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ABSTRACT

Reed-Muller (RM) codes are among the oldest, simplest and
perhaps most ubiquitous family of codes. They are used in
many areas of coding theory in both electrical engineering
and computer science. Yet, many of their important proper-
ties are still under investigation. This work covers some of
the developments regarding the weight enumerator and the
capacity-achieving properties of RM codes, as well as some
of the algorithmic developments. In particular, it discusses
connections established between RM codes, thresholds of
Boolean functions, polarization theory, hypercontractivity,
and the techniques of approximating low weight codewords
using lower degree polynomials (when codewords are viewed
as evaluation vectors of degree r polynomials in m variables).
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It then overviews some of the algorithms for decoding RM
codes, giving both algorithms with provable performance
guarantees for every block length, as well as algorithms with
state-of-the-art performances in practical regimes, which do
not perform as well for large block length. Finally, some
applications of RM codes in theoretical computer science
and signal processing are given.
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1
Introduction

A large variety of codes have been developed over the past 70 years.
These were driven by various objectives, in particular, achieving effi-
ciently the Shannon capacity [137], constructing perfect or good codes
in the Hamming worst-case model [67], matching the performance of
random codes, improving the decoding complexity, the weight enumera-
tor, the scaling law, the universality, the local properties of the code
[28], [78], [79], [98], [99], [123], [154], and more objectives in theoretical
computer science such as in cryptography (e.g., secrete sharing, private
information retrieval), pseudorandomness, extractors, hardness ampli-
fication or probabilistic proof systems; see [1] for references. Among
this large variety of code developments, one of the first, simplest and
perhaps most ubiquitous code is the Reed-Muller (RM) code.

The RM code was introduced by Muller in 1954 [109], and Reed
developed shortly after a decoding algorithm decoding up to half its
minimum distance [121]. The code construction can be described with
a greedy procedure. Consider building a linear code (with block length
a power of two); it must contain the all-0 codeword. If one has to pick
a second codeword, then the all-1 codeword is the best choice under
any meaningful criteria. If now one has to keep these two codewords,

3

Full text available at: http://dx.doi.org/10.1561/0100000123



4 Introduction

the next best choice to maximize the code distance is the half-0 half-1
codeword, and to continue building a basis sequentially, one can add a
few more vectors that preserve a relative distance of half, completing the
simplex code, which has an optimal rate for the relative distance half.
Once saturation is reached at relative distance half, it is less clear how
to pick the next codeword, but one can simply re-iterate the simplex
construction on any of the support of the previously picked vectors, and
iterate this after each saturation, reducing each time the distance by
half. This gives the RM code, whose basis is equivalently defined by the
evaluation vectors of bounded degree monomials.

As mentioned, the first order RM code is the augmented simplex
code or equivalently the Hadamard code, and the simplex code is the
dual of the Hamming code that is “perfect”. This strong property is
clearly lost once the RM code order gets higher, but RM codes preserve
nonetheless a decent distance (at root block length for constant rate). Of
course this does not give a “good” family of codes (i.e., a family of codes
with asymptotically constant rate and constant relative distance), and
it is far from achieving the distance that other combinatorial codes can
reach, such as Golay codes, BCH codes or expander codes [99]. However,
once put under the light of random errors, i.e., the Shannon setting,
for which the minimum distance is no longer the right figure or merit,
RM codes may perform well again. In [77], Levenshtein and co-authors
showed that for the binary symmetric channel, there are codes that
improve on the simplex code in terms of the error probability (with
matching length and dimension). Nonetheless, in the lens of Shannon
capacity, RM codes seem to perform very well. In fact, more than well; it
is plausible that they achieve the Shannon capacity on any Binary-input
Memoryless Symmetric (BMS) channel [1], [2], [43], [89], [90], [122] and
perform comparably to random codes on criteria such as the scaling
law [70] or the weight enumerator [82]–[84], [99], [127], [142].

The fact that RM codes have good performance in the Shannon
setting, and that they seem to achieve capacity, has long been observed
and conjectured. It is hard to track back the first appearance of this
belief in the literature, but [89] reports that it was likely already present
in the late 60s. The claim was mentioned explicitly in a 1993 talk by Shu
Lin, entitled “RM Codes are Not So Bad” [95]. It appears that a 1994
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paper by Dumer and Farrell contains the earliest printed discussion on
this matter [50]. Since then, the topic has become increasingly prevalent1

[1], [9], [11], [39], [43], [45], [104].
But the research activity has truly sparked with the emergence of

polar codes [11]. Polar codes are close relatives of RM codes. They are
derived from the same square matrix (the matrix whose rows correspond
to evaluations of multilinear monomials) but with a different rule of row
selection. The more sophisticated and channel dependent construction
of polar codes gives them the advantage of being provably capacity-
achieving on any BMS channel, due to the polarization phenomenon.
Even more impressive is the fact that they possess an efficient decoding
algorithm down to the capacity.

