66)

En(f, f) = 2−n

4
∑

(xn,yn):xn∼yn

(
f(xn)− f(yn)

)2 = 1
4 I[f ] , (10.67)

where ∆f(xn) :=
∑

yn:yn∼xn(f(yn)− f(xn)), and xn ∼ yn means that
xn, yn ∈ {0, 1}n differ in exactly one coordinate. Recall that here I[f ]
denotes the total influence of f ; see Definition 9.9.

For the DSBS, the optimal constant C in the (linear) p-log-Sobolev
inequality is 2; see Gross [69]. The (linear) p-log-Sobolev inequality with
optimal constant 2 can be derived from the single-function version of
the hypercontractivity inequalities for the DSBS given in Theorem 8.5.
This can be done by differentiating both sides of the hypercontractivity
inequalities with respect to ρ and evaluating the derivative at ρ = 1.

10.5.1 Strong Log-Sobolev Inequalities

Polyanskiy and Samorodnitsky [139] proved the dimension-independent
nonlinear p-log-Sobolev inequalities as stated in the next theorem.
Before introducing these inequalities, we define bp : [0, ln 2]→ [0,∞) to
be the convex increasing function given by

bp(t) :=


sign(p−1)

2
(
1−y

1
p (1− y)1− 1

p−y1− 1
p (1− y)

1
p

)
p ̸= 0, 1(1

2 − y
)

ln 1− y
y

p = 1
,

where y(t) := h−1(ln 2− t) and h−1 : [0, ln 2]→ [0, 1/2] is the inverse of
the binary entropy function h with base e when its domain is restricted
to [0, 1/2].

Theorem 10.9 (p-log-Sobolev Inequality for the DSBS). Let p ∈ R\{0, 1}.
For all f : {0, 1}n → [0,∞) (and f > 0 if p < 1), it holds that

1
n

sign(p− 1) En(f, fp−1) ≥ bp

( 1
n

Ent(fp)
)
, (10.68)
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where the normalized Dirichlet form is given by (10.66). Let p = 1. For
all f : {0, 1}n → (0,∞), it holds that

1
n
En(f, ln f) ≥ b1

( 1
n

Ent(f)
)
, (10.69)

The inequality in (10.69) is the limiting case of (10.68) as p → 1.
Moreover, these inequalities are sharp in the sense that given p, there
exists a nonnegative function f such that the equality holds.

Proof Sketch of Theorem 10.9. Theorem 10.9 follows directly from The-
orem 10.8 by observing that bp is the inverse of Ξp when πXY is par-
ticularized to the DSBS. Moreover, Ξp is concave and increasing. The
monotonicity and concavity of Ξp (or equivalently, the monotonicity
and convexity of bp) can be shown by calculating the first and second
derivatives of Ξp (or bp); see Polyanskiy and Samorodnitsky [139] for
more details. Furthermore, the asymptotic sharpness of (10.68) follows
directly from the asymptotic sharpness of (10.63).

Based on Theorem 10.9, we are almost ready to introduce a strength-
ened version of the forward hypercontractivity inequality shown by
Polyanskiy and Samorodnitsky [139]. Before doing so, we would like
to discuss an intimate relationship between the linear and nonlinear
log-Sobolev inequalities and the edge-isoperimetric inequality given in
Theorem 9.5, as promised below (9.38). We first consider the linear
log-Sobolev inequality. Consider the DSBS and the case p = 2. The
linear 2-log-Sobolev inequality with optimal constant C = 2 reduces to

Ent(f2) ≤ 2 E(f, f) for all f ≥ 0. (10.70)

By the tensorization property and utilizing (10.67),

Ent(f2) ≤ 2 En(f, f) = 1
2 I[f ].

Setting f to be a Boolean function with mean a, we obtain

I[f ] ≥ 2a ln
(1
a

)
. (10.71)

Note that in the sharp edge-isoperimetric inequality in (9.38), the loga-
rithm used is log (to the base 2), instead of ln. Hence, in (10.71), there
is a multiplicative factor log e off from the sharp inequality in (9.38).
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Figure 10.2: Comparison of the distinct parts α (edge-isoperimetric), α ln 2 (linear
log-Sobolev) and 2b2(α) (nonlinear log-Sobolev) when a is set to 2−α.

