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ABSTRACT

Wireless communication has traditionally been designed to
connect human users. The main design goal was to maxi-
mize the data rate while guaranteeing moderate reliability
and latency targets dictated by the limitations of human
senses. The application of wireless connectivity for machine
to machine communications, typically known as machine-
type communications (MTC), has been growing in the past
decade due to its flexibility, scalability and ease of use. It is
also driven by the proliferation of Internet of Things (IoT)
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nodes and applications, with several billions of connected
devices expected by the next decade.

The fifth-generation (5G) New Radio (NR) wireless sys-
tem has introduced two distinct services classes to sup-
port MTC, namely massive machine-type communications
(mMTC) and the ultra-reliable low-latency communications
(URLLC). Out of these, designing URLLC solutions is the
most challenging given that it aims to provide dependable
connectivity for mission-critical applications in industrial
scenarios, process engineering and other similar verticals.

URLLC aims to guarantee very high reliability and very low
latency, and therefore the outage performance replaces the
average performance as the main design criterion. This calls
for a new approach to the communication- and information-
theoretic fundamentals of wireless system design. Different
theoretic foundations of URLLC have so far been treated
in individual and disconnected works that fail to provide
a meta-level understanding of this topic. This monograph
aims at filling this gap by presenting a comprehensive cover-
age of the topic including the motivation, theory, practical
enablers and future evolution. The unified level of details in
this monograph is aimed at providing a balanced coverage
between its fundamental communication- and information-
theoretic background and its practical enablers, including
5G NR system design aspects. Finally, this monograph offers
an outlook on URLLC evolution in the sixth-generation (6G)
era towards dependable and resilient wireless communica-
tions.

Full text available at: http://dx.doi.org/10.1561/0100000129



1
Introduction

Wireless communications can be broadly categorized into human-type
communications (HTC) and machine-type communications (MTC) [292].
The former includes voice calls, mobile broadband access, and other
communications involving humans; whereas the latter comprises the
wide range of scenarios where machines communicate with each other
or with the network in the absence of direct human involvement. Wire-
less networks were predominantly designed to support HTC until the
fourth-generation, though Long-Term Evolution (LTE) introduced some
preliminary features to support MTC, such as LTE for MTC and nar-
rowband Internet of Things (IoT).

MTC services are inherently different and more diverse compared to
HTC services and introduce novel design challenges in wireless networks.
Typical MTC applications involve sensors or IoT nodes sending periodic
or event-triggered monitoring messages to the network. Hence, the
traffic is usually sporadic with small payloads and skewed towards the
uplink direction, as opposed to the downlink heavy HTC traffic with
larger payloads [91].

MTC can be broadly categorized into massive machine-type com-
munications (mMTC) and critical MTC or ultra-reliable low-latency

3
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4 Introduction

communications (URLLC). MMTC refers to communications involving
a massive deployment of sensors or IoT nodes with relatively relaxed
quality-of-service (QoS) requirements in terms of the packet error rate
and latency. The devices themselves are, in most cases, simple and
low-cost with constrained energy sources and computational capabili-
ties. The main design challenges are thus related to designing simple,
low-power, and efficient access and transmission schemes for a large
number of devices. On the other hand, URLLC mandates very high
reliability and low latency to support mission-critical applications such
as industrial automation, healthcare, intelligent transportation systems,
and high-fidelity audio systems [289]. The current fifth-generation (5G)
New Radio (NR) is the first wireless standard designed to natively
support multi-service communications [196]. In addition to serving con-
ventional HTC through the enhanced mobile broadband (eMBB) service
class, 5G NR supports MTC through the newly introduced URLLC
and mMTC service classes.

Among the three 5G NR service classes, URLLC is arguably the
most challenging [248]. Designing URLLC solutions to simultaneously
guarantee reliability in the order of 99.999% and end-to-end (E2E)
latency in the order of 1 ms requires a sharp departure from the con-
ventional communication-theoretic foundations conceived on the basis
of the average performance [51], [181]. Furthermore, URLLC is also
the area with the most interesting research questions and potential im-
pact, owing to its central role in many important and emerging vertical
sectors, such as manufacturing and health care.

