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ABSTRACT
Shannon propounded a theoretical framework (collectively
called information theory) that uses mathematical tools to
understand, model and analyze modern mobile wireless com-
munication systems. A key component of such a system is
source coding, which compresses the data to be transmitted
by eliminating redundancy and allows reliable recovery of
the information from the compressed version. In modern
5G networks and beyond, finite blocklength lossy source
coding is essential to provide ultra-reliable and low-latency
communications. The analysis of point-to-point and multi-
terminal settings from the perspective of finite blocklength
lossy source coding is therefore of great interest to 5G system
designers and is also related to other long-standing problems
in information theory.
In this monograph, we review recent advances in second-
order asymptotics for lossy source coding, which provides
approximations to the finite blocklength performance of op-
timal codes. The monograph is divided into three parts. In

Lin Zhou and Mehul Motani (2023), “Finite Blocklength Lossy Source Coding for
Discrete Memoryless Sources”, Foundations and Trends® in Communications and
Information Theory: Vol. 20, No. 3, pp. 157–389. DOI: 10.1561/0100000134.
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Part I, we motivate the monograph, present basic definitions,
introduce mathematical tools and illustrate the motivation
of non-asymptotic and second-order asymptotics via the
example of lossless source coding. In Part II, we first present
existing results for the rate-distortion problem with proof
sketches. Subsequently, we present five generations of the
rate-distortion problem to tackle various aspects of practical
quantization tasks: noisy source, noisy channel, mismatched
code, Gauss-Markov source and fixed-to-variable length com-
pression. By presenting theoretical bounds for these settings,
we illustrate the effect of noisy observation of the source,
the influence of noisy transmission of the compressed in-
formation, the effect of using a fixed coding scheme for an
arbitrary source and the roles of source memory and variable
rate. In Part III, we present four multiterminal generaliza-
tions of the rate-distortion problem to consider multiple
encoders, decoders or source sequences: the Kaspi problem,
the successive refinement problem, the Fu-Yeung problem
and the Gray-Wyner problem. By presenting theoretical
bounds for these multiterminal problems, we illustrate the
role of side information, the optimality of stop and transmit,
the effect of simultaneous lossless and lossy compression, and
the tradeoff between encoders’ rates in compressing corre-
lated sources. Finally, we conclude the monograph, mention
related results and discuss future directions.
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1
Introduction

1.1 Motivation

Shannon [104] developed a theoretical framework (collectively called
information theory) that uses mathematical tools to understand, model
and analyze digital communication systems over noisy channels. A basic
digital communication system includes blocks for source and channel
encoding at the transmitter and blocks for source and channel decoding
at the receiver. Source coding, also known as data compression, aims
to remove the redundancy of information and allows reliable recovery
of the information from its compressed version. In contrast, channel
coding aims to counter the noise in the transmission channel between the
transmitter and the receiver and allows reliable recovery of a message.

For discrete memoryless sources (DMS), Shannon showed that the
asymptotic minimal compression rate that ensures accurate recovery
with vanishing error probability is the entropy of the source, provided
that the blocklength of the source sequence to be compressed tends to
infinity. However, lossless source coding does not apply to continuous
sources since it requires an infinite number of bits to describe a real
number. Furthermore, practical image and video compression systems
usually tolerate some imperfection. To resolve these issues, Shannon

4
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1.1. Motivation 5

studied the lossy source coding problem [105] (also known as the rate-
distortion problem) and derived the asymptotic minimal achievable
rate.

For discrete memoryless channels (DMC), Shannon showed that
the maximal asymptotic message rate to ensure reliable recovery with
vanishing error probability at the receiver is the capacity of the noisy
channel, provided that the blocklength (the number of channel uses)
tends to infinity. In other words, Shannon showed that, at rates be-
low the channel capacity, there exist good channel coding strategies
with arbitrarily low probability of error. The above results for source
coding and channel coding are collectively known as Shannon’s coding
theorems [19]. These results are very insightful and set benchmarks for
practical code design in the last seventy years.

In practical communication systems, especially 5G and beyond,
low-latency is desired and dictates the use of short blocklength codes.
However, Shannon’s coding theorems cannot provide exact theoretical
benchmarks for low-latency communication since these theorems hold
under the assumption that the blocklength tends to infinity, which
leads to undesired arbitrarily large latency. To tackle this problem,
information theorists have developed the theory of finite blocklength
analyses and second-order asymptotics. This line of research dates back
to Strassen [109] in 1962, who derived the dominant backoff term of the
coding rate of an optimal code from the maximum asymptotic trans-
mission rate—the capacity C(PY |X) of a noisy channel while tolerating
a non-vanishing error probability when the blocklength increases. The
result was recently rediscovered by Hayashi [50] and by Polyanskiy et
al. [92]. In particular, Hayashi [50] named the result as second-order
asymptotics since the dominant backoff term is exactly the second
largest term in the expression of the maximal achievable rate of any
code for the asymptotic case when the blocklength becomes large. In
addition to the second-order asymptotics, the authors of [92] derived
finite blocklength upper and lower bounds and showed that the bounds
match the second-order asymptotics for blocklengths of hundreds for
various types of point-to-point channels. Therefore, the results in [50],
[92], [109], and especially [92], establish the critical role of second-order
asymptotics in characterizing the finite blocklength performance of
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6 Introduction

optimal codes and have been generalized to various channel models.
Readers can refer to [112] for a systematic review of such advances.

Finite blocklength analyses and second-order asymptotics have also
been derived for source coding. The simplest such example is the lossless
source coding problem. In this problem, one aims to recover a random
source sequence Xn exactly from its compressed version that takes
values in a finite set of M elements. The performance metric is the
error probability in reproducing the source sequence and the rate is
defined as Rn := log M

n , where the unit is bits per source symbol when
the logarithm is base 2. In second-order asymptotics for lossless source
coding, one is interested in characterizing the dominant backoff term of
the coding rate Rn from the minimum asymptotic compression rate—
the entropy of the source H(PX), while tolerating a non-vanishing error
probability when the blocklength increases. Second-order asymptotics
for lossless source coding was first shown by Yushkevich for sources
with Markovian memory [142] and rediscovered by Strassen [109] and
later Hayashi [49].

As noted by Shannon [105], lossless source coding is not possible
for continuous sources and lossy source coding with imperfect recovery
is thus important. Shannon’s rate-distortion theory [105] forms a core
part of modern quantization theory and is usually known as vector
quantization. For a complete survey of various aspects of quantization,
readers may refer to the seminal paper by Gray and Neuhoff [44]. For
the rate-distortion problem that deals with point-to-point lossy data
compression, the second-order asymptotics for DMS were derived by
Ingber and Kochman [54], and both finite blocklength bounds and
second-order asymptotics were derived by Kostina and Verdú [70] for
DMS and Gaussian memoryless sources (GMS). The results in [54],
[70] were further generalized to various scenarios in the point-to-point
case [67], [71], [72], [117], [126], [152] and to problems in network
information theory [82], [147]–[151], usually for DMS.

However, despite the undeniable importance of lossy source cod-
ing and its diverse applications beyond low-latency communications
in various domains including privacy utility tradeoff [101], machine
learning [39] and image/video compression [46], [86], [110], there is no
publication that systematically summarizes recent advances for finite
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1.2. Organization 7

blocklength analyses and second-order asymptotics of lossy source cod-
ing problems, especially the multiterminal cases. One might argue that
[112] covers these topics. Specifically, [112, Chapter 3] focuses on the
point-to-point setting by presenting non-asymptotic and refined asymp-
totics bounds for both lossless and lossy source coding problems, [112,
Chapter 4.5] briefly presents the results for joint source-channel coding
without proof sketches while [112, Chapter 6] studies a lossless multiter-
minal source coding problem named the Slepian-Wolf problem [107]. It
is important to note that recent advances of lossy source coding (e.g.,
[67], [72], [150], [152]) and the multiterminal cases [82], [147]–[151] are
not included in [112]. Our monograph aims to fill the missing piece of
finite blocklength analyses by summarizing recent theoretical advances
for finite blocklength lossy source coding problems. Furthermore, for
point-to-point lossless and lossy source coding problems, we present
proof techniques different from those covered in [112, Chapter 3].

1.2 Organization

The rest of this monograph is organized as follows. In the rest of this
section, we present the notation used throughout the monograph and
recall critical mathematical theorems on sums of i.i.d. random variables
including the Berry-Esseen theorem [12], [32]. In Section 2, we illustrate
the meaning of finite blocklength analysis, first-order asymptotics, and
second-order asymptotics via the example of lossless source coding.
We also recall other refined asymptotics including large and moderate
deviations and explain why we focus on second-order asymptotics.

Part II of this monograph is devoted to the rate-distortion problem
and its five generalizations to consider various aspects of practical
quantization tasks. Based on [54], [70], Section 3 reviews existing results
on the rate-distortion problem. Specifically, we formulate the problem
of finite blocklength analysis of the rate-distortion problem, define
the distortion-tilted information density, present non-asymptotic and
second-order asymptotic theorems, and finally provide detailed proof
sketches.

Based on [72], Section 4 deals with the noisy lossy source coding
problem, where the encoder can only access a noisy version of the source

Full text available at: http://dx.doi.org/10.1561/0100000134



8 Introduction

sequence. This problem is also known as quantizing noisy sources and
is motivated by practical compression of speech signals distorted by
environmental noise or images corrupted by camera imperfections. The
non-asymptotic and second-order asymptotic results for this problem
reveal the role of noisy observations in the finite blocklength regime,
which is not apparent in asymptotic analyses [29], [100], [130].

Based on [71], [126], Section 5 deals with the lossy joint source-
channel coding problem, where the output of the encoder is passed
though a noisy channel and then provided to the decoder. This problem
is also known as quantization for a noisy channel. The classical separa-
tion theorem of Shannon establishes that it is asymptotically optimal
to separate lossy source coding and channel coding. However, non-
asymptotic and second-order asymptotic results suggest that, at finite
blocklengths, separate source-channel coding is strictly suboptimal.

Based on [152], Section 6 deals with mismatched compression of
Lapidoth [76, Theorem 3], where a fixed code with an i.i.d. Gaussian
codebook and minimum Euclidean distance encoding is used to compress
an arbitrary memoryless source. This problem is motivated by the fact
that the distribution of the source to be compressed is usually unknown
and thus the matched coding scheme where the source distribution is
assumed perfectly known is impractical. Theoretical results demonstrate
that both i.i.d. Gaussian and spherical codebooks achieve the same
finite blocklength performance.

Based on [117], Section 7 deals with the Gauss-Markov source,
where the source sequence forms a first-order Markov chain and thus
has memory. This problem is motivated by practical applications where
the source sequence, such as sensor data, is usually not memoryless. The
non-asymptotic and second-order results for the Gauss-Markov source
is the first for a source with memory and reveal the role of memory on
the finite blocklength performance of optimal codes.

Based on [67], Section 8 deals with fixed-to-variable length compres-
sion, where the encoder’s output to each source sequence is a binary
string with potentially different lengths. The motivation is to further
reduce the average coding rate based on the intuition that more frequent
symbols should be assigned codewords with fewer bits, an idea captured
in the Huffman code. The theoretical results reveal the role of flexible
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1.2. Organization 9

rates on the finite blocklength performance and demonstrate a stark
difference with the fixed-length counterpart.