We next consider the nonlinear log-Sobolev inequality for the DSBS
and p = 2. For this case, Theorem 10.9 reduces to the statement that
for all f ≥ 0, it holds that

1
n
En(f, f) ≥ b2

( 1
n

Ent(f2)
)
, (10.72)

where b2 : [0, ln 2]→ [0,∞) is the convex increasing function given by

b2(t) = 1− 2
√
y(1− y)
2

with y = h−1(ln 2 − t) (coinciding with the general definition of bp).
By (10.67) and setting f to be a Boolean function with mean a, we
obtain

I[f ] ≥ 4an b2
( 1
n

ln
(1
a

))
. (10.73)

This inequality is tighter than (10.71), but looser than (9.38). This
point can be observed from the facts that b2 is convex and increasing,
b′

2(0) = 1/2, b2(0) = 0, b2(ln 2) = 1/2, and hence, t/2 ≤ b2(t) ≤ t
2 ln 2 for

all t ∈ [0, ln 2]. If we consider the case a = 2−α, then the bounds in (9.38),
(10.71), and (10.73) are 2naα, 4na b2(α), and 2naα ln 2 respectively.
Omitting the common factor 2na, we plot α, 2b2(α), and α ln 2 in
Fig. 10.2, which depicts the relations among these three inequalities.
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We note that it makes eminent sense that (10.71) and (10.73) are
looser than (9.38). This is because that the former two inequalities are
derived from the linear and nonlinear log-Sobolev inequalities in (10.70)
and (10.72) which are valid not only for Boolean functions, but for any
nonnegative functions. In contrast, the edge-isoperimetric inequality
in (9.38), which is derived by a combinatorial method, is specific to and
sharp for Boolean functions.

10.5.2 Strengthened Version of Hypercontractivity Inequalities

We now introduce a strengthened version of forward hypercontractivity
inequality due to Polyanskiy and Samorodnitsky [139]. We first introduce
an additional definition. For a nonnegative function f : X n → [0,∞),
the p-entropy of f [192] is defined as

Entp(f) := p

p− 1 log ∥f∥p
∥f∥1

.

In fact, if f is the Radon–Nikodym derivative of Q with respect to π, i.e.,
f = dQ/dπ, then Entp(f) = Dp(Q∥π); also see (10.35). Basic properties
of the p-entropy, such as its continuity and monotonicity, can be found
in Yu [192]. Let g : [0, ln 2]→ [2, 2/ ln 2] be defined as

g(t) := 2− 4
√
y(1− y)

ln 2− h(y) ,

where y = h−1(ln 2− t).

Theorem 10.10. Fix two numbers 1 < p <∞ and 0 ≤ α ≤ ln 2. Then
the differential equation in u : [0,∞)→ R

d
dtu(t) = g

(α
p′ (1 + e−u(t))

)
with initial solution u(0) = ln(p− 1) has a unique solution on [0,∞).
Furthermore, for any f : {0, 1}n → [0,∞) with 1

nEntp(f) ≥ α, we have

∥T⊗n
t f∥q(t) ≤ ∥f∥p where q(t) = 1 + eu(t) . (10.74)

The core idea of the proof of Theorem 10.10 is to integrate both
sides of the nonlinear p-log-Sobolev inequality in Theorem 10.9. It is
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similar to the proof of Theorem 10.6, and hence, omitted. Theorem 10.10
was used by Ordentlich, Polyanskiy, and Shayevitz [133] to prove the
limiting cases as ρ ↓ 0 and ρ ↑ 1 of the NICD problem in the LD regime.