URLLC was first conceived as a novel service class of the 5G NR
standard [26]. This was followed by a number of practical URLLC
enablers and system design enhancements, many of which were also
included in the early 5G NR standard [236]. Examples include revised
numerology with the capability to scale the sub-carrier spacing (SCS)
and consequently reduce the transmission time interval (TTI) dura-
tion [148] and mini slots with a smaller number of symbols to reduce
the transmission latency [273], puncturing and preemptive scheduling
to overlay high-priority URLLC transmissions to reduce the channel
access latency [148], multi-connectivity to enhance the transmission
reliability [201], and others. In addition, new applications and enablers

Full text available at: http://dx.doi.org/10.1561/0100000129



1.1. Historical Background of MTC 5

constantly emerge from both academic research and 3rd Generation
Partnership Project (3GPP) standardization.

The communication- and information-theoretic foundations and
challenges of URLLC have started being explored following its initial
introduction. Durisi et al. provided the information-theoretic principles
of transmitting short data packets with low latency and ultra-high
reliability [103]. Bennis et al. [51] proposed to decompose URLLC into
three basic building blocks, namely tail, risk, and scale, highlighting
a set of communication- and information-theoretic tools that can be
used to analyze them. López et al. [181] delved into such and many
other tools and methodologies for designing and analyzing URLLC
systems, while providing several examples focused on the physical layer
(PHY) and medium access control (MAC) layer. Meanwhile, Swamy
et al. [304] revisited the wireless channel characteristics and dynamics
in the context of the strict demands imposed by URLLC services and
proposed solutions to bound the channel model uncertainty in order to
ensure URLLC.

Another line of research considers variable-length stop feedback
(VLSF) codes that comprise simple schemes such as automatic repeat
request or hybrid automatic repeat request (HARQ), which provide
an efficient way to ensure reliable reception of the data packet over
fading channels. The suitability of VLSF codes for URLLC is studied
in [253]. It turns out that it is important to optimize the transmission of
signaling information, as well as to exploit various sources of diversity.
Very recently, the performance of VLSF codes in multiple and random
access channels is studied and compared to the Gaussian MAC [337].
While the first information-theoretic works on channels with noiseless
feedback date 50 years back [188], recent works consider how to achieve
the reliability exponent for unknown channels [313] or for noisy one-way
and two-way channels [240].

1.1 Historical Background of MTC

Though MTC has been implemented since the second-generation era [80],
it was incorporated as a part of the system design only in the fourth
generation LTE. LTE for MTC was first introduced in 3GPP Release 12

Full text available at: http://dx.doi.org/10.1561/0100000129



6 Introduction

as a dedicated radio technology standard to specifically enable MTC
and IoT applications, which was then followed by the low-power wide-
area network radio technology narrowband IoT in 3GPP Release 13.
Instead of having different standards and radio technologies for different
use cases, 5G NR design integrated these technologies under a unified
system design served by different service classes.

There are two major motivations behind incorporating dedicated
support for different service classes in wireless systems, namely tech-
nological needs and market demand. With the proliferation of MTC
and IoT applications in a wide range of use cases, there is a growing
demand to have a unified radio technology that can enable the diverse
connectivity needs of these applications. On the other hand, the pene-
tration rate of HTC exceeded 100% in most advanced markets while
the average revenue per user was decreasing, forcing telecom operators
to look for new markets. The huge growth potential of the MTC/IoT
market with a forecast of billions of connected devices in the coming
decade provides a natural expansion zone for filling this demand.

At the same time, the industrial and manufacturing sector witnessed
the emergence of the fourth industrial revolution, also known as Industry
4.0. Industrial communication systems adopted in factory automation,
manufacturing, and process control that interconnect controllers, sen-
sors, actuators, input/output devices, and other industrial equipment
are an integral part of Industry 4.0. Such communication networks,
first introduced in the 1980s, have typically been implemented using
proprietary fieldbus protocols. Today it has evolved to wired Ethernet-
based fieldbus systems such as PROFINET Isochronous Real Time
that can support industrial automation applications requiring very high
reliability and low latencies [52]. The proprietary nature of most of the
existing fieldbus solutions limits their wide adoption. The IEEE 802.1
time sensitive networking (TSN) standards aim to address this issue by
introducing a set of common standards that can provide deterministic
connectivity through IEEE 802 networks, i.e., guaranteed packet trans-
port with bounded latency, low packet delay variation, and low packet
losses [257].