Part III deals with four multiterminal extensions of the rate-distor-
tion problem with increasing complexity and also includes a conclusion
section. Based on the first part of [147], Section 9 deals with the Kaspi
problem [56], which is a lossy source coding problem with one encoder
and two decoders. This problem generalizes the rate-distortion problem
by providing side information at the encoder and adding one additional
decoder that accesses the same side information. Both decoders share
the same compressed information of the source sequence and the decoder
with side information is required to produce a finer estimate of the
source sequence. Through the lens of this problem, we reveal the impact
of side information on the finite blocklength performance of optimal
codes.

Based on [82], [151], Section 10 deals with the successive refinement
problem [95]. This problem generalizes the rate-distortion problem by
having one additional encoder and decoder pair. The additional encoder
further compresses the source sequence and the additional decoder uses
compressed information from both encoders to produce a finer estimate
of the source sequence than the other decoder that only has access
to the original encoder. We present results under two performance
criteria: the joint excess-distortion probability (JEP) and the separate
excess-distortion probabilities (SEP). Under JEP, we reveal the tradeoff
between the coding rate of the two encoders and, under SEP, we revisit
the successively refinability property, from a second-order asymptotic
perspective. A key message from this section is that considering a joint
excess-distortion probability enables us to characterize the tradeoff of
rates of different encoders in second-order asymptotics.

Based on the second part of [147], Section 11 deals with the multiple
description problem with one deterministic decoder [34]. In this problem,
two encoders compress the source sequence and three decoders aim
to recover the source sequence with different criteria: two decoders
aim to recover the source sequence in a lossy manner with different
distortion levels and the other decoder aims to perfectly reproduce a
function of the source sequence. This problem generalizes the successive
refinement problem by having one additional lossless decoder. Under
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Figure 1.1: Relationship among the sections of this monograph.

the joint excess-distortion and error probability criterion, we reveal the
tradeoff among encoders and decoders in simultaneous lossless and lossy
compression in second-order asymptotics.

Based on [150], Section 12 deals with the lossy Gray-Wyner prob-
lem [43]. In this problem, three encoders compress two correlated source
sequences and each of the two decoders aims to recover one source
sequence. This is a fully multiterminal lossy compression problem with
multiple encoders, multiple decoders and multiple correlated source
sequences. It significantly generalizes the rate-distortion problem by hav-
ing one more source sequence, two more encoders and one more decoder.
Under the joint excess-distortion probability criterion, we reveal the
tradeoff among the coding rates of the three encoders in second-order
asymptotics.

Finally, in Section 13, we conclude the monograph and discuss future
research directions. The relationship among sections of this monograph
is illustrated in Figure 1.1.

1.3 Preliminaries

In this section, we set up the mathematical notation used throughout
the monograph and review definitions of basic information theoretical
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1.3. Preliminaries 11

quantities, key properties in method of types and mathematical theorems
central to our analyses.

1.3.1 Notation

The set of real numbers, non-negative real numbers, and natural numbers
are denoted by R, R+, and N, respectively. For any two natural numbers
(a, b) ∈ N2, we use [a : b] to denote the set of all natural numbers between
a and b (inclusive) and use [a] to denote [1 : a]. For any (m1, m2) ∈ N2,
we use 0m1 to denote the length-m1 vector of all zeroes and use 1m1,m2

to denote the m1 × m2 matrix of all ones. For any real number a ∈ R,
we use |a|+ to denote max{a, 0}.

Random variables and their realizations are in capital (e.g., X)
and lower case (e.g., x) respectively. All sets (e.g., alphabets of random
variables) are denoted in calligraphic font (e.g., X ). We use X c to denote
the complement of X . Let Xn := (X1, . . . , Xn) be a random vector of
length-n and xn = (x1, . . . , xn) be a particular realization. We use
∥xn∥ =

√∑
i∈[n] x2

i to denote the ℓ2 norm of a vector xn ∈ Rn. Given
two sequences xn and yn, the quadratic distortion measure (squared
Euclidean norm) is defined as d(xn, yn) := 1

n∥xn −yn∥2 = 1
n

∑
i∈[n](xi −

yi)2.
The set of all probability distributions on an alphabet X is denoted

by P(X ) and the set of all conditional probability distribution from X
to Y is denoted by P(Y|X ). Given P ∈ P(X ), we use supp(P ) to denote
the support of distribution P , i.e., supp(P ) = {x ∈ X : P (x) > 0}.
Given a conditional distribution PY |X ∈ P(Y|X ) and x ∈ X , we use
PY |x to denote the conditional distribution PY |X(·|x). Given P ∈ P(X )
and V ∈ P(Y|X ), we use P ×V to denote the joint distribution induced
by P and V . Given a joint probability distribution PXY ∈ P(X × Y),
let m = | supp(PXY )| and let Γ(PXY ) be the sorted distribution such
that for each i ∈ [m], Γi(PXY ) = PXY (xi, yi) is the i-th largest value of
{PXY (x, y) : (x, y) ∈ X × Y}.

We use standard asymptotic notations such as Θ(·), O(·) and
o(·) (cf. [18]). We use 1(·) as the indicator function and we use log(·) with
base e unless otherwise stated. We let Q(t) :=

∫∞
t

1√
2π

e−u2/2 du be the
complementary cumulative distribution function of the standard Gaus-
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sian. Let Q−1 be the inverse of Q. We use Ψk(x1, . . . , xk; µ, Σ) to denote
the multivariate generalization of the Gaussian cumulative distribution
function (cdf), i.e., Ψ(x1, . . . , xk; µ, Σ) =

∫ x1
−∞ . . .

∫ xk
−∞ N (x; µ; Σ) dx,

where N (x; µ; Σ) is the probability density function (PDF) of a k-
variate Gaussian with mean vector µ and covariance matrix Σ.

1.3.2 Basic Definitions

To smoothly present the results in this monograph, we recall necessary
information theoretical definitions. Given any distribution PX ∈ P(X )
defined on a finite alphabet X , the entropy is defined as

H(X) = H(PX) :=
∑

x∈supp(PX)
−PX(x) log PX(x). (1.1)

Note that the notation H(X) is used in classical textbooks as [19] and
the notation H(PX) that clarifies the dependence of the entropy on the
distribution is used in [22]. We use both notations for the entropy and
other information theoretical quantities interchangeably. Specifically,
when we need to specify the distribution of a random variable, we use
the distribution dependence version H(PX); when the distribution of
the random variable is clear, we use H(X) for its simplicity. Analogously,
given a joint probability mass function (PMF) PXY ∈ P(X ×Y) defined
on a finite alphabet X × Y, the joint entropy is defined as

H(X, Y ) = H(PXY ) =
∑

(x,y)∈supp(PXY )
−PXY (x, y) log PXY (x, y), (1.2)

and the conditional entropy of Y given X is defined as

H(Y |X) = H(PY |X |PX) =
∑

(x,y)∈supp(PXY )
−PXY (x, y) log PY |X(x, y),

(1.3)

where (PY |X , PX) are the induced conditional and marginal distributions
of PXY . The conditional entropy H(PY |X |PX) of X given Y is defined
similarly.

Furthermore, the mutual information that measures dependence of
two random variables (X, Y ) with distribution PXY is defined as

I(X; Y ) = I(PX , PX|Y ) = H(PX) − H(PX|Y |PY ), (1.4)
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where PX|Y is also induced by PXY . Note that mutual information
I(X; Y ) is symmetric so that I(X; Y ) = I(Y ; X). Similar to the defini-
tion of entropy, we use I(X; Y ) and the distribution dependence version
I(PX , PX|Y ) interchangeably. Analogously, given the joint distribution
PXY Z of three random variables (X, Y, Z) defined on a finite alphabet
X × Y × Z, define the conditional mutual information I(X; Y |Z) as

I(X; Y |Z) = I(PX|Z , PX|Y Z |PZ) = H(PX|Z |PZ) − H(PX|Y Z |PY Z),
(1.5)

where all distributions are induced by the joint distribution PXY Z .
Another critical quantity that we use frequency is the Kullback-

Leibler (KL) divergence, also known as the relative entropy. Given any
two distributions (PX , QX) defined on the finite alphabet X , the KL
divergence D(PX∥QX) is defined as

D(PX∥QX) =
∑

x∈supp(PX)
PX(x) log PX(x)

QX(x) . (1.6)

Note that D(PX∥QX) measures closeness of two distributions PX and
QX and equals zero if and only if PX = QX . For any two distributions
PXY and QXY defined on a finite alphabet X × Y, the KL divergence
D(PXY ∥QXY ) is defined similarly; when the marginal distributions
PX = QX , the conditional KL divergence is defined as

D(PY |X∥QY |X |PX) =
∑

x∈supp(PX)
PX(x)D(PY |X(·|x)∥QY |X(·|x)). (1.7)

1.3.3 The Method of Types

Since we focus on DMS, the method of types plays a critical role in our
analyses. Thus, we also recall definitions and results in this domain [21]
(see also [19, Chapter 11] and [22, Chapter 2]). Given a length-n discrete
sequence xn ∈ X n, the empirical distribution T̂xn is defined as

T̂xn(a) = 1
n

∑
i∈[n]

1{xi = a}, ∀ a ∈ X . (1.8)

The set of types formed from length-n sequences in X is denoted by
Pn(X ). Given a type PX ∈ Pn(X ), the set of all sequences of length-n
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with type PX is the type class denoted by TPX
. For any n ∈ N, the

number of types satisfies

|Pn(X )| ≤ (n + 1)|X |. (1.9)

For any type PX ∈ Pn(X ), the size of type class T n
P satisfies

(n + 1)−|X | exp(nH(PX)) ≤ |T n
PX

| ≤ exp(nH(PX)). (1.10)

For any sequence xn that is generated i.i.d. from a distribution PX ∈
P(X ), its probability satisfies

P n
X(xn) = exp(−n(D(T̂xn∥PX) + H(T̂xn))). (1.11)

Thus, for any type QX ∈ Pn(X ), the probability of the type class T n
QX

satisfies

(n + 1)−|X | ≤
P n

X(T n
QX

)
exp(−nD(QX∥PX)) ≤ 1. (1.12)

Given any two sequences (xn, yn) ∈ X n × Yn for any (a, b) ∈ X × Y ,
the joint empirical distribution T̂xnyn is defined as

T̂xnyn(a, b) = 1
n

∑
i∈[n]

1{(xi, yi) = (a, b)}. (1.13)

Given any xn ∈ X n and conditional distribution VY |X ∈ P(Y|X ), the
set of all sequences yn ∈ Yn such that T̂xnyn = Txn × VY |X is the
conditional type class denoted by TVY |X (xn). For any xn ∈ T n

PX
, the set

of all conditional distributions VY |X ∈ P(Y|X ) such that the conditional
type class TVY |X (xn) is not empty is the set of conditional types given
the marginal type PX and is denoted by Vn(Y; PX).