As remarked by Polyanskiy and Samorodnitsky [139], the function g
is a smooth, convex, and strictly increasing bijection. Consequently, the
function q(t) in (10.74) is smooth and satisfies q(t) > 1 + (p− 1)e2t for
all t > 0. Note that the maximum (and hence best possible) parameter
q(t) for the classic forward hypercontractivity is equal to 1 + (p− 1)e2t;
see (8.56). Hence, the inequality in (10.74) strictly improves the classic
forward hypercontractivity inequality in (8.56). Furthermore, q(t) also
satisfies

q(t) = p+ q′(0)t+ 1
2q

′′(0)t2 + o(t2), as t→ 0 ,

where

q′(0) = (p− 1)g(α), and

q′′(0) = (p− 1)
(
g(α)2 − g′(α)g(α)α

p

)
.

Since the strengthened version of the hypercontractivity inequality
in (10.74) is obtained by integrating both sides of the sharp nonlinear
p-log-Sobolev inequality in Theorem 10.9, one can observe that (10.74)
is locally sharp at t = 0 in the following sense. For every q̂(t) such that
q̂(0) = p and q̂′(0) > q′(0) there exists a function f with 1

nEntp(f) ≥ α
such that ∥T⊗n

t f∥q̂(t) > ∥f∥p holds for any sufficiently small t. However,
the inequality in (10.74) does not appear to be globally asymptotically
sharp in the sense that there exists a function q̂ : [0,∞) → R such
that q̂(t) > q(t) for all t > 0, and ∥T⊗n

t f∥q̂(t) ≤ ∥f∥p holds for all
f : {0, 1}n → [0,∞) with 1

nEntp(f) ≥ α. Recently, a globally sharp
inequality was derived by the first author of this monograph [192],
who showed that given q, the minimum p such that the inequality
∥T⊗n

t f∥q ≤ ∥f∥p holds for any f : {0, 1}n → [0,∞) with 1
nEntp(f) ≥ α

is α/φq(α) (where φq is defined in Definition 10.3), in which ρ = e−t.
Moreover, this sharp bound is asymptotically attained by indicators
of Hamming spheres. We compare the sharp bound given by Yu [192]
and the bound in Theorem 10.10 in Fig. 10.3. This figure indicates
that (10.74) is close to optimal as p ↓ 1.
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Figure 10.3: Comparison of the sharp bound derived by Yu [192] and the bound in
Theorem 10.10 derived by Polyanskiy and Samorodnitsky [139] (P-S), where ρ = 0.5.
Note that we use q and p to denote q(t) and p respectively in Theorem 10.9.

Along the same lines, it is natural to investigate sharper versions of
BL inequalities. Indeed, Polyanskiy posed a conjecture concerning the
asymptotically sharp BL inequalities in 2016. This conjecture is stated
in Kirshner and Samorodnitsky [97] and reproduced here.

Conjecture 10.1. Fix ρ ∈ (0, 1), q > 1, and a scalar α ∈ (0, ln 2). Then,
there exists

p0 < 1 + ρ2(q − 1)
such that for any p ≥ p0 the maximum of 1

n ln ∥Tρf∥q

∥f∥p
over all nonneg-

ative functions f with 1
nEntp(f) ≥ α is asymptotically attained by a

sequence of functions that are indicators of Hamming spheres with radii
converging to some constant as n→∞.

This conjecture was confirmed in the affirmative by Kirshner and
Samorodnitsky [97] for the case q = 2. As stated in [97], Conjecture 10.1
for all q > 1 was proved by Polyanskiy in an unpublished work [137]. It
was also proven independently by the first author of this monograph in
[192], [193]. In particular, it was shown that Conjecture 10.1 holds even
for p = 1. Indeed, the asymptotically sharp bound on q(t) such that
∥T⊗n

t f∥q(t) ≤ ∥f∥p holds for any f : {0, 1}n → [0,∞) with 1
nEntp(f) ≥

α can be characterized by the strong BL inequality derived in the same
references. Readers may refer to [192], [193] for the details.
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11
Open Problems

We have taken a whirlwind tour of classic and contemporary notions
related to the common information between two random variables. In
this final section, we list some open problems that represent fertile
grounds for future research.

11.1 Open Problems Related to Wyner’s Common Information

We now introduce two open problems related to extensions of Wyner’s
common information.