The wired nature of existing solutions providing deterministic con-
nectivity limit flexibility, scalability, and deployment options and lead

Full text available at: http://dx.doi.org/10.1561/0100000129



1.2. URLLC Use Cases 7

to high capital and operational expenditures for cabling installation
and maintenance [75]. Since the last decade, wireless technologies like
wireless local area network, ZigBee and Bluetooth, as well as their pro-
prietary extensions such as Wireless Interface to Sensors and Actuators
and Highway Adressable Remote Transducer have also been used as
fieldbus systems [114], [324]. However, these technologies operate in
a crowded unlicensed spectrum with unpredictable interference levels
and are not capable of enabling dependable communications supporting
applications requiring very high reliability and low latency [324]. The
URLLC service class introduced in 5G NR is a first attempt in intro-
ducing a common wireless standard to enable deterministic connectivity
for industrial communication systems and other verticals. The initial
URLLC outlined in 3GPP Release 15 had limited capabilities, but these
are being progressively improved in every subsequent releases [118],
[258].

1.2 URLLC Use Cases

The multi-service support in 5G NR extends its capabilities far beyond
conventional cellular broadband connectivity to enable new use cases
in many vertical domains, such as manufacturing industries, intelligent
transportation systems, health-care, agriculture, energy, smart societies,
and many other sectors. In this section, we briefly discuss several URLLC
use cases in different vertical sectors.

1.2.1 Connected Industries and Automation

The industrial domain is a very diverse field with many heterogeneous
use cases representing diverse requirements. The manufacturing process,
QoS requirements, plant size, deployment scenarios, etc., all may be
very different for different sectors. However, URLLC solutions for the in-
dustrial communication networks interconnecting the different elements
and devices, such as controllers, sensors, and actuators, in each of these
industries may lead to substantial improvements and optimizations.
Moving from 5G towards beyond-5G/sixth-generation (6G) systems,
URLLC service class (and its evolution) has the potential to converge

Full text available at: http://dx.doi.org/10.1561/0100000129



8 Introduction

Figure 1.1: Different industrial use cases and their relative placement with respect
to the three 5G NR service classes.

to a unified deterministic and resilient wireless connectivity solution.
In parallel with the trend towards TSN as a unified (wired) Industrial
Ethernet solution, beyond-5G systems may, for the first time, enable
direct and seamless wireless communication from the field level to the
cloud [10].

Promising URLLC applications range from logistics for supply and
inventory management, automated guided vehicles (AGVs) through
robot and motion control applications, to operations control and ac-
curate localization. Moreover, integration of TSN features within 5G
will enable it to easily replace wired connectivity with wireless solutions
in certain parts of an industrial communication system, while inter-
operating with existing infrastructure that need not be replaced [121].
Figure 1.1 below presents an overview of selected industrial use cases,
and their operational and functional requirements are outlined in Table
1.1.
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1.2. URLLC Use Cases 9

Table 1.1: Operational and functional requirements for different industrial use
cases [10].

1.2.2 Massive Digital Twin

A digital twin (DT) provides a real-time representation of physical
objects in the virtual world. DTs are already becoming an integral part
of manufacturing by rendering digital replicas of production/manufac-
turing assets [217]. The applications of DTs will be further extended
to include a digital representation of the (wireless propagation) en-
vironment and assets beyond manufacturing; leading to the massive
DT use case [136], [241]. A vast array of IoT devices collecting real-
time and multi-source data allows the digital replicas to dynamically
update and change along with their physical counterparts. To enable
this, massive DT will require URLLC with high data rates, thereby
imposing novel design challenges. The desired reliability and latency
requirements of a DT implementation directly relates to the chosen
level of abstraction, and the choice of DT modeling fidelity (i.e., how
closely the model represents and follows the reality) is primarily driven
by the use case [319].