The following results hold. For any PX ∈ Pn(X ), the number of
conditional types is upper bounded by

|Vn(Y; PX)| ≤ (n + 1)|X ||Y|. (1.14)

For any xn ∈ T n
PX

, the size of the conditional type class TVY |X (xn)
satisfies

(n + 1)−|X ||Y| exp(nH(VY |X)|PX) ≤ |TVY |X (xn)| ≤ exp(nH(VY |X)|PX).
(1.15)
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Given any xn ∈ T n
PX

, WY |X ∈ P(Y|X ) and VY |X ∈ Vn(Y; PX), for any
yn ∈ TVY |X (xn),

W n
Y |X(yn|xn) = exp(−n(H(VY |X) + D(VY |X∥WY |X)|PX)). (1.16)

Thus, it follows from (1.15) and (1.16) that

(n + 1)−|X ||Y| ≤
W n

Y |X(TVY |X (xn))
exp(−nD(VY |X∥WY |X)|PX)) ≤ 1 (1.17)

1.3.4 Mathematical Tools

In this section, we present the mathematical tools used to prove second-
order asymptotics, which are essentially the generalization of central
limit theorems. Let Xn = (X1, . . . , Xn) be a collection of n i.i.d. random
variables with zero mean and variance σ2 and let the normalized sum
of these n random variables be

Sn := 1
n

∑
i∈[n]

Xi. (1.18)

We first recall the weak law of large numbers [33], which states that
the normalized sum Sn converges in probability to its mean.

Theorem 1.1 (The Weak Law of Large Numbers). For any positive real
number δ ∈ R+,

lim
n→∞

Pr{Sn > δ} = 0. (1.19)

In the proofs of many theorems, the Markov inequality is used.

Theorem 1.2 (The Markov Inequality). For any non-negative real number
θ ∈ R+ and any positive real number t,

Pr{Sn > t} ≤ E[exp(θSn)]
exp(tθ) . (1.20)

The Berry-Esseen Theorem for i.i.d. random variables [12], [32] is
critical in deriving second-order asymptotics.
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Theorem 1.3 (The Berry-Esseen Theorem). Assume that the third abso-
lute moment of X1 is finite, i.e., T := E|X1|3 < ∞. For each n ∈ N,

sup
t∈R

∣∣∣∣∣∣Pr

Sn ≥ t

√
σ2

n

− Q(t)

∣∣∣∣∣∣ ≤ T

σ3√
n

. (1.21)

The Berry-Esseen theorem states that the probability that the
normalized sum Sn deviates from its mean by a sequence which scales
as Θ

(
1√
n

)
is well approximated by the same probability for a standard

normal variable, with the difference in the order of O
(

1√
n

)
that depends

on the variance σ2 and the third absolute moment T . The assumption
that T is finite is satisfied for DMS. It is the mathematical theorem
that one applies in the analysis of second-order asymptotics for source
and channel coding problems that involve a single encoder.

To tackle certain problems, we need to consider independent but not
identically distributed (i.n.i.d.) random variables. Let Xn = (X1, . . . ,

Xn) be a sequence of random variables, where each random variable
Xi has zero mean, variance σ2

i := E[X2
i ] > 0 and finite third-absolute

moment Ti := E[|Xi|3]. Define the average variance and third-absolute
moment as follows:

σ2 := 1
n

∑
i∈[n]

σ2
i , (1.22)

T := 1
n

∑
i∈[n]

T .
i (1.23)

The Berry-Esseen theorem for i.n.i.d. random variables states as follows.

Theorem 1.4. For each n ∈ N,

sup
t∈R

∣∣∣∣∣∣Pr

Sn ≥ t

√
σ2

n

− Q(t)

∣∣∣∣∣∣ ≤ 6T

σ3√
n

. (1.24)

To derive results for multiterminal lossy source coding problems with
multiple encoders, we need the following multivariate generalization
of the Berry-Esseen theorem [40]. Given d ∈ N, for each i ∈ [n], let
Xi = (Xi,1, . . . , Xi,k) be a k-dimensional random vector with zero mean
vector and covariance matrix Σ. Let the normalized sum vector be
Sn := 1√

n
Xi.
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Theorem 1.5 (Vector Version of the Berry-Esseen Theorem). Let the
third absolute moment of X1 be T := E[∥X1∥3]. For each n ∈ N, we
have

sup
(t1,...,td)∈Rd

∣∣∣Pr{Sn ≤ t} − Ψk(t1, . . . , tk; 0k, Σ)
∣∣∣ ≤ K(d)T√

n
, (1.25)

where > refers to elementwise comparison and K(d) is a constant
depending on the dimension d only (see [7], [94] for explicit bounds).
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2
Lossless Compression

This section focuses on lossless source coding, the notably simplest
problem in vector quantization. In his seminal 1948 paper [104], Shannon
showed that the minimal compression rate for reliable lossless source
coding is the entropy of the discrete memoryless source, assuming that
the blocklength of the source to be compressed tends to infinity. Inspired
by the low-latency requirement of practical communications systems, one
wonders what the performance degradation is if one operates at a finite
blocklength. This question was answered by Yushkevich [142] and by
Strassen [109] who derived the second-order asymptotic approximation
to the finite blocklength performance, revived by Hayashi [50] who
rediscovered the result using the information spectrum method and
further refined by Kontoyiannis and Verdú [59] and by Chen et al. [16]
who improved the previous bounds.

In this section, we present finite blocklength and second-order asymp-
totic bounds for lossless source coding, demonstrate the tightness of
the second-order asymptotics and discuss the relationship of second-
order asymptotics and other refined asymptotic analyses. This section
is largely based on [50], [109].

18
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2.1. Problem Formulation and Shannon’s Result 19

2.1 Problem Formulation and Shannon’s Result

Consider any length-n source sequence Xn that is generated i.i.d. from a
probability mass function (PMF) PX ∈ P(X ). In lossless source coding,
one is interested in perfectly recovering the source sequence Xn from
its compressed version. Formally, a code is defined as follows.

Definition 2.1. Given any (n, M) ∈ N2, an (n, M)-code for source
coding consists of

• an encoder f : X n → M := [1 : M ],

• a decoder ϕ : M → X n.

For simplicity, we use X̂n to denote the reproduced source sequence
at the decoder, i.e., X̂n = ϕ(f(Xn)). The performance metric for lossless
source coding is the error probability, i.e.,

Pe,n := Pr{ϕ(f(Xn)) ̸= Xn} (2.1)
= Pr{X̂n ̸= Xn}. (2.2)

In the above definition, n is the blocklength of the source sequence and
M is the number of codewords that encoder can use.

To achieve zero error, M should be chosen such that M ≥ |X |n
to allow one to one mapping. However, this means no compression is
done. Thus, to compress the source, we need to tolerate a non-zero
error probability. For efficient compression, one hopes M is as small as
possible given any blocklength n and error probability Pe,n. To capture
the fundamental limit of lossless source coding, for any n ∈ N, let
M∗(n, ε) be the minimum number of codewords such that there exists
an (n, M)-code satisfying Pe,n ≤ ε, i.e.,

M∗(n, ε) := inf
{
M : ∃ an (n, M)−code s.t. Pe,n ≤ ε

}
. (2.3)

Ideally, one would like to exactly characterize M∗(n, ε) for each finite
n ∈ N and any tolerable error probability ε ∈ (0, 1). But this is very
challenging and information theorists instead derived approximations
to M∗(n, ε).
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The most famous such approximation for lossless source coding was
provided by Shannon [104], which states that

lim
ε→0

lim
n→∞

1
n

log M∗(n, ε) = H(PX). (2.4)

The above result means that to achieve vanishing error probability with
respect to the blocklength n, the average minimal number of bits that
one should use to compress a source symbol equals the entropy H(PX) of
the source. The above result is also known as the first-order asymptotics
since it characterizes the first dominant term in the expansion of the
non-asymptotic rate R(n, ε) := 1

n log M∗(n, ε) of an optimal code when
ε → 0. In fact, the above result holds for any ε ∈ (0, 1), which is known
as strong converse and implied by second-order asymptotics.

2.2 Non-Asymptotic Bounds

Second-order asymptotics provides approximation to the finite block-
length performance M∗(n, ε), which demonstrates a deeper understand-
ing for the interplay among the blocklength, the error probability and
the coding rate. Usually, to obtain second-order asymptotics, one first
derives non-asymptotic achievability and converse bounds for any finite
blocklength n and next apply the Berry-Esseen theorem to the derived
bounds appropriately.

In [112, Sections 3.1-3.2], the non-asymptotic and second-order
asymptotic bounds by Strassen [109] were presented and in [112, Section
3.3], an alternative proof of second-order asymptotic using the method of
types [21], [22] was given. In this section, we present the non-asymptotic
bounds of Han [48] based on the information spectrum method and
provide an alternative proof of second-order asymptotics using Han’s
results.

Given any x ∈ X , define the entropy density ı(x|PX) as

ı(x|PX) := − log PX(x). (2.5)

We first recall a finite blocklength achievability bound [48, Lemma
1.3.1].
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Theorem 2.1. For any (n, M) ∈ N2, there exists an (n, M)-code whose
error probability is upper bounded by

Pe,n ≤ Pr
{ ∑

i∈[n]
ı(Xi|PX) ≥ log M

}
. (2.6)

The proof of Theorem 2.1 is simple and elegant. For completeness,
we present the proof here.

Proof. For any n ∈ N, define a set

An :=
{

xn ∈ X n :
∑
i∈[n]

ı(xi|PX) < log M
}

. (2.7)

Note that if xn ∈ An, we have

P n
X(xn) =

∏
i∈[n]

PX(xi) (2.8)

=
∏

i∈[n]
exp(−ı(xi|PX)) (2.9)

= exp
(

−
∑
i∈[n]

ı(xi|PX)
)

(2.10)

>
1

M
. (2.11)

It follows that

1 ≥
∑

xn∈An

P n
X(xn) (2.12)

≥
∑

xn∈An

1
M

(2.13)

= |An|
M

. (2.14)

Thus, |An| ≤ M . Then we can construct an (n, M)-code where the
encoder f encodes each element of An to a unique number in [|An|]
and declares an error otherwise. This way, the number of codewords
required is |An| ≤ M and the error probability satisfies (2.6).

We next recall the finite blocklength converse bound [48, Lemma
1.3.2], which presents a lower bound on the error probability of any
(n, M)-code.
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Theorem 2.2. For any (n, M) ∈ N2 and γ ∈ R+, any (n, M)-code
satisfies

Pe,n ≥ Pr
{ ∑

i∈[n]
ı(Xi|PX) ≥ log M + nγ

}
− exp(−nγ). (2.15)

The proof of Theorem 2.2 is similar to that of Theorem 2.1 and is
also recalled here.