11.1.1 Rényi Common Information for all Orders

As shown in Part II, the (unnormalized and normalized) Rényi common
information forms a bridge between Wyner’s common information and
the exact common information (see Fig. 5.1). The latter two quantities
correspond to the Rényi common information of order 1 (normalized)
and order ∞ (unnormalized) respectively. Hence, the Rényi common
information of order α ∈ [0,∞] is a natural generalization of these
quantities. However, the complete characterization of Rényi common
information of order α remains open for a large range of α and sources.

253
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Here by “complete characterization”, we refer to providing “single-letter
expressions”. In Theorem 4.3, we present upper and lower bounds on
the Rényi common information for α ∈ [0, 2] ∪ {∞}. For α ∈ (0, 1],
the unnormalized and normalized Rényi common information of order
α are both shown to be equal to Wyner’s common information, and
hence, it has been completely characterized. However, for α ∈ (1,∞],
the upper and lower bounds given in Theorem 4.3 only coincide for
some special cases, e.g., the case for the DSBS and α = ∞, and the
case of sources with Wyner-product distributions (cf. Definition 4.3).
The complete characterization of Rényi common information for all
discrete and continuous sources and for all orders α ∈ (1,∞] is a major
open problem on this topic. An interesting special case of this open
problem is Conjecture 5.1, which concerns the determination of the exact
common information (or the unnormalized Rényi common information
of order ∞) for jointly Gaussian sources.

11.1.2 Exact Rényi Common Information for all Orders

Another interesting observation from Part II is that the exact Rényi
common information of order α (originally defined in (7.15))

T
(α)
Ex (πXY ) := lim

n→∞
Gα(πn

XY )
n

. (11.1)

connects the exact common information and the nonnegative rank of a
matrix; see Corollary 7.2 and Fig. 7.1. Specifically, the exact common
information corresponds to the exact Rényi common information of
order 1. Given a bivariate source πXY , if we write its distribution as a
matrix M, then the asymptotic exponent of the nonnegative rank of
M⊗n is the exact Rényi common information of order 0. Hence, the
exact Rényi common information of order α in (11.1) simultaneously
generalizes both the concepts of the exact common information and the
nonnegative rank. This inspires us to define the nonnegative α-rank

rank(α)
+ (M) := 2Gα(πXY )

in (7.16) in Section 7.4. This notion extends the concept of common
information beyond the realm of information theory. The complete
characterization of the exact Rényi common information of order α
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remains open. In Corollary 7.2, we provide a single-letter expression
for the exact Rényi common information only for the order ∞. Since
the exact common information for the DSBS has been completely
characterized, the exact Rényi common information of order 1 for the
DSBS is completely characterized as well. The complete characterization
of the exact Rényi common information of orders α ∈ [0,∞) \ {1} for
the DSBS and for α ∈ [0,∞) for other sources remains open.

11.2 Open Problems Related to Gács–Körner–Witsenhausen’s
Common Information

In this section, we introduce several interesting open problems on the
extensions of GKW’s common information. These extensions mainly
concern the q-stability as discussed in Section 9. Recall from Section 9.1.1
that the noise stability for a Boolean function f : X n → {0, 1} with
respect to ρ is

Sρ[f ] = E[f(Xn)f(Y n)],

where (Xn, Y n) is a source sequence generated by a DSBS with correla-
tion coefficient ρ ∈ [0, 1]. This concept can be extended to real-valued
functions f : X n → R. For the Gaussian source with correlation coeffi-
cient ρ ∈ [0, 1], the noise stability of f can be defined similarly. When
there is no ambiguity, for Gaussian sources, we also denote the noise
stability of a real-valued function f as Sρ[f ]. For both the DSBS and
the Gaussian source, the noise stability and the q-stability satisfy the
relation

Sρ2 [f ] = S(2)
ρ [f ],

for any f and ρ ∈ (0, 1). The same equation for the DSBS and Boolean
functions is given in (9.5).

We classify open problems related to GKW’s common information
into three sets according to the underlying sources, namely, the DSBS,
the Gaussian source, and the so-called ball- and sphere-noise source.