1.2.3 Swarm Networking

Self-driving vehicles in the shop floor, e.g. AGVs, rely heavily on wireless
communications for critical applications such as collision avoidance and
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10 Introduction

control information interchange. Coordinated autonomous mobility in
the shop floor, e.g., AGVs collaboratively carrying a large object, will
be common in the future [70]. Such autonomous collaborative tasks
will require a large number of sensors, actuators, and edge systems
integrated within the autonomous vehicles and communicating with one
another. This in turn increases the demand on the scale, complexity,
and QoS of the connectivity within the AGV or swarm of vehicles,
and between the vehicle/swarm and the serving network. Beyond the
manufacturing shop floor, swarm networking use cases will also have
applications in connected logistics and autonomous supply chains (e.g.,
swarm of supplying drones). AGV-based collaborative robots used for
critical industrial processes grinding, sanding and product assembly will
require URLLC with latency and packet error rates as low as 0.25 ms
and 10−9, respectively [239].

1.2.4 Immersive Experience

The ability to transmit multi-sensory information (audio, video, haptic,
etc.) through Tactile Internet in real-time will pave the way towards
immersive-experience use cases, where humans will be able to interact
with other humans and/or digital assets (e.g., DTs) using all senses [24].
Examples of immersive-experience use cases in industrial scenarios in-
clude human-in-the-loop networks, where human operators can remotely
interact and operate physical objects located in difficult and/or haz-
ardous to-reach locations, and mixed-reality co-design, where designers
can interact with DTs and other digital objects to design and digitally
prototype new products before real-life prototyping. Such use cases will
require E2E latencies in the order of 10 ms round-trip time (RTT) with
a 10−5–10−6 block error rate (BLER) target [24].

1.3 State of the Art in URLLC

URLLC was first introduced in 2015 by the International Telecommu-
nications Union (ITU) as one of the three service classes of IMT-2020
system [147]. It was envisioned to have stringent requirements in terms
of throughput, latency, and availability for applications such as wireless
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1.3. State of the Art in URLLC 11

control of industrial manufacturing or production processes andtrans-
portation safety. Following the ITU recommendation, it was adopted
by 3GPP as part of the 5G NR Release 15 standard [2]. Since then,
a number of tutorials and survey papers have been published on this
topic, which are summarized in the following.

1.3.1 URLLC in 3GPP Standardization

From the standardization point of view, [118] provides an overview
of the 5G NR Releases 16 and 17 features, including those focused
on URLLC and industrial IoT such as time sensitive communications,
enhanced location services, and support for non-public networks (NPNs).
Focusing specifically on URLLC, [171] presents an overview of the
URLLC features in 5G NR from Release 15 to Release 17 such as
improved feedback mechanisms, intra-user equipment (UE) multiplexing,
prioritization of traffic, support of time synchronization, new QoS-
related parameters, and coexistence with unlicensed bands.

1.3.2 URLLC Use Cases

Critical industrial IoT automation with strict latency and reliability
demands in smart factories is among the most important use cases of
5G URLLC [128]. The work in [189] describes the drivers for future
industrial wireless systems along with the role of 5G URLLC and its
industrial-centric evolution towards meeting the strict performance
standards of factories. Furthermore, [295] discusses the key technical
requirements and architectural approaches for the Tactile Internet,
another important URLLC use cases, and presents the role of wireless
access protocols, radio resource management aspects, next-generation
core networking capabilities, edge cloud, and edge artificial intelligence
(AI) capabilities in supporting the Tactile Internet. An overview of the
5G NR functionalities for URLLC and how they aim to guarantee ultra
reliability and low latency for the Tactile Internet services and haptic
communication applications is provided in [272]. Further focusing on
Tactile Internet applications, [220] studies means to ensure URLLC at
the fronthaul via multipath diversity and erasure coding of the MAC
frames under a probabilistic model.