Proof. Analogously to An in (2.7), for any γ ∈ R, define a set

Bn(γ) :=
{

xn ∈ X n :
∑
i∈[n]

ı(xi|PX) ≥ log M + nγ
}

. (2.16)

Furthermore, define the set of correctly decoded source sequences as

Cn :=
{
xn ∈ X n : ϕ(f(xn)) = xn}. (2.17)

Then,

Pr{Xn ∈ Bn(γ)}
= Pr{Xn ∈ (Bn(γ) ∩ Cc

n)} + Pr{Xn ∈ (Bn(γ) ∩ Cn)} (2.18)
≤ Pr{Xn ∈ Cc

n} + Pr{Xn ∈ (Bn(γ) ∩ Cn)} (2.19)
≤ Pe,n + Pr{Xn ∈ (Bn(γ) ∩ Cn), (2.20)

where (2.20) follows from the definition of the error probability Pe,n.
Similar to (2.11), if xn ∈ Bn(γ),

PX(xn) = exp
(

−
∑
i∈[n]

ı(xi|PX)
)

(2.21)

≤ exp(−nγ)
M

. (2.22)

It follows that

Pr{Xn ∈ (Bn(γ) ∩ Cn)} =
∑

xn∈(Bn(γ)∩Cn)
P n

X(xn) (2.23)

≤
∑

xn∈(Bn(γ)∩Cn)

exp(−nγ)
M

(2.24)

≤ |Cn| exp(−nγ)
M

(2.25)

≤ exp(−nγ), (2.26)
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where (2.26) follows since for any (n, M)-code, the number of corrected
decoded source sequences is no greater than M .

In subsequent sections, the proofs of Theorems 2.1 and 2.2 are
generalized to obtain finite blocklength bounds for lossy source coding
problems, which are also known as lossy vector quantization [44].

2.3 Second-Order Asymptotics

Applying the Berry-Esseen theorem to the finite blocklength bounds
in Theorems 2.1 and 2.2, one can obtain the second-order asymptotics,
which provides a finer characterization of M∗(n, ε) in (2.3) beyond
Shannon’s classical first-order asymptotic result. To present the result,
define the dispersion of the source PX as

V(PX) := Var[− log PX(X)]. (2.27)

Theorem 2.3. For any ε ∈ (0, 1),

log M∗(n, ε) = nH(PX) +
√

nV(PX)Q−1(ε) + O(log n). (2.28)

We remark that Theorem 2.3 was first obtained by Yushkevich [142]
for a Markov source and by Strassen [109] for DMS. Hayashi [49]
rediscovered Theorem 2.3. The O(log n) term was found to be −1

2 log n+
O(1) by Kontoyiannis and Verdú [59] and was recently further refined
by Chen et al. [16, Theorem 5] with explicit lower and upper bounds
on the O(1) term.

Furthermore, the achievability part of Theorem 2.3 can also be
proved using the method of types [19, Chapter 11], as demonstrated
in [112, Chapter 3.3]. The achievability proof of second-order asymp-
totics based on the method of types finds applications in many other
problems, including the point-to-point and multiterminal settings of
lossy source coding problems to be discussed in this monograph.

To illustrate the tightness of the second-order asymptotic bound
in Theorem 2.3, in Figure 2.1, we plot the second-order asymptotic
approximation in Theorem 2.3 and compare the approximation with
finite blocklength bounds in Theorems 2.1 and 2.2 for a Bernoulli source
with parameter 0.2 with the target error probability of ε = 0.01. As
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Figure 2.1: The second-order asymptotic bound in Theorem 2.3 and non-asymptotic
bounds in Theorems 2.1 and 2.2 for a Bernoulli source with parameter 0.2 and a
target error probability of ε = 0.01.

observed from Figure 2.1, for n moderately large, the second-order
asymptotic bound provides rather tight approximation to the finite
blocklength performance. Furthermore, the gap between the second-
order asymptotic result and the first-order asymptotic result of Shannon
is significant unless n → ∞.

Note that Theorem 2.3 is known as the second-order asymptotic re-
sult because it characterizes the second dominant term in the expansion
of log M∗(n, ε). An equivalent presentation of Theorem 2.3 is to char-
acterize the so called second-order coding rate coined by Hayashi [49],
[50]. For lossless source coding, the second-order coding rate is defined
as follows.

Definition 2.2. Given any ε ∈ [0, 1), a real number L ∈ R is said to be
a second-order achievable rate if there exists a sequence of (n, M)-codes
such that

lim sup
n→∞

1√
n

(log M − nH(PX)) ≤ L, (2.29)

lim sup
n→∞

Pe,n ≤ ε. (2.30)
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For any ε ∈ [0, 1), the infimum of all second-order achievable rates is
called the optimal second-order coding rate and denoted by L∗(ε).

We remark that L∗(ε) has the unit of nats per square root number
of source symbols. With this definition, Theorem 2.3 is equivalent to
the following statement.

Theorem 2.4. For any ε ∈ [0, 1), the optimal second-order rate coding
is

L∗(ε) =
√

V(PX)Q−1(ε). (2.31)

In second-order asymptotics, by allowing a non-vanishing error
probability ε ∈ (0, 1), we observe that the backoff of the non-asymptotic
coding rate R∗(n, ε) := 1

n log M∗(n, ε) from Shannon’s asymptotic rate
H(PX) is in the order of Θ

(
1√
n

)
with the coefficient determined by a

function of the tolerable error probability and the source dispersion.

2.4 Proof of Second-Order Asymptotics

We next present the proof of Theorem 2.3 by illustrating how one can
apply the Berry-Esseen theorem (cf. Theorem 1.3) to the non-asymptotic
bounds in Theorems 2.1 and 2.2,

For the smooth presentation of the proof steps, let

T (PX) := E[|ı(X|PX) − H(PX)|3]. (2.32)

2.4.1 Achievability

Given any ε ∈ (0, 1), let

εn = ε − T (PX)√
n(V(PX))3 , (2.33)

log M = nH(PX) +
√

nV(PX)Q−1(εn). (2.34)

Full text available at: http://dx.doi.org/10.1561/0100000134



26 Lossless Compression

It follows from Theorem 2.1 that the error probability of the code
satisfies

Pe,n ≤ Pr
{ ∑

i∈[n]
(ı(Xi|PX) − H(PX)) ≥

√
nV(PX)Q−1(ε)

}
(2.35)

= Pr
{ 1

n

∑
i∈[n]

(ı(Xi|PX) − H(PX)) ≥

√
V(PX)

n
Q−1(ε)

}
(2.36)

≤ εn + T (PX)√
n(V(PX))3 (2.37)

= ε, (2.38)

where (2.37) follows from the Berry-Esseen theorem for i.i.d. random
variables in Theorem 1.3 since the random variables {ı(Xi|PX) −
H(PX)}i∈[n] are a sequence of i.i.d. random variables with mean 0
and the identical variance V(PX).

Thus, using the Taylor expansion of Q−1(εn) around ε that states
Q−1(εn) = Q−1(ε) + O(ε − εn), we have

log M∗(n, ε) ≤ nH(PX) +
√

nV(PX)Q−1(ε) + O(1). (2.39)

2.4.2 Converse

For any ε ∈ (0, 1), let

ε′
n = ε + T (PX)√

n(V(PX))3 + 1
n

, (2.40)

log M = nH(PX) +
√

nV(PX)Q−1(ε′
n) − log n. (2.41)

Invoking Theorem 2.2 with γ = log n and using the Berry-Esseen
theorem, the error probability of any (n, M)-code satisfies

Pe,n

≥ Pr
{ ∑

i∈[n]
(ı(Xi|PX) − H(PX)) ≥

√
nV(PX)Q−1(ε′

n)
}

− 1
n

(2.42)

≥ ε. (2.43)
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Therefore,

log M∗(n, ε) ≥ nH(PX) +
√

nV(PX)Q−1(ε′
n) − 1

2 log n + O(1) (2.44)

= nH(PX) +
√

nV(PX)Q−1(ε) + O(log n). (2.45)

The converse proof is now completed.

2.5 Other Refined Asymptotics

Besides second-order asymptotics, there are also other refined asymp-
totics beyond Shannon’s source coding theorem. Two examples are the
large and moderate deviations analyses.

In large deviations, one characterizes the decay rate of the error
probability Pe,n for any asymptotic rate greater than H(PX).

Definition 2.3. A non-negative number E is said to be a rate-R achiev-
able error exponent if there exists a sequence of (n, M)-codes such
that

lim sup
n→∞

1
n

log M ≤ R, (2.46)

lim inf
n→∞

− 1
n

log Pe,n ≥ E. (2.47)

The supremum of all rate-R achievable error exponents is called the
optimal error exponent and denoted by E∗(R).

The exact characterization of E∗(R) was given by Gallager [36] and
by Csiszár and Longo [23].

Theorem 2.5. The optimal error exponent for the lossless source coding
problem is

E∗(R) = max
ρ≥0

(
ρR − (1 + ρ) log

( ∑
x∈supp(PX)

P
1

1+ρ

X (x)
))

(2.48)

= min
QX :H(QX)≥R

D(QX∥PX). (2.49)

As a result of Theorem 2.5, we conclude that the error probability
decays exponentially fast for any rate above the first-order coding
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rate, i.e., R > H(PX). The characterization in (2.48) was proved by
Gallager using the maximum likelihood decoding with the ρ trick and
the characterization in (2.49) was proved by Csiszár and Longo [23]
using the method of types. The equivalence of the two characterizations
is hinted in [22, Problem 2.14].

The moderate deviations regime interpolates between the large
deviations and second-order asymptotic regimes. In this regime, one is
interested in a sequence of (n, M)-codes whose rates approach H(PX)
and whose error probabilities decay to zero simultaneously.

Definition 2.4. Consider any sequence {ξn}n∈N such that ξn → 0 and√
nξn → ∞ as n → ∞. A non-negative number ν is said to be an

achievable moderate deviations constant if there exists a sequence of
(n, M)-codes such that

lim sup
n→∞

log M − nH(PX)
nξn

≤ 1, (2.50)

lim inf
n→∞

− 1
nξ2

n

log Pe,n ≥ ν. (2.51)

The supremum of all moderate deviations constants is called the optimal
moderate deviations constant and is denoted by ν∗.

Note that in moderate deviations, the speed of the rate approaching
H(PX) is in the order of ξn, which is slower than O( 1√

n
) in second-order

asymptotics and the decay rate of the error probability is subexponential,
which is slower than the exponential decay in large deviations. This
is precisely the reason why moderate deviations is said to interpolate
second-order and large deviations asymptotics.

The optimal moderate deviations constant for the lossless source
coding problem was obtained by Altŭg, Wagner and Kontoyiannis in
[4].

Theorem 2.6. The optimal moderate deviations constant is

ν∗ = 1
2V(PX) . (2.52)

Theorem 2.6 states that the sequence of optimal codes approaches
H(PX) at the speed of ξn with the error probability decaying subexpo-
nentially fast, which can be proved by applying the moderate deviations
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Figure 2.2: Illustration of refined asymptotics for lossless source coding of a binary
memoryless source. Note that both large and moderate deviations asymptotics
provide tight characterization when n is sufficiently large and violates the low
latency requirement of practical communication systems. In contrast, second-order
asymptotics provides approximations to the performance of optimal codes with finite
blocklength.

theorem [28, p. 3.7.1] to the non-asymptotic bounds in Theorems 2.1
and 2.2.