11.2.1 The Doubly Symmetric Binary Source

We introduce four open problems concerning the DSBS.
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Determination of qmin, qmax, q̆min and q̆max

One of main open problems on the q-stability is the determination of the
thresholds qmin and qmax for the asymmetric max q-stability and q̆min
and q̆max for the symmetric max q-stability given in Lemma 9.3 due to
Barnes and Özgür [11]. Weaker versions of this open problem are stated
in Conjectures 9.1 and 9.2, namely, the symmetric and asymmetric
versions of the Mossel–O’Donnell, the Courtade–Kumar, and the Li–
Médard conjectures. Although these conjectures for certain ranges of
(q, ρ) have been resolved as discussed in Section 9.4, other cases remain
wide open. These conjectures are significant since they connect several
different fields including discrete Fourier analysis, information theory,
discrete probability, etc. Among these conjectures, the Courtade–Kumar
conjecture is regarded as one of the most fundamental conjectures at the
interface of information theory and the analysis of Boolean functions.

Optimality of Majorities

The general open problem as discussed above on the q-stability appears
to be intractable with the current set of analytical tools. A possible
strategy to make some progress is to first find the structure of the
optimal solutions attaining the max q-stability, and according to this
observation, to prove that the optimal solutions belong to a small class of
functions. If functions in this class are well-behaved, it is then relatively
easy to deduce which Boolean functions in this class maximize the
q-stability. It has been observed that for odd dimensions n and mean
a = 1/2, the family of majority functions (defined in Section 9.1.1),
which is well-behaved, may be a plausible candidate, since both dictator
functions and indicators of Hamming balls are majority functions. Hence,
it was conjectured by Mossel and O’Donnell [122] that Majn minimizes
the symmetric q-stability over all anti-symmetric Boolean functions.
We state this formally as follows.

Conjecture 11.1 (Optimality of majorities). Consider the DSBS with
correlation coefficient ρ ∈ (0, 1). Fix q > 1 and n odd. Then, S̆(q)

ρ [f ] is
maximized among anti-symmetric Boolean functions f by a majority
function Majm for some odd number m ∈ [n].
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In the original conjecture [122], q was restricted to be a positive
integer. Conjecture 11.1 is weaker than what we hope to resolve the max
q-stability problem, since only anti-symmetric Boolean functions are
considered in this conjecture, instead of all balanced Boolean functions.
Indeed, one can consider a more general question whether S̆(q)

ρ [f ] is
maximized by a majority function Majm among all balanced Boolean
functions. If the answer is affirmative, it would have significant impli-
cations in addressing the max q-stability problem in the sense that it
allow us to focus our attention only on majority functions.

Stability of Majorities under Bounds on Coefficients

It is also interesting to investigate the noise stability for a specific
class of Boolean functions, e.g., the class of functions whose influences
or Fourier coefficients are constrained. It is well known that for the
majority function Majn, all of its Fourier coefficients vanish as n→∞;
see, e.g., [131]. On the other hand, the noise stability Sρ[Majn] of Majn
for the DSBS with correlation coefficient ρ ∈ (0, 1) satisfies

lim
n→∞

Sρ[Majn] = 1
4 + arcsin ρ

2π . (11.2)

This can be shown similarly to (8.18) and (8.73) in which a and b

are set to 1/2 and one uses the central limit theorem to approximate
the DSBS by a jointly Gaussian source. It has been conjectured by
Mossel, O’Donnell, and Oleszkiewicz [123] that for all balanced Boolean
functions f with small Fourier coefficients, the noise stability Sρ[f ]
cannot exceed the right-hand side of (11.2) “by too much”. This is
quantified in the following conjecture.