Full text available at: http://dx.doi.org/10.1561/0100000129



12 Introduction

1.3.3 Fundamentals of URLLC

The principles for supporting URLLC from the perspective of the tradi-
tional assumptions and models applied in communication-/information-
theory are discussed in [253] along with their application in designing
access protocols and diversity sources. It is concluded that there is a
need to optimize the transmission of signaling information and the use
of different diversity sources to enable URLLC with efficient utilization
of resources. The work in [256] provides a communication-theoretic
model for the non-orthogonal sharing of random access network (RAN)
resources among URLLC, eMBB, and mMTC services via network
slicing that accounts for the heterogeneous requirements and charac-
teristics of different service classes. It also introduces the concept of
reliability diversity as a design principle that leverages the different
reliability requirements across the services to ensure the performance
guarantees of each service with RAN slicing. Unlike conventional commu-
nication applications with long data packets, most URLLC applications
involve transmitting novel traffic types that use short packets. The
information-theoretic principles governing the transmission of short
packets in URLLC are detailed in [103], which also illustrates their
application in optimizing the transmission of control information. It
is concluded that new principles are needed for the design of wireless
protocols supporting short packets.

1.3.4 URLLC Design/Analysis Tools

The work in [248] discusses some of the challenges of achieving URLLC,
particularly in the downlink direction, such as those related to the
reliability requirements for both data and control channels, the need
for accurate and flexible link adaptation, reducing the processing time
of data retransmissions, and the multiplexing of URLLC with other
services. It further proposes solutions to these challenges covering dif-
ferent aspects of the radio interface, which are then validated through
system-level simulation results. The work in [51] highlights that URLLC
mandates a departure from the conventional average utility-based net-
work design approach to a principled and scalable framework considering
the tail of the distribution of various parameters of interest (e.g., delay,
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1.3. State of the Art in URLLC 13

reliability, and packet size) while making decisions under the uncertainty
due to the stochastic nature of wireless networks. It further introduces
various URLLC enablers and presents several techniques and methodolo-
gies to ensure that the URLLC requirements are met. The more recent
tutorial [181] presents several statistical tools and methodologies, such
as reliability theory, short packet communications, tail approximations,
rare event simulations, and stochastic geometry, which are useful for
designing and analyzing URLLC systems. It further complements the
discussion on the tools with novel application examples focused on the
PHY and MAC layer.

1.3.5 URLLC Enablers

The work in [244] presents a survey of various low-latency enablers
at the RAN, core network, and network caching elements alongside
a general overview of several 5G cellular network technology compo-
nents such as software defined network, network function virtualization,
and multi-access edge computing. Moreover, [303] provides a compre-
hensive discussion on the PHY and MAC enablers of URLLC and
identifies the potential of utilizing the unlicensed bands alongside the
licensed ones for URLLC applications. The feasibility of various diversity
techniques (in particular multi-connectivity approaches) in ensuring
URLLC is discussed in [296], which also proposes a multi-connectivity
algorithm for multi-cell multi-user systems based on matching theory.
The work in [301] presents an extensive survey of multi-connectivity
for URLLC. Specifically, it identifies the main scheduling categories,
compares different network architectures, and considers different layers
for implementing multi-connectivity. At higher layers, the role of edge
computing based on distributed computing, storage, and control services
closer to end-network nodes in enabling URLLC for mission-critical
applications is explored in [107]. Similarly, [266] surveys the literature
on new E2E solutions and the creation of URLLC services in current
and future 5G networks, also classifying them according to the enabling
technologies and methods used to achieve success in terms of latency
and reliability.
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1.3.6 Radio Resource Management for URLLC

Owing to its specific requirements, optimization problems for the opti-
mum resource allocation in URLLC applications need to be approached
in a different way. In this regard, [289] analyzes the delay and packet
loss components in URLLC and explores appropriate tools to design
radio resource allocation under constraints on delay, reliability, and
availability. The work in [72] argues that the consumption of communi-
cation resources and the control subsystem performance are mutually
dependent in URLLC. Hence, it is critical to integrate URLLC and con-
trol subsystems by formulating a communication and control co-design
problem to optimize the overall system performance. Different resource
allocation schemes for (re)transmissions with the aim of meeting the
URLLC requirements with low resource consumption are investigated
in [106]. A review of packet scheduling algorithms for URLLC in 5G-and-
beyond systems covering centralised, decentralised, and joint scheduling
techniques is presented in [131].