To illustrate the relationship between second-order, large and mod-
erate deviations to the non-asymptotic bounds, we plot the relationship
between the error probability and coding rate for different blocklengths
for a binary memoryless source distributed according to a Bernoulli
distribution with parameter 0.3 in Figure 2.2, using the second-order
asymptotic bound in Theorem 2.3 as the approximation. Note that both
large and moderate deviations theorems are tight for sufficiently large
blocklength and thus violate the low-latency requirement of practical
communication systems. In this monograph, for all lossy source coding
problems to be covered, we focus on the second-order asymptotics that
provide good approximations to the performance of optimal codes at
finite blocklengths (cf. [16, Fig. 1]), and we also present non-asymptotic
bounds from which the second-order asymptotics are derived.
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9
Kaspi Problem

In this section, we study the lossy source coding problem with one
encoder and two decoders, where side information is available at the
encoder and one of the two decoders. We term the problem as the
Kaspi problem since this problem was first introduced by Kaspi, who
derived the asymptotically optimal achievable rate to ensure reliable
lossy reconstruction at both decoders [56, Theorem 1]. Analogous to the
rate-distortion problem, we term the asymptotic optimal achievable rate
as the Kaspi rate-distortion function. The Kaspi problem generalizes the
rate-distortion problem by adding one additional decoder and allowing
the encoder and the additional decoder to access to some correlated
side information.

Kaspi’s asymptotic results were recently refined by Zhou and Motani
in [147], [148], in which the authors derived non-asymptotic and second-
order asymptotics bounds for the Kaspi problem. In this section, we
present the results in [147], [148] and illustrate the role of side in-
formation on lossy data compression in the finite blocklength regime.
Specifically, we first present a parametric representation for the Kaspi
rate-distortion function. Subsequently, we generalize the notion of the
distortion-tilted information density for the rate-distortion problem in

120
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9.1. Problem Formulation and Asymptotic Result 121

Section 3 to the Kaspi problem and present a non-asymptotic converse
bound. Finally, for DMS under bounded distortion measures, we present
second-order asymptotics and illustrate the results via two numerical
examples.

Since the Kaspi problem generalizes the rate-distortion problem,
the results for the Kaspi problem generalize those in Section 3. Fur-
thermore, another special case of the Kaspi problem is the conditional
rate-distortion problem where side information is available to both the
encoder and decoder in the rate-distortion problem. Thus, the results for
the Kaspi problem generalize those for the conditional rate-distortion
problem [77] as well.

9.1 Problem Formulation and Asymptotic Result

The setting of the Kaspi problem is shown in Figure 9.1. There are
one encoder f and two decoders ϕ1, ϕ2. The side information Y n is
available to the encoder f and the decoder ϕ2 but not to the decoder
ϕ1. The encoder f compresses the source Xn into a message S given the
side information Y n. Decoder ϕ1 aims to recover source sequence Xn

within distortion level D1 under distortion measure d1 using the message
S. Decoder ϕ2 aims to recover Xn within distortion level D2 under
distortion measure d2 using the message S and the side information
Y n. Consider a correlated memoryless source with distribution PXY

defined on the alphabet X × Y. Assume that the source sequence and
side information (Xn, Y n) is generated i.i.d. from PXY . Furthermore,
assume that the reproduction alphabets for decoders ϕ1 and ϕ2 are X̂1
and X̂2 respectively.

Xn

Y n

f ϕ1

ϕ2

S

(X̂n
2 , D2)

(X̂n
1 , D1)

Figure 9.1: System model for the Kaspi problem of lossy source with side information
at the encoder and one of the two decoders [56, Theorem 1].
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Definition 9.1. An (n, M)-code for the Kaspi problem consists of one
encoder

f : X n × Yn → M = [M ], (9.1)

and two decoders

ϕ1 : M → X̂ n
1 , (9.2)

ϕ2 : M × Yn → X̂ n
2 . (9.3)

For simplicity, let X̂n
1 = ϕ1

(
f(Xn, Y n)

)
and X̂n

2 = ϕ2
(
f(Xn, Y n),

Y n
)
. For i ∈ [2], let di : X × X̂i → [0, ∞] be two distortion measures.

For any xn ∈ X n and x̂n
i ∈ X̂ n

i , let the distortion between xn and x̂n
i

be additive and defined as di(xn, x̂n
i ) := 1

n

∑
j∈[n] di(xj , x̂i,j).

Following [56], the rate-distortion function of the Kaspi problem is
defined as follows, which characterizes the asymptotically minimal rate
to ensure reliable lossy compression at both decoders as the blocklength
tends to infinity.

Definition 9.2. A rate R is said to be (D1, D2)-achievable for the Kaspi
problem if there exists a sequence of (n, M)-codes such that

lim sup
n→∞

log M

n
≤ R, (9.4)

and

lim sup
n→∞

E
[
di(Xn, X̂n

i )
]

≤ Di, i ∈ [2]. (9.5)

The minimum (D1, D2)-achievable rate is called the Kaspi rate-distor-
tion function and denoted as R∗(D1, D2).

Define

R(PXY , D1, D2)
:= min

PX̂1|XY , PX̂2|XY X̂1
:

E[d1(X,X̂1)]≤D1,

E[d2(Xn,X̂n
2 )]≤D2

I(PXY , PXY |X̂1
) + I(PX|Y X̂1

, PX|X̂1X̂2Y |PY X̂1
),

(9.6)

where the distributions (PXY |X̂1
, PX|Y X̂1

, PX|X̂1X̂2Y ) are induced by
(PXY , PX̂1|XY , PX̂2|XY X̂1

).
Kaspi [56, Theorem 1] derived the following result.
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Theorem 9.1. The minimum (D1, D2)-achievable rate for the Kaspi
problem satisfies

R∗(D1, D2) = R(PXY , D1, D2). (9.7)

We refer to R(PXY , D1, D2) as the Kaspi rate-distortion function.
Note that R(PXY , D1, D2) is convex and non-increasing in both D1 and
D2. We remark that the explicit formulas of the Kaspi rate-distortion
function was derived by Perron, Diggavi and Telatar for GMS under
quadratic distortion measures [89] and a binary memoryless erasure
source under Hamming distortion measures [90].

To derive non-asymptotic and second-order asymptotic bounds,
instead of using the average distortion criterion, we adopt the following
joint excess-distortion probability as the performance criterion:

Pe,n(D1, D2) := Pr
{

d1(Xn, X̂n
1 ) > D1 or d2(Xn, X̂n

2 ) > D2
}

. (9.8)

Note that the probability in (9.8) is calculated with respect to the
distribution of the source sequences for a fixed (n, M)-code. For bounded
distortion measures, the asymptotically minimal rate to ensure vanishing
joint excess-distortion probability Pe,n(D1, D2) is also R(PXY , D1, D2).
The justification is similar to the case of the rate-distortion problem
below Theorem 3.1.

The Kaspi rate-distortion function R(PXY , D1, D2) equals the rate-
distortion function R(PX , D2) if D1 is large enough, and equals the con-
ditional rate-distortion function R(PX|Y , D1|PY ) if D2 is large enough
where

R(PX|Y , D1|PY ) := min
PX̂1|XY :E[d1(X,X̂1)]≤D1

I(PX|Y , PX|X̂1Y |PY ), (9.9)

with PX|X̂1Y induced by (PY , PX|Y , PX̂1|XY ).
Note that the conditional rate-distortion function R(PX|Y , D1|PY ) is

the minimal achievable rate of lossy compression when side information
is available at both the encoder and the decoder, which is also known
as the conditional rate-distortion problem. Similarly, for second-order
asymptotics, the results for the Kaspi problem specialize to either the
rate-distortion problem or the conditional rate-distortion problem.
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9.2 Properties of the Rate-Distortion Function

We first present the properties of the Kaspi rate-distortion function,
which allows us to define the distortions-tilted information density for
the Kaspi problem and derive a non-asymptotic converse bound that
generalizes the non-asymptotic converse bound for the rate-distortion
problem in Theorem 3.4 of the rate-distortion problem.

Given any (conditional) distributions (PX̂1|XY , PX̂2|XY X̂1
), let PX̂1

,
PXX̂1

, PXX̂2
and PY X̂1

, PX̂2|Y X̂1
, PY X̂1X̂2

be induced by PXY , PX̂1|XY

and PX̂2|XY X̂1
. Consider the distortion levels (D1, D2) such that R(PXY ,

D1, D2) is finite and there exists test channels (P ∗
X̂1|XY

, P ∗
X̂2|XY X̂1

)
that achieve R(PXY , D1, D2). Note that R(PXY , D1, D2) (see (9.6))
corresponds to a convex optimization problem and the dual problem is
given by

sup
(λ1,λ2)∈R2

+

min
PX̂1|XY ,PX̂2|XY X̂1(

I(PXY , PXY |X̂1
) + I(PX|Y X̂1

, PX|X̂1X̂2Y |PY X̂1
) (9.10)

+ λ1(E[d1(X, X̂1) − D1]) + λ2(E[d2(Xn, X̂n
2 ) − D2])

)
. (9.11)

For any given distortion levels (D1, D2), the optimal solutions to the
dual problem of R(PXY , D1, D2) are

λ∗
1 := ∂R(PXY , D, D2)

∂D

∣∣∣
D=D1

, (9.12)

λ∗
2 := ∂R(PXY , D1, D)

∂D

∣∣∣
D=D2

. (9.13)

Given any (x, y, x̂1) ∈ X × Y × X̂1 and distributions (QX̂1
, QX̂2|Y X̂1

) ∈
P(X̂1) × P(X̂2|Y, X̂1), let

α2(x, y, x̂1|QX̂2|Y X̂1
)

:=
{
EQX̂2|Y X̂1

[
exp(−λ∗

2d2(Xn, X̂n
2 ))
∣∣∣Y = y, X̂1 = x̂1

]}−1
, (9.14)

α(x, y|QX̂1
, QX̂2|Y X̂1

)

:=
{
EQX̂1

[
exp

(
− λ∗

1d1(x, X̂1)
)

α2(x, y, X̂1|QX̂2|Y X̂1
)

]}−1

. (9.15)
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Lemma 9.2. A pair of conditional distributions (P ∗
X̂1|XY

, P ∗
X̂2|XY X̂1

)
achieves R(PXY , D1, D2) if and only if

• For all (x, y, x̂1),

P ∗
X̂1|XY

(x̂1|x, y)

=
α(x, y|P ∗

X̂1
, P ∗

X̂2|Y X̂1
)P ∗

X̂1
(x̂1) exp(−λ∗

1d1(x, x̂1))
α2(x, y, x̂1|P ∗

X̂2|Y X̂1
) , (9.16)

• For all (x, y, x̂1, x̂2) such that P ∗
X̂1

(x̂1) > 0,

P ∗
X̂2|XY X̂1

(x̂2|x, y, x̂1) = α2(x, y, x̂1|P ∗
X̂2|Y X̂1

)P ∗
X̂2|Y X̂1

(x̂2|y, x̂1)

× exp(−λ∗
2d2(Xn, X̂n

2 )). (9.17)

Furthermore, if the pair of distributions (P ∗
X̂1|XY

, P ∗
X̂2|XY X̂1

) achieves
R(PXY , D1, D2),

R(PXY , D1, D2)
= E[log α(x, y|P ∗

X̂1
, P ∗

X̂2|Y X̂1
)] − λ∗

1D1 − λ∗
2D2. (9.18)

The proof of Lemma 9.2 is similar to [69, Properties 1-3] for the
rate-distortion problem that mainly uses the KKT conditions for convex
optimization problems. Lemma 9.2 paves the way for the definition of
the distortions-tilted information density for the Kaspi problem and also
implies critical properties for the Kaspi distortions-tilted information
density that parallel Lemma 3.2 for the rate-distortion problem.