Conjecture 11.2 (Majority is most stable under bounds on the Fourier
coefficients). Consider the DSBS πXY with correlation coefficient ρ ∈
(0, 1) and let (Xn, Y n) ∼ πn

XY . Let f : {0, 1}n → {0, 1} be an arbitrary
balanced function, i.e., E[f ] = 2−n∑

xn∈{0,1}n f(xn) = 1/2. Then,

Sρ[f ] ≤ 1
4 + arcsin ρ

2π + ερ

(
max
S⊂[n]

|f̂S |
)
,

where ερ(δ) ↓ 0 as δ ↓ 0 for each fixed ρ ∈ (0, 1).
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A weaker version of this conjecture in which maxS⊂[n] |f̂S | is replaced
by the maximal influence maxi∈[n] Ii[f ] was resolved in [123].

Extracting a Constant or Sublinear Number of Bits

In GKW’s common information, the number of bits that is required to
be extracted from a source (X,Y ) ∼ πXY is linear in the dimension or
blocklength n. In contrast, in the Non-Interactive Correlation Distilla-
tion (NICD) or the max q-stability problem, only a single or a pair of
random bits is to be extracted. A natural generalization of these two
problems is to consider the “intermediate regime” in which the number
of bits that one hopes to extract is more than one but sublinear in n.
For example, one may wish to extract (a constant) ℓ ≥ 2 bits by using
a function f : {0, 1}n → {0, 1}ℓ applied to Xn and Y n where (Xn, Y n)
is a source sequence generated by a DSBS. We require f to be balanced
(i.e., f(Xn) ∼ Unif{0, 1}ℓ), and at the same time, we aim to maximize
the agreement probability

Pr
(
f(Xn) = f(Y n)

)
=

∑
uℓ∈{0,1}ℓ

πn
XY

(
Auℓ ×Auℓ

)
, (11.3)

where Auℓ = f−1(uℓ) = {xn ∈ {0, 1}n : f(xn) = uℓ} for uℓ ∈ {0, 1}ℓ
and πXY is the distribution of the DSBS with correlation coefficient
ρ ∈ (0, 1). In other words, we wish to find a partition {Auℓ}uℓ∈{0,1}ℓ of
{0, 1}n such that each subset Auℓ has the same cardinality and (11.3) is
maximized. If we naïvely output the first ℓ bits xℓ by using the function
f(xn) = xℓ—an indicator of an (n − ℓ)-subcube (cf. Section 8.2.1)—
then the induced agreement probability is exactly

(1+ρ
2
)ℓ. Indeed, as

a consequence of our solution to (the forward part of) Mossel’s mean-
1/4 stability problem given in Section 8.3.3, for ℓ = 2, the function f

that outputs the first two bits attains the maximum of the agreement
probability for this problem. In addition, by using the hypercontractivity
inequalities in Theorem 8.5, Bogdanov and Mossel [24] showed that the
maximal agreement probability

max
f :{0,1}n→{0,1}ℓ

Pr
(
f(Xn) = f(Y n)

)
≤ 2−

(
1−ρ
1+ρ

)
ℓ
.
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This upper bound is asymptotically tight as ℓ→∞ in the sense that
there exists f : {0, 1}n → {0, 1}ℓ such that

Pr
(
f(Xn) = f(Y n)

)
≥ 0.003

√
2

(1− ρ) ℓ 2−
(

1−ρ
1+ρ

)
ℓ
.

Thus, the exponents of the lower and upper bounds coincide and are
equal to 1−ρ

1+ρ . Determining the exact value of the maximum agreement
probability over all balanced {0, 1}ℓ-valued functions with fixed ℓ ≥ 3
remains open.

11.2.2 Gaussian Sources

We next introduce two open problems for bivariate Gaussian sources.

Standard Simplex Conjecture

We now consider a Gaussian version of the noise stability problem for
balanced [m]-valued functions. This problem is analogous to its DSBS
counterpart for {0, 1}ℓ-valued functions. In the Gaussian version, we
extract a pair of random variables U = f(Xn) and V = f(Y n) by
using a deterministic (measurable) map f : Rn → [m] from a pair of
length-n vectors (Xn, Y n) drawn from a bivariate Gaussian source with
correlation coefficient ρ ∈ (0, 1). We require f to be balanced in the
sense that U , or equivalently V , is uniformly distributed on [m]. We
aim to maximize the agreement probability

Pr(U = V ) =
m∑

i=1
πn

XY

(
Ai ×Ai

)
(11.4)

with Ai = f−1(i) for i ∈ [m]. For this [m]-valued function version
of Gaussian NICD problem, Isaksson and Mossel [87] posed the stan-
dard simplex conjecture. Before stating it, we have to introduce some
terminology.