1.3.7 Coding Schemes for URLLC

Coding schemes specific for URLLC also received particular attention.
The works in [294], [341] review different channel coding techniques
for URLLC and provide a comparative study of their performance and
complexity. On the other hand, [57] describes the encoding process of
polar codes adopted by 3GPP as a channel coding scheme in the 5G
standard and presents an elaborate framework that applies novel coding
techniques to provide a solid channel code for NR requirements, with
particular attention to rate flexibility and low decoding latency. The
design of low-density parity check (LDPC) codes with short blocklength
and fast convergence for URLLC applications is proposed in [331]. Joint
coding schemes that can simultaneously accommodate URLLC and
eMBB transmissions under different communication scenarios, such as
point-to-point (P2P) channels, broadcast channels, interference net-
works, cellular models, and cloud-RANs, are discussed in [232] from an
information-theoretic perspective.
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1.3.8 Applications of ML/AI to URLLC

Machine learning (ML) and AI techniques are becoming more and more
popular in the field of wireless communications. This is driven by their
success in other fields (e.g., image processing, speech recognition, and
natural language processing) and by the advances in their computational
efficiency. Following this trend, the use of ML/AI tools has been inves-
tigated and promoted to address URLLC problems. The application of
supervised/unsupervised learning by developing data-driven resource
management for URLLC is surveyed in [275]. However, directly apply-
ing existing ML tools as an enabler for URLLC may not be efficient
due to the stringent QoS requirements, the dynamic nature of most
URLLC use cases (which leads to the training and validation samples
being drawn from different distributions), and overhead in terms of
latency. These challenges can potentially be addressed by integrating
domain knowledge with ML tools. For example, [288] illustrates how to
improve the performance of supervised/unsupervised deep learning and
deep reinforcement learning (DRL) algorithms for URLLC by applying
model-based analytical tools and cross-layer optimization frameworks.

1.3.9 UAV/RIS-Aided URLLC Systems

The adoption of additional network elements such as unmanned aerial
vehicles (UAVs) and reconfigurable intelligent surfaces (RISs) as enablers
for URLLC has also been explored in the literature. For instance, [208]
discusses UAV-enabled networks with special emphasis on the research
advancements in UAV-enabled URLLC networks. In addition, [132] in-
vestigates the average achievable rate and error probability of RIS-aided
systems in the finite blocklength (FBL) regime considering industrial
URLLC scenarios as a specific application. The combination of UAVs
and RISs to deliver short packets is explored in [261], which also pro-
poses a computationally efficient optimization algorithm to minimize the
total decoding error rate and find the optimal position and blocklength
of the UAV.
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1.3.10 URLLC Evolution Towards 6G

The URLLC evolution towards 6G will impose higher reliability, lower
latency, and additional QoS guarantees. Moreover, URLLC is expected
to expand into multiple service classes combining the three basic ser-
vice classes of 5G, giving rise to extreme URLLC, scalable URLLC,
and broadband URLLC [24], [250]. The work in [241] examines the
limitations of 5G URLLC and the key research directions for URLLC
evolution towards 6G. It envisions that this evolution will leverage
recent advances in ML for faster and more reliable data-driven predic-
tions, utilize non-radio frequency signals to enhance the reliability, and
emphasize communication and control co-design as a holistic system-
design principle. On a similar note, [198] discusses the main drivers, key
requirements, and potential enabling technologies for both MTC and
URLLC towards 6G. Focusing specifically on future URLLC deployment
in industrial production modules, robots, and vehicles, the design of
short-range wireless isochronous real-time communication capabilities in
a sub-network aimed at life-critical applications in future 6G networks
is presented in [15]. We note that a special issue on the evolution of
URLLC in the 6G era, entitled “xURLLC in 6G: Next Generation
Ultra-Reliable and Low-Latency Communications”, will be published
in the IEEE Journal on Selected Areas in Communications [287] in the
third quarter of 2023. This special issue will contain twenty articles
covering different aspects of next-generation URLLC, including novel
methodologies and innovative technologies needed to solve the resulting
research problems.