We remark that for any pair of optimal test channels (P ∗
X̂1|XY

,

P ∗
X̂2|XY X̂1

), similar to [127, Lemma 2], one can verify that the values of
α2(x, y, x̂1|P ∗

X̂2|Y X̂1
) and α(x, y|P ∗

X̂1
, P ∗

X̂2|Y X̂1
) remain the same. Hence,

for simplicity, we define

α2(x, y, x̂1) := α2(x, y, x̂1|P ∗
X̂2|Y X̂1

), (9.19)

α(x, y) := α(x, y|P ∗
X̂1

, P ∗
X̂2|Y X̂1

). (9.20)
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Furthermore, for any x̂1 ∈ X̂1 and distribution QX̂2|Y X̂1
∈ P(X̂2|Y, X̂1),

define the following function:

ν(x̂1, QX̂2|Y X̂1
) := EPXY ×QX̂2|Y X̂1

[
α(X, Y )

× exp(−λ∗
1d1(X, X̂1) − λ∗

2d2(X, X̂2))
∣∣X̂1 = x̂1

]
. (9.21)

The following lemma holds.

Lemma 9.3. For any x̂1 and arbitrary distribution QX̂2|Y X̂1
, we have

ν(x̂1, QX̂2|Y X̂1
) ≤ 1. (9.22)

We remark that Lemma 9.3 holds for both discrete and continuous
memoryless sources. The proof of Lemma 9.3 is inspired by [20, Lemma
1.4], [120, Lemma 5] and [68] and available in [147, Appendix A].
Invoking Lemma 9.3, we prove a non-asymptotic converse bound for
the Kaspi problem in Theorem 9.5.

9.3 Distortions-Tilted Information Density

Now we introduce the distortions-tilted information density for the
Kaspi problem that generalizes distortion-tilted information density for
the lossy source coding problem [54], [70]. Recall the definition of α(·)
in (9.20).

Definition 9.3. For any (x, y) ∈ X × Y , the (D1, D2)-tilted information
density for the Kaspi problem is defined as

ȷ(x, y|D1, D2, PXY ) := log α(x, y) − λ∗
1D1 − λ∗

2D2. (9.23)

The properties of the (D1, D2)-tilted information density follows
from Lemma 9.2. For example, invoking (9.16) and (9.17), we conclude
that for all (x, y, x̂1, x̂2) such that P ∗

X̂1
(x̂1)P ∗

X̂2|Y X̂1
(x̂2|y, x̂1) > 0,

ȷ(x, y|D1, D2, PXY )

= log
P ∗

X̂1|XY
(x̂1|x, y)

P ∗
X̂1

(x̂1) + log
P ∗

X̂2|XY X̂1
(x̂2|x, y, x̂1)

P ∗
X̂2|Y X̂1

(x̂2|y, x̂1)

+ λ∗
1(d1(x, x̂1) − D1) + λ∗

2(d2(Xn, X̂n
2 ) − D2). (9.24)
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Furthermore, it follows from (9.18) that

R(PXY , D1, D2) = E[ȷ(X, Y |D1, D2, PXY )]. (9.25)

Finally, we have the following lemma that further relates the dis-
tortions-tilted information density with the derivative of the Kaspi
rate-distortion function with respect to the distribution PXY . Given a
joint probability mass function PXY , recall that m = | supp(PXY )| and
Γ(PXY ) is the sorted distribution such that for each i ∈ [m], Γi(PXY ) =
PXY (xi, yi) is the i-th largest value of {PXY (x, y) : (x, y) ∈ X × Y}.

Lemma 9.4. Suppose that for all QXY in the neighborhood of PXY ,
supp(Q∗

X̂1X̂2
) = supp(P ∗

X̂1X̂2
). Then, for each i ∈ [m − 1],

∂R(QXY , D1, D2)
∂Γi(QXY )

∣∣∣
QXY =PXY

= ȷ(xi, yi|D1, D2, PXY ) − ȷ(xm, ym|D1, D2, PXY ). (9.26)

The proof of Lemma 9.4 is available in [147, Appendix I]. Lemma
9.4 parallels Claim (iv) in Lemma 3.2 for the rate-distortion problem
and is critical in the achievability proof of second-order asymptotics.

9.4 A Non-Asymptotic Converse Bound

Invoking Lemma 9.3, we obtain the following non-asymptotic converse
bound for the Kaspi problem that generalizes Theorem 3.4 for the
rate-distortion problem.

Theorem 9.5. Given any γ > 0, the joint excess-distortion probability
of any (n, M)-code for the Kaspi problem satisfies

Pe,n(D1, D2) ≥ Pr
{ ∑

i∈[n]
ȷ(Xi, Yi|D1, D2, PXY ) ≥ log M + nγ

}
− exp(−nγ). (9.27)

We remark that Theorem 9.5 plays a central role in the converse proof
the second-order asymptotics and holds for any memoryless sources.
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Proof. The proof of Theorem 9.5 is similar to that of Theorem 3.4. Given
any (n, M)-code with encoder f and decoders (ϕ1, ϕ2), let S = f(Xn)
be the compressed index that takes values in M, let PS|Xn be the
conditional distribution induced by the encoder f and let PX̂n

1 |S and
let the conditional distributions PX̂n

1 |S and PX̂n
2 |S,Y n be induced by the

decoders ϕ1 and ϕ2, respectively. Furthermore, let QS be the uniform
distribution over M and let

QX̂n
1

(x̂n
1 ) :=

∑
s∈M

QS(s)PX̂n
1 |S(x̂n

1 |s), (9.28)

QX̂n
2 |Y n(x̂n

2 |yn) :=
∑

s QS(s)PX̂n
1 |S(x̂n

1 |s)PX̂n
2 |SY n(x̂n

2 |s, yn)
QX̂n

1
(x̂n

1 ) . (9.29)

For ease of notation, we use C(D1, D2) to denote the non-excess-distor-
tion event, i.e., the event that {d1(Xn, X̂n

1 ) ≤ D1, d2(Xn, X̂n
2 ) ≤ D2}

and use E(D1, D2) to denote the excess-distortion event {d1(Xn, X̂n
1 ) >

D1 or d2(Xn, X̂n
2 ) > D2}. For any γ > 0, it follows that

Pr
{ ∑

i∈[n]
ȷ(Xi, Yi|D1, D2, PXY ) ≥ log M + nγ

}
≤ Pr

{ ∑
i∈[n]

ȷ(Xi, Yi|D1, D2, PXY ) ≥ log M + nγ and C(D1, D2)
}

+ Pr {E(D1, D2)} , (9.30)

where the second term in (9.30) is exactly the joint excess-distortion
probability Pe,n(D1, D2).

The first term in (9.30) can be upper bounded as follows:

Pr
{ ∑

i∈[n]
ȷ(Xi, Yi|D1, D2, PXY ) ≥ log M + nγ, C(D1, D2)

}
= Pr

{
M ≤ exp

( ∑
i∈[n]

ȷ(Xi, Yi|D1, D2, PXY ) − nγ
)
1(C(D1, D2))

}
(9.31)

≤ exp(−γ)
M

E
[

exp
( ∑

i∈[n]
ȷ(Xi, Yi|D1, D2, PXY )

)
1(C(D1, D2))

]
(9.32)
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≤ exp(−nγ)
M

E
[

exp
( ∑

i∈[n]
ȷ(Xi, Yi|D1, D2, PXY )

+
∑
i∈[2]

λ∗
i (Di − di(Xn, X̂n

i ))
)]

, (9.33)

= exp(−nγ)
∑

s

∑
(xn,yn)

∑
x̂n

1 ,x̂n
2

QS(s)P n
XY (xn, yn)PS|Xn(s|xn)PX̂n

1 |S(x̂n
1 |s)

× PX̂n
2 |Y n,S(x̂n

2 |yn, s)
∏

i∈[n]
α(xi, yi)

× exp(−λ∗
1d(xi, x̂1,i) − λ∗

2(d(xi, x̂2,i))) (9.34)

≤ exp(−nγ)
∑

(xn,yn)

∑
x̂n

1 ,x̂n
2

QX̂n
1

(x̂n
1 )QX̂n

2 |X̂n
1

(x̂n
1 |x̂n

1 )P n
XY (xn, yn)

×
∏

i∈[n]
α(xi, yi) exp(−λ∗

1d(xi, x̂1,i) − λ∗
2(d(xi, x̂2,i))) (9.35)

= exp(−nγ)
∑
x̂n

1

QX̂n
1

(x̂n
1 )
[ ∏

i∈[n]
ν(x̂1,i, QX̂2,i|YiX̂1,i

)
]

(9.36)

≤ exp(−nγ), (9.37)

where (9.32) follows from the Markov inequality and (9.33) follows since
λ∗

i ≥ 0 for i ∈ [2], (9.34) follows from the definitions of α(·) in (9.20)
and ȷ(·) in (9.23), (9.35) follows from the fact PS|Xn(s|xn) ≤ 1 and
the definitions of distributions (QX̂n

1
, QX̂n

2 |X̂n
1

, QX̂n
2 |Y n), (9.36) since we

define QX̂2,i|YiX̂1,i
as the marginal distribution QX̂2,i|Yi

of QX̂n
2 |Y n and

use the definition of ν(·) in (9.21) and (9.37) follows from the result in
(9.22).

The proof of Theorem 9.5 is completed by combining (9.30) and
(9.37).

9.5 Second-Order Asymptotics

In this section, we define and present second-order asymptotics of
the Kaspi problem for DMS under bounded distortion measures. In
other words, we assume that X , Y, X̂1, X̂2 are all finite sets and
maxx,x̂i di(x, x̂i) , i ∈ [2] is finite.
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9.5.1 Definition, Main Result and Discussions

Let ε ∈ (0, 1) be fixed.

Definition 9.4. A rate L is said to be second-order (D1, D2, ε)-achievable
for the Kaspi problem if there exists a sequence of (n, M)-codes such
that

lim sup
n→∞

log M − nR(PXY , D1, D2)√
n

≤ L, (9.38)

and

lim sup
n→∞

Pe,n(D1, D2) ≤ ε. (9.39)

The infimum second-order (D1, D2, ε)-achievable rate is called the opti-
mal second-order coding rate and denoted as L∗(D1, D2, ε).