Shortly after the polar code breakthrough, and given the close
relationship between polar and RM codes, the hope that RM codes could
also be proved to achieve capacity on any BMS started to propagate,
both in the electrical engineering and computer science communities.
A first confirmation of this was obtained in extremal regimes of the
BEC and BSC [1], exploiting new bounds on the weight enumerator
[84], and a first complete proof for the BEC at constant rate was finally
obtained in [90]. The paper [122] presented a major breakthrough
proving that constant-rate RM codes indeed achieve capacity on all
BMS channels under bit-MAP decoding. While [122] comes close to
proving the conjecture, the question of whether RM codes achieve
capacity under block-MAP decoding still remains open.

The papers mentioned in the previous paragraph however did not
exploit the close connection between RM and polar codes. This con-
nection was studied in [2] where it was shown that the RM transform
is also polarizing and that a third variant of the RM code achieves
capacity on any BMS channel. Furthermore [2] conjectured that this
variant is indeed the RM code itself.

Polar codes and RM codes can be compared in different ways. In most
performance metrics, and putting aside the decoding complexity, RM
codes seem to be superior to polar codes [2], [104]. Namely, they seem

1The capacity conjecture for the BEC at constant rate was posed as one of the
open problems at the Information Theory Semester at the Simons Institute, Berkeley,
in 2015.
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6 Introduction

to achieve capacity universally and with an optimal scaling-law, while
polar codes have a channel-dependent construction with a suboptimal
scaling-law [66], [70], [71]. However, RM codes seem more complex both
in terms of obtaining performance guarantees (as evidenced by the long
standing conjectures) and in terms of their decoding complexity.

Efficient decoding of RM codes is the second main outstanding
challenge. Many algorithms have been proposed since Reed’s algorithm
[121], such as [20], [48], [49], [51], [64], [125], [141], and newer ones have
appeared in the post polar code period [129], [130], [153]. Some of these
already show that at various block-lengths and rates that are relevant
for communication applications, RM codes are indeed competing or
even superior to polar codes [104], [153], even compared to the improved
versions considered for 5G [57].

This survey is meant to overview these developments regarding both
the performance guarantees (in particular on weight enumerator and
capacity) and the decoding algorithms for RM codes. At the end of
this survey, we discuss a few applications of RM codes in the areas
beyond communication, e.g., applications in low degree testing, private
information retrieval, and compressed sensing.

1.1 Outline of the Survey and Differences from a Previous Version

Part of this monograph was taken from a previous survey [4] written
by the first author, the third author and the fourth author. At the
same time, we have added quite a few new elements and optimized the
presentation of the contents from [4]. Below we give the outline of this
new survey and discuss the difference from [4].

We start in Section 2 with the main definitions and basic properties
of RM codes. Most parts of this section already appeared in [4], e.g.,
the code parameters, recursive structure, duality, automorphism group,
and local properties. We have, however, added two new subsections
discussing the cyclic property of punctured RM codes and the nonlinear
subcodes of RM codes. In Section 3, we introduce some performance
measures and important quantities in channel coding. This is a new
section that has not appeared in [4]. We then cover the bounds on the
weight enumerator of RM codes in Section 4. In Section 5, we cover
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1.1. Outline of the Survey and Differences from a Previous Version 7

the capacity-achieving results, using tools from the weight enumerator
and sharp thresholds of monotone Boolean functions. In Section 6, we
explore the connection between RM codes and polar codes. Although
Sections 4–6 have appeared in [4], we have revised the organization of
these 3 sections and added some proofs to better explain the results
as well as covered results that appeared between the publication time
of these two surveys. Section 7 is a new section that describes the
finite-length scaling of random codes, RM codes and polar codes. We
then cover various decoding algorithms in Section 8, providing pseudo-
codes for them. This section is similar to the previous version [4].
Finally, in Section 9, we discuss some applications of RM codes beyond
communication and channel coding, which were not covered in the
previous version [4].
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