1.4 Motivation of This Monograph

Despite the timely contribution of the relevant works on URLLC listed
above (and other similar surveys/tutorials on this topic), there are still
three important gaps in the literature. First, there is a lack of a compre-
hensive and unified coverage on the communication- and information-
theoretic fundamentals of URLLC, as well as the theoretical tools that
can be used to analyze it and design its various enablers, despite being
covered sporadically in a number of articles. Second, there is room to
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provide a meta-level understanding of the motivations and the theo-
retical basis behind the wide range of URLLC enablers discussed in
the literature. Third, few of the existing works discuss how (some of)
the various enablers interact with each other and how they can be
successfully combined into a solid and sustainable system design. This
monograph aims at filling these gaps by presenting a complete, self-
contained overview of URLLC, including the motivation, foundations,
enablers, system design, and evolution towards 6G. It is written at
a level of details approachable to an average early-stage researcher,
treating the subject matter in sufficient details.

1.4.1 Contributions

The main contributions of this monograph can be summarized as follows.

• In this section, we provide an introduction to MTC, URLLC,
and the 5G NR standardization aspects, including the historical
motivation behind URLLC, and the detailed research challenges
of ensuring high reliability and low latency simultaneously.

• In Section 2, we discuss the communication- and information-
theoretic foundations of URLLC and the differences with clas-
sical information theory. Specifically, Section 2.1 describes the
design challenges for URLLC, explaining the sources of random-
ness, impact of fading, and key properties. Section 2.2 focuses on
the communication-theoretic aspects of URLLC, describing the
transition from average capacity to outage capacity and age of
information (AoI). Section 2.3 presents the information-theoretic
aspects of URLLC, including the fundamental limits of multi-
ple access channels, FBL theory, control and data encoding in
short packets, channel codes for FBL transmission, and variable
length codes for short packets with feedback. Lastly, Section 2.4
defines the fundamental trade-off between high reliability and low
latency, describing the effective capacity and energy efficiency, the
rate-reliability-latency trade-off, and the trade-offs at the MAC
layer.

Full text available at: http://dx.doi.org/10.1561/0100000129



18 Introduction

• In Section 3, we present some key URLLC enablers. Specifically,
Section 3.1 describes the URLLC enablers from a system design
perspective, including specific high-reliability and low-latency en-
ablers. Section 3.2 focuses exclusively on multiple-input multiple-
output (MIMO) communications for URLLC, illustrating sta-
tistical channel modeling, channel estimation and beamforming
design, massive MIMO, joint transmission coordinated multipoint
(JT-CoMP) and cell-free massive MIMO, and high-frequency com-
munications. Lastly, Section 3.3 presents URLLC-grade resource
allocation, covering bounds and distribution tails, extreme value
theory, risk management, and meta probability.

• In Section 4, we present uplink multiple access and user scheduling
protocols designed to meet the challenges associated with URLLC.
Section 4.1 describes grant-based multiple access schemes, in-
cluding the conventional grant-based scheme, semi-persistent and
preemptive scheduling, and fast-uplink multiple access. Section 4.2
discusses grant-free uncoordinated access, focusing on enhanced
collision avoidance/resolution, enhanced multi-user detection, and
their co-design. Section 4.3 focuses on schemes based on non-
orthogonal multiple access (NOMA). Section 4.5 deals with mas-
sive and random access in the FBL regime. Lastly, Section 2.2.2
introduces latency- and AoI-aware scheduling.