Note that in Definition 9.2 of the rate-distortion region, the average
distortion criterion is used, while in Definition 9.4, the excess-distortion
probability is considered. The reason is that for second-order asymp-
totics, second-order asymptotics always companies with the probability
of a certain event. To be specific, the excess-distortion probability plays
a similar role as error probability for the lossless source coding prob-
lem [49] or channel coding problems [50], [91]. Let V(D1, D2, PXY ) be
the distortions-dispersion function for the Kaspi problem, i.e.,

V(D1, D2, PXY ) := Var
[
ȷ(X, Y |D1, D2, PXY )

]
. (9.40)

We impose following conditions:

1. The distortion levels are chosen such that R(PXY , D1, D2) > 0 is
finite;

2. QXY → R(QXY , D1, D2) is twice differentiable in the neighbor-
hood of PXY and the derivatives are bounded.

Theorem 9.6. Under conditions (1) and (2), the optimal second-order
coding rate for the Kaspi problem is

L∗(D1, D2, ε) =
√

V(D1, D2, PXY )Q−1(ε). (9.41)
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The converse proof of Theorem 9.6 follows by applying the Berry-
Esseen Theorem to the non-asymptotic bound in Theorem 9.5. In the
achievability proof, we first prove a type-covering lemma tailored for
the Kaspi problem. Subsequently, we make use of the properties of
ȷ(x, y|D1, D2, PXY ) in Lemma 9.2 and appropriate Taylor expansions.

We remark that the distortions-tilted information density for the
Kaspi problem ȷ(x, y|D1, D2, PXY ) reduces to the distortion-tilted in-
formation density for the lossy source coding problem [70], or the
distortion-tilted information density for the lossy source coding problem
with encoder and decoder side information [77] for particular choices of
distortion levels (D1, D2). Hence, our result in Theorem 9.6 is a strict
generalization of the second-order coding rate for the lossy source coding
problem [70] and the conditional lossy source coding problem [77] for
DMS under bounded distortion measures. We also illustrate this point
in Section 9.5.2 via a numerical example for the doubly symmetric
binary source.

In the next two subsections, we illustrate Theorem 9.6 via two numer-
ical examples by calculating the second-order coding rate L∗(D1, D2, ε)
in close form.

9.5.2 Numerical Examples

Asymmetric Correlated Source

In order to illustrate our results in Lemma 9.2 and Theorem 9.6, we
consider the following source. Let X = {0, 1}, Y = {0, 1, e} and PX(0) =
PX(1) = 1

2 . Let Y be the output of passing X through a Binary Erasure
Channel (BEC) with erasure probability p, i.e., PY |X(y|x) = 1 − p

if x = y and PY |X(e|x) = p. The explicit formula of the Kaspi rate-
distortion function for the above correlated source under Hamming
distortion measures was derived by Perron, Diggavi and Telatar in [90].
Here we only recall the non-degenerate result, i.e., the case where the
distortion levels (D1, D2) are chosen such that λ∗

1 > 0 and λ∗
2 > 0.
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Define the set
Dbec :=

{
(D1, D2) ∈ R2

+ : D1 ≤ 1
2 ,

D1 − 1 − p

2 ≤ D2 ≤ pD1
}

. (9.42)

Lemma 9.7. If (D1, D2) ∈ Dbec, then the Kaspi rate-distortion function
for the above asymmetric correlated source under Hamming distortion
measures is

R(PXY , D1, D2) = log 2 − (1 − p)Hb

(
D1 − D2

1 − p

)

− pHb

(
D2
p

)
. (9.43)

Hence, for (D1, D2) ∈ Dbec, using the definitions of λ∗
1 in (9.12) and

λ∗
2 in (9.13), we obtain

λ∗
1 = log (1 − p) − (D1 − D2)

1 − p
− log D1 − D2

1 − p
(9.44)

= log (1 − p) − (D1 − D2)
D1 − D2

, (9.45)

λ∗
2 = log p − D2

p
+ log D1 − D2

1 − p

− log (1 − p) − (D1 − D2)
1 − p

− log D2
p

(9.46)

= −λ∗
1 + log p − D2

D2
. (9.47)

Then, using the definitions of α2(·) in (9.19) and α(·) in (9.20), we have
α2(0, 0, 0) = α2(0, 0, 1) = α2(1, 1, 0) = α2(1, 1, 1)

= α2(0, e, 0) = α2(1, e, 1) = 1, (9.48)
α2(1, 0, 0) = α2(1, 0, 1) = α2(0, 1, 0) = α2(0, 1, 1)

= α2(1, e, 0) = α2(0, e, 1) = exp(λ∗
2), (9.49)

and
α(0, 0) = α(1, 1) = 2

1 + exp(−λ∗
1) , (9.50)

α(0, e) = α(1, e) = 2
1 + exp(−λ∗

1 − λ∗
2) . (9.51)
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It can be verified easily that (9.16), (9.17), (9.18) hold. In the
following, we will verify that (9.22) holds for arbitrary QX̂2|Y X̂1

and x̂1.
As a first step, we can verify that for any (y, x̂1, x̂2), we have∑

x

PXY (x, y)α(x, y) exp(−λ∗
1d1(x, x̂1) − λ∗

2d2(Xn, X̂n
2 ))

≤
∑

x

PXY (x, y) α(x, y)
α2(x, y, x̂1) exp(−λ∗

1d1(x, x̂1)). (9.52)

Then, for any distribution QX̂2|Y X̂1
, using the definition of ν(·) in (9.21),

multiplying QX̂2|Y X̂1
(x̂2|y, x̂1) over both sides of (9.52), and summing

over (y, x̂2), we obtain that

ν(x̂1, QX̂2|Y X̂1
) ≤ 1. (9.53)

Using the definition of ȷ(·) in (9.23), we have

ȷ(0, 0|D1, D2, PXY ) = ȷ(1, 1|D1, D2, PXY ) (9.54)
= log α(0, 0) − λ∗

1D1 − λ∗
2D2, (9.55)

and

ȷ(0, e|D1, D2, PXY ) = ȷ(1, e|D1, D2, PXY ) (9.56)
= log α(0, e) − λ∗

1D1 − λ∗
2D2. (9.57)

Furthermore, using the definition of the distortion-dispersion function
V(D1, D2, PXY ) in (9.40), we have

V(D1, D2, PXY )
= Var[ȷ(X, Y |D1, D2, PXY )] (9.58)

= p(1 − p)
(

log p − D2
p

− log (1 − p) − (D1 − D2)
1 − p

)2

. (9.59)

Thus,

L∗(D1, D2, ε) =
√

V(D1, D2, PXY )Q−1(ε). (9.60)

Doubly Symmetric Binary Source (DSBS)

In this example, we show that under certain distortion levels, the Kaspi
rate-distortion function reduces to the rate-distortion function [105] (see
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also [38, Theorem 3.5]) and the conditional rate-distortion function [38,
Eq. (11.2)]. We consider the DSBS where X = Y = {0, 1}, PXY (0, 0) =
PXY (1, 1) = 1−p

2 and PXY (0, 1) = PXY (1, 0) = p
2 for some p ∈ [0, 1

2 ].

Lemma 9.8. Depending on the distortion levels (D1, D2), the Kaspi
rate-distortion function for the DSBS with Hamming distortion measures
satisfies

• D1 ≥ 1
2 and D2 ≥ p

R(PXY , D1, D2) = 0. (9.61)

• D1 < 1
2 and D2 ≥ min{p, D1}

R(PXY , D1, D2) = log 2 − Hb(D1), (9.62)

where Hb(x) = −x log x − (1 − x) log(1 − x) is the binary entropy
function.

• D1 ≥ D2 + 1−2p
2 and D2 < p

R(PXY , D1, D2) = Hb(p) − Hb(D2). (9.63)

When D1 < 1
2 and D2 < pD1, the Kaspi rate-distortion function

reduces to the rate-distortion function for the lossy source coding
problem. Thus, the distortion-tilted information density for the Kaspi
problem reduces to the D1-tilted information density in (9.64), i.e.,

ȷ(x, y|D1, D2, PXY ) = log 2 − Hb(D1). (9.64)

Hence, L∗(D1, D1|PXY ) = 0. When D1 ≥ D2 + 1−2p
2 and D2 < p, the

Kaspi rate-distortion function reduces to the conditional rate-distortion
function. Under the optimal test channel, we have X̂1 = 0/1 and
X → X̂2 → Y forms a Markov chain. In this case, the distortion-tilted
information density for the Kaspi problem reduces to the conditional
distortion-tilted information density [69, Definition 5] (see also [77]),
i.e.,

ȷ(x, y|D1, D2, PXY ) = − log PX|Y (x|y) − Hb(D2). (9.65)
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Hence,

V(D1, D2, PXY ) = Var[− log PX|Y (X|Y )] (9.66)
= (1 − p)(− log(1 − p) − Hb(p))2

+ p(− log p − Hb(p))2 (9.67)
:= V(p), (9.68)

and

L∗(D1, D2, ε) =
√

V(p)Q−1(ε). (9.69)

9.6 Proof of Second-Order Asymptotics

9.6.1 Achievability

We first prove a type covering lemma for the Kaspi problem, based on
which we derive an upper bound on the excess-distortion probability.
Subsequently, using the Berry-Esseen theorem together with proper
Taylor expansions, we manage to prove the desired achievable second-
order coding rate.

To present our type covering lemma, define the following constant:

c =
(
8|X | · |Y| · |X̂1| · |X̂2| + 6

)
. (9.70)

Lemma 9.9. There exists a set B ⊂ X̂ n
1 such that for each (xn, yn) ∈

TQXY
, if

(zn)∗ = arg min
x̂n

1 ∈B
d1(xn, x̂n

1 ), (9.71)

then the following conclusion hold.

1. The distortion between xn and (zn)∗ is upper bounded by D1,
i.e.,

d1(xn, (zn)∗) ≤ D1, (9.72)

2. there exists a set B((zn)∗, yn) ⊂ X̂ n
2 such that

min
x̂n

2 ∈B((zn)∗,yn)
d2(xn, x̂n

2 ) ≤ D2, (9.73)
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3. and the size of the set B ∪ B((zn)∗, yn) satisfies

log
∣∣B ∪ B((zn)∗, yn)

∣∣
≤ nR(QXY , D1, D2) + c log(n + 1). (9.74)

The proof of Lemma 9.9 is similar to the proof of type covering
lemmas for rate-distortion problem.

Invoking Lemma 9.9, we can upper bound the excess-distortion
probability of an (n, M)-code. To do so, for any (n, M) ∈ N2, define

Rn := 1
n

log M − (c + |X | · |Y|) log(n + 1)
n

. (9.75)

Lemma 9.10. There exists an (n, M)-code whose excess-distortion
probability satisfies

Pe,n(D1, D2) ≤ Pr
{

Rn < R(T̂XnY n , D1, D2)
}

. (9.76)

Proof. Consider the following coding scheme. Given source sequence
pair (xn, yn), the encoder first calculates the joint type T̂xnyn , which
can be transmitted reliably using at most |X | · |Y| log(n + 1) nats.
Then the encoder calculates R(T̂xnyn , D1, D2) and declares an error if
nR(T̂xnyn , D1, D2)+c log(n+1)+|X |·|Y| log(n+1) > log M . Otherwise,
the encoder chooses a set B satisfying the properties specified in Lemma
9.9 and sends the index of (zn)∗ = arg minx̂n

1 ∈B d1(xn, x̂n
1 ). Subsequently,

the decoder chooses a set B((zn)∗, yn) satisfying the properties specified
in Lemma 9.9 and sends the index of arg minx̂n

2 ∈B((zn)∗,yn) d2(xn, x̂n
2 ).