A flat or simplex partition {Ai}mi=1 of Rn is one in which there exists
vectors a0 ∈ Rn and {ai}mi=1 ⊂ Rn \ {0} such that

• for all i, j ∈ [m] such that i ̸= j, ai is not a positive multiple of aj ;
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• for all i ∈ [m],

Ai = a0 +
{

x ∈ Rn :
〈
ai,x

〉
= max

j∈[m]

〈
aj ,x

〉}
.

A standard simplex partition is a flat partition {Ai}mi=1 where ∥ai∥2 = 1
for all i and ⟨ai,aj⟩ = − 1

m−1 for all i ̸= j.

Conjecture 11.3 (Standard simplex conjecture). Consider the bivariate
Gaussian source (X,Y ) ∼ πXY with correlation coefficient 0 < ρ < 1.
Then, among all partitions {Ai}mi=1 of Rn into 3 ≤ m ≤ n+1 measurable
parts of equal πn

XY -probability (i.e., πn
XY (Ai) = 1/m for all i ∈ [m]),

the agreement probability in (11.4) is maximized by standard simplex
partitions. Furthermore, for −1 < ρ < 0, standard simplex partitions
minimize the agreement probability in (11.4).

This conjecture was confirmed positively by Heilman [82] for the
case m = 3 and in the low correlation (i.e., small ρ) regime. Specifically,
for m = 3 and n ≥ 2, there exists a function ρ0(n) > 0 such that
the conjecture holds for 0 < ρ < ρ0(n). However, for other cases,
Conjecture 11.3 remains open.

Symmetric Gaussian Problem

Recall that in the NICD and the max q-stability problem for the Gaus-
sian case with mean a = 1/2 (cf. Sections 8.6.2 and 9.6.2), indicators
of parallel halfspaces attain the forward joint probability and the max
q-stability. Indicators of halfspaces are anti-symmetric (or odd) in the
sense that f(xn) = 1−f(−xn) for almost all xn ∈ Rn; see the analogous
definition for functions defined on {0, 1}n in Section 9.1.1. It is interest-
ing to ask which symmetric (or even) functions i.e., those that satisfy
f(xn) = f(−xn) for almost all xn ∈ Rn, maximize the joint probability
in the NICD problem or the q-stability in the max q-stability problem.
For Gaussian sources, Chakrabarti and Regev [34] posed the following
problem.

Problem 11.1 (Symmetric Gaussian problem). Fix 0 < ρ, a, b < 1. Let
A ⊂ Rn and B ⊂ Rn have Gaussian measures a and b, respectively.
Furthermore, suppose A is centrally symmetric, i.e., A = −A. What is
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the maximum possible value of Pr(Xn ∈ A, Y n ∈ B), where Xn and Y n

are ρ-correlated n-dimensional standard Gaussian vectors?

Even though the problem statement requires that A is centrally
symmetric, this problem is equivalent to requiring that both A and B
are centrally symmetric [58]. Indeed, given a set A, the optimal B that
maximizes πXY (A × B) under the constraint πY (B) = b is the set of
y such that dπY |X(y|A)

dπY (y) ≥ λ for some λ > 0. Hence, if A is centrally
symmetric, so is the optimal B since for this case,

dπY |X(y|A)
dπY (y) =

dπY |X(−y|A)
dπY (−y) .

It was conjectured in Chakrabarti and Regev [34] and O’Donnell [130]
that Pr(Xn ∈ A, Y n ∈ B) is maximized by (Br,Bs) or by (Bc

r,Bc
s)

for some appropriate r, s > 0, where Br = {xn ∈ Rn : ∥xn∥2 ≤ r}
denotes the ball centered at the origin with radius r. This conjecture
was, however, disproved by Heilman [83] in dimensions two and higher.