• In Section 5, we show several concrete examples of URLLC system
design building on some of the tools and enablers characterized
in the previous sections. Section 5.1 presents an integrated func-
tional architecture for special-purpose URLLC network focusing
on the lower Open Systems Interconnection (OSI) protocol layers.
Section 5.2 discusses the power control with reliability guarantees
in the FBL regime and provides quantitative insights on the extra
power that is needed in comparison with the conventional Shan-
non (asymptotic) approach. Section 5.3 introduces and analyzes
the rate and power allocation in single-antenna NOMA networks,
which are exploited to support per-user reliability requirements.
Section 5.4 describes an AoI-aware resource allocation scheme for
vehicular networks based on multi-agent, multi-task reinforcement
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learning, where the proposed design based on ML achieves sig-
nificantly low average AoI. Lastly, Section 5.5 describes the AoI
minimization in energy harvesting and spectrum sharing enabled
6G networks.

• In Section 6, we present an outlook on the evolution of URLLC
towards dependable communications that is expected in 6G wire-
less systems and describe the key ingredients of future wireless
communication systems. Section 6.1 provides an educated predic-
tion of what 6G will be, including its key drivers, requirements
and key performance indicators (KPIs), and broadband enablers
for URLLC. Section 6.2 describes the expected transition from
the URLLC to the more general concept of dependable communi-
cations, presenting a number of key dependability attributes and
the corresponding tools from reliability theory. Lastly, Section 6.3
discusses TSN, from the wired version applied in Industry 4.0
to its wireless evolution that is currently under development as
TSN-over-5G.

The content of this monograph is covered in a self-contained manner.
Except for a basic background in wireless communications, no other
prerequisite knowledge is required from the reader. Both fundamental
concepts and more advanced research-oriented topics will be presented.
The structuring is purposely chosen to strike a balance between the
communication-/information-theoretic foundations and the practical
aspects of URLLC, with the main objective of producing a monograph
that will appeal to a wide audience base. Each section ends with a list
of key points, which provide a summary of the section and can be used
by the reader to decide what to read in detail.

1.4.2 Target Audience

This monograph has three main groups of target audiences in mind.

• Early-stage researchers intending to embark on URLLC research.
This monograph will provide a thorough and comprehensive back-
ground on the subject, a complete picture of the landscape of
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current URLLC solutions, and some insights on existing and fu-
ture interesting open research questions. We will pay attention to
restrict the level of mathematical details within the reach of an
average early-stage researcher.

• Graduate students intending to get an introductory overview of
URLLC and the related concepts. They may selectively approach
the first part of this monograph (i.e., skipping some of the the-
oretical and mathematical details) without any loss of general
comprehension.

• Researchers and professionals (from both academia and industry)
interested in the state-of-the-art, the research challenges, the 5G
NR standardization aspects, and the expected evolution of URLLC
may use it as a comprehensive reference on URLLC.

More generally, anyone in the field of wireless communications for
5G and beyond-5G systems, from newcomers to experts, will benefit
from this monograph. Due to the wide spectrum of current and emerging
URLLC applications and the growing interest in beyond-5G and 6G
wireless systems, we believe this monograph will attract a huge interest
from both academia and industry as well as a large number of citations.

1.5 Key Points from Section 1

• MTC, which comprises scenarios where machines communicate
with each other or with the network in the absence of direct human
involvement, can be broadly categorized into mMTC and URLLC.
These, together with eMBB, are novel service classes introduced
in the 5G NR standard.

• MMTC refers to communications involving a massive deployment
of sensors or IoT nodes with relatively relaxed QoS requirements,
whereas URLLC mandates very high reliability and low latency
to support mission-critical applications.

• Designing URLLC solutions to simultaneously guarantee reliabil-
ity in the order of 99.999% and E2E latency in the order of 1 ms
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requires a sharp departure from the conventional communication-
theoretic foundations conceived on the basis of the average per-
formance.

• URLLC use cases include connected industries and automation,
massive DT, swarm networking, and immersive experience.

• This monograph presents a comprehensive coverage of the URLLC
subject. In Section 2, we discuss the communication- and infor-
mation-theoretic foundations of URLLC. In Section 3, we present
some key URLLC enablers. In Section 4, we present uplink multi-
ple access and user scheduling protocols. In Section 5, we show
several concrete examples of URLLC system design. Lastly, in
Section 6, we present an outlook on the evolution of URLLC to-
wards dependable communications that is expected in 6G wireless
systems.
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