Lemma 9.9 implies that the decoding is error free if nR(T̂xnyn , D1, D2)+
c log(n + 1) + |X | · |Y| log(n + 1) ≤ log M . The proof of Lemma 9.10 is
now completed.

Given any distribution PXY on the finite set X × Y, define the
typical set

An(PXY ) :=
{

QXY ∈ Pn(X × Y) : ∥QXY − PXY ∥∞ ≤

√
log n

n

}
.

(9.77)

Full text available at: http://dx.doi.org/10.1561/0100000134



9.6. Proof of Second-Order Asymptotics 137

It follows from [119, Lemma 22] that

Pr
{

T̂XnY n /∈ An(PXY )
}

≤ 2|X ||Y|
n2 . (9.78)

If we choose
1
n

log M = R(PXY , D1, D2) + L√
n

+
(
c + |X | · |Y|

) log(n + 1)
n

, (9.79)

then

Rn = R(PXY , D1, D2) + L√
n

. (9.80)

For any (xn, yn) such that T̂xnyn ∈ An(PXY ), since the mapping
QXY → R(QXY , D1, D2) is twice differentiable in the neighborhood
of PXY and the derivative is bounded, applying Taylor expansion of
R(T̂xnyn , D1, D2) around T̂xnyn = PXY and using Lemma 9.4, we have

R(T̂xnyn , D1, D2) = 1
n

∑
i∈[n]

ȷ(xi, yi|D1, D2, PXY ) + O
( log n

n

)
. (9.81)

Define ξn = log n
n . It follows from Lemma 9.10 that

Pe,n(D1, D2)

≤ Pr
{

Rn < R(T̂XnY n , D1, D2), T̂XnY n ∈ An(PXY )
}

+ Pr
{

T̂XnY n /∈ An(PXY )
}

(9.82)

≤ Pr
{

R(PXY , D1, D2) + L√
n

<
1
n

∑
i∈[n]

ȷ(Xi, Yi|D1, D2, PXY ) + O(ξn)
}

+ 2|X ||Y|
n2 (9.83)

≤ Pr
{ 1√

n

∑
i∈[n]

(
ȷ(Xi, Yi|D1, D2, PXY )

− R(PXY , D1, D2)
)

> L + O(ξn

√
n)
}

+ 2|X ||Y|
n2 (9.84)

≤ Q
(

L + O(ξn
√

n)√
V(D1, D2|PXY )

)
+ 6T(D1, D2|PXY )√

nV3/2(D1, D2|PXY )
+ 2|X ||Y|

n2 , (9.85)
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where (9.83) follows from the results in (9.78) and Lemma 9.81 and
(9.85) follows from Berry-Esseen theorem, where T(D1, D2|PXY ) is the
third absolute moment of ȷ(X, Y |D1, D2, PXY ), which is finite for DMS.

Therefore, if L satisfies

L ≥
√

V(D1, D2|PXY )Q−1(ε), (9.86)

by noting that O(ξn
√

n) = O(log n/
√

n), it follows that

lim sup
n→∞

Pe,n(D1, D2) ≤ ε. (9.87)

Thus, the optimal second-order coding rate satisfies that L∗(ε, D1, D2) ≤√
V(D1, D2|PXY )Q−1(ε).

9.6.2 Converse

The converse part follows by applying the Berry-Esseen theorem to the
non-asymptotic converse bound in Theorem 9.5. Let

log M := nR(PXY , D1, D2) + L
√

n − 1
2 log n. (9.88)

Invoking (9.27) with ε = log n
2n , we obtain

Pe,n(D1, D2) + 1√
n

≥ Pr
{ ∑

i∈[n]
ȷ(x, y|D1, D2, PXY ) ≥ nR(PXY , D1, D2) + L

√
n
)

(9.89)

≥ Q
(

L√
V(D1, D2|PXY )

)
− 6T(D1, D2|PXY )√

nV3/2(D1, D2|PXY )
, (9.90)

where (9.90) follows from the Berry-Esseen theorem. If

L <
√

V(D1, D2|PXY )Q−1(ε), (9.91)

then

lim sup
n→∞

Pe,n(D1, D2) > ε. (9.92)

Hence, the optimal second-order coding rate satisfies L∗(ε, D1, D2) ≥√
V(D1, D2|PXY )Q−1(ε).
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In this section, we study the successive refinement problem with two
encoders and two decoders, which generalizes the rate-distortion problem
by introducing an additional pair of encoders and decoders. Based on
the encoding process of the original encoder, the additional encoder
further compresses the source sequence and the additional decoder uses
compressed information from both encoders to produce a finer estimate
of the source sequence than the first decoder that only accesses the
original encoder. The optimal rate-distortion region for DMS under
bounded distortion measures was derived by Rimoldi in [95], which
collects rate pairs of encoders with vanishing joint excess-distortion
probabilities.

Successive refinement is the first lossy source coding problem with
multiple encoders studied in this monograph. The successive refinement
problem is an information-theoretic formulation of whether it is possible
to interrupt a transmission to provide a finer reconstruction of the source
sequence without any loss of optimality for lossy compression. For such
a problem, in order to derive the second-order asymptotics, we need
to study the backoff of the encoders’ rates from a boundary rate-point
on the rate-distortion region, analogous to the study of the backoff of

139
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the encoder’s rate from the rate-distortion function in second-order
asymptotics for the rate-distortion problem. For DMS under bounded
distortion measures, we derive the optimal second-order coding region
under a joint excess-distortion probability (JEP) criterion [151]. We
also recall the second-order asymptotics under the separate excess-
distortion probabilities (SEP) criteria by No, Ingber and Weissman [82].
For successively refinable discrete memoryless source-distortion measure
triplets [31], [64], under SEP, the second-order region is significantly
simplified and the notion of successive refinability [31], [64] is generalized
to the second-order asymptotic regime. This section is largely based on
[82], [151].

There are several new insights on the second-order coding region
that we can glean when we consider the joint excess-distortion probabil-
ity (cf. Section 10.3.4). For example, under the joint excess-distortion
probability criterion, the second-order region is curved for successively
refinable source-distortion triplets, which implies that if one second-
order coding rate is small, the other is necessarily large. This reveals a
fundamental tradeoff that cannot be observed if one adopts the separate
excess-distortion probability criterion. Therefore, in subsequent sections
that involve more complicated multiterminal lossy source coding prob-
lems, we only consider the joint excess-distortion probability criterion
that better captures the rate tradeoff of multiple encoders.

10.1 Problem Formulation and Asymptotic Result

10.1.1 Problem Formulation

The successive refinement source coding problem [31], [63]–[65], [95] is
shown in Figure 10.1. There are two encoders and two decoders. For each
i ∈ [2], encoder fi has access to a source sequence Xn and compresses
it into a message Si. Decoder ϕ1 aims to recover source sequence Xn

under distortion measure d1 and distortion level D1 with the encoded
message S1 from encoder f1. The decoder ϕ2 aims to recover Xn under
distortion measure d2 and distortion level D2 with messages S1 and S2.

We consider a memoryless source with distribution PX supported
on a finite alphabet X . Thus, Xn is an i.i.d. sequence where each Xi
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Xn

f2

f1 ϕ1

ϕ2
S2

S1

(X̂n
2 , D2)

(X̂n
1 , D1)

Figure 10.1: System model for the successive refinement problem [95].

is generated according to PX . We assume the reproduction alphabets
for decoder ϕ1, ϕ2 are respectively alphabets X̂1 and X̂2. We follow the
definitions in [95] for codes and the achievable rate region.

Definition 10.1. An (n, M1, M2)-code for successive refinement source
coding consists of two encoders:

f1 : X n → M1 = [M1], (10.1)
f2 : X n → M2 = [M2], (10.2)

and two decoders:

ϕ1 : M1 → X̂ n
1 , (10.3)

ϕ2 : M1 × M2 → X̂ n
2 . (10.4)

For each i ∈ [2], define a distortion measure di : X × X̂i → [0, ∞)
and let the distortion between xn and x̂n

i be defined as di(xn, x̂n
i ) :=

1
n

∑
j∈[n] di(xj , x̂j,i). Define the joint excess-distortion probability as

Pe,n(D1, D2) := Pr
{

d1(Xn, X̂n
1 ) > D1 or d2(Xn, X̂n

2 ) > D2
}

, (10.5)

where X̂n
1 = ϕ1(f1(Xn)) and X̂n

2 = ϕ2(f1(Xn), f2(Xn)) are the recon-
structed sequences.

Definition 10.2. A rate pair (R1, R2) is said to be (D1, D2)-achievable
for the successive refinement problem if there exists a sequence of
(n, M1, M2)-codes such that

lim sup
n→∞

1
n

log M1 ≤ R1, (10.6)

lim sup
n→∞

1
n

log(M1M2) ≤ R1 + R2, (10.7)
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and

lim
n→∞

Pe,n(D1, D2) = 0. (10.8)

The closure of the set of all (D1, D2)-achievable rate pairs is called
optimal (D1, D2)-achievable rate region and denoted as R(PX , D1, D2).

Note that in the original work by Rimoldi [95], the rate R2 corre-
sponds to the sum rate R1 + R2. In this monograph, to be consistent
with other sections, we use R2 to denote the rate of message S2 in
Figure 10.1.

10.1.2 Rimoldi’s Rate-Distortion Region

The optimal rate region for DMS with arbitrary distortion measures
was characterized in [95]. Let P(PX , D1, D2) be the set of joint distribu-
tions PXX̂1X̂2

such that the X -marginal is PX , E[d1(X, X̂1)] ≤ D1 and
E[d2(X, X̂2)] ≤ D2. Given PXX̂1X̂2

∈ P(PX , D1, D2), let

R(PXX̂1X̂2
)

:=
{

(R1, R2) : R1 ≥ I(PX , PX|X̂1
), R1 + R2 ≥ I(PX , PX|X̂1,X̂2

)
}

.

(10.9)

Theorem 10.1. The optimal (D1, D2)-achievable rate region for DMS
with arbitrary distortion measures under successive refinement source
coding is

R(PX , D1, D2) =
⋃

PXX̂1X̂2
∈P(PX ,D1,D2)

R(PXX̂1X̂2
). (10.10)

Now we introduce an important quantity for subsequent analyses for
DMS. Given a rate R1 and distortion pair (D1, D2), let the minimal sum
rate R1 + R2 such that (R1, R2) ∈ R(PX , D1, D2) be R(R1|PX , D1, D2),
i.e.,

R(R1|PX , D1, D2)
:= min {R1 + R2 : (R1, R2) ∈ R(PX , D1, D2)} (10.11)
= inf

PX̂1X̂2|X :E[d1(X,X̂1)]≤D1

E[d2(X,X̂2)]≤D2,I(PX ,PX|X̂1
)≤R1

I(PX , PX|X̂1,X̂2
), (10.12)

where (10.12) follows from [55, Corollary 1].
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Let R(PX , D1) and R(PX , D2) be the rate-distortion functions [38,
Chapter 3] (see also (3.7)) when the reproduction alphabets are X̂1 and
X̂2 respectively, i.e., for each i ∈ [2],

R(PX , Di) := inf
PX̂i|X :E[di(X,X̂i)]≤Di

I(PX , PX|X̂i
). (10.13)

Note that if R1 < R(PX , D