11.2.3 Ball- and Sphere-Noise Sources

Up to this point, only memoryless sources or, equivalently, product
distributions have been discussed. Extending the NICD and q-stability
problems to sources with memory is a more challenging but fruitful
endeavor, which may provide unique insights. For simplicity, here we
consider ball- and sphere-noise sources since they behave similarly to
memoryless sources in some sense. Hence, results on memoryless sources
can be applied to ball- and sphere-noise sources.

NICD for Ball- and Sphere-Noise Sources

We first consider the ball-noise stability problem. Let πXnY n be a joint
distribution on {0, 1}n × {0, 1}n such that πXn = Unif{0, 1}n and

Y n = Xn ⊕ Zn = (Xi ⊕ Zi)i∈[n],

where Zn ∼ Unif(Br) is independent of Xn and ⊕ denotes the modulo-2
sum. Here, Br is the Hamming ball centered at 0n with radius r (cf.
Section 8.2.2). The distribution πXnY n is no longer of a product form
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since the coordinates of (Xn, Y n) are correlated through the entries
of Zn. For (n, r,M) such that 1 ≤ r ≤ n and 1 ≤ M ≤ 2n, define the
forward joint probability for πXnY n (or maximal ball-noise stability) as

Γ(n)
Ball(M, r) := max

f :{0,1}n→{0,1}
Pr(f(Xn)=1)=a

Pr
(
f(Xn) = f(Y n) = 1

)
,

where (Xn, Y n) ∼ πXnY n and a = M/2n. For fixed a, β ∈ (0, 1), define
their upper and lower limits for even radii as n→∞ as

Γ(∞)
Ball, even(a, β) := lim sup

n→∞
Γ(n)

Ball

(
⌊a2n⌋, 2

⌊βn
2
⌋)

and (11.5)

Γ(∞)
Ball, even(a, β) := lim inf

n→∞
Γ(n)

Ball

(
⌊a2n⌋, 2

⌊βn
2
⌋)
. (11.6)

The limits for odd radii, denoted by Γ(∞)
Ball, odd and Γ(∞)

Ball, odd, can be
defined analogously but with 2⌊βn

2 ⌋ in (11.5) and (11.6) replaced by
2⌊βn

2 ⌋+1. In many information-theoretic problems (e.g., error exponents
for channel coding), when the dimension n is sufficiently large, the
uniform distribution on the Hamming ball Br can be thought of as the
n-fold product of the Bernoulli distribution Bern(r/n). This inspires the
first author of this monograph to pose the following conjecture in [194].

Conjecture 11.4 (NICD for ball-noise sources). For a, β ∈ (0, 1/2),

Γ(∞)
Ball, even(a, β) = Γ(∞)

Ball, even(a, β) = Γ(∞)(a, a), (11.7)

where Γ(∞) is the asymptotic forward joint probability for the DSBS
with correlation coefficient ρ = 1− 2β; see its definition in (8.6).

Conjecture 11.4 pertains only to even radii. For odd radii, Yu [194]
showed that for a, β ∈ (0, 1/2),

Γ(∞)
Ball, odd(a, β) = Γ(∞)

Ball, odd(a, β) = Γ(∞)(a, a). (11.8)

The ball-noise stability problem can be interpreted as an isoperimetric
problem in the rth power of the Hamming graph [194]. The edge-
isoperimetric inequality in Theorem 9.5 is a special case of this isoperi-
metric problem with r = 1.
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In addition, similar questions can be posed when we replace the
ball-noise with the sphere-noise. That is, we keep all things unchanged
apart from the fact that Zn ∼ Unif(Br) is replaced by Zn ∼ Unif(Sr),
where Sr is the Hamming sphere centered at 0n (cf. Section 8.2.3). For
this case, the equalities for the odd case in (11.8) still holds. However, Yu
[194] conjectured that the term Γ(∞)(a, a) in (11.7) should be replaced
by 1

2Γ(∞)(2a, 2a). For more details, please refer to [194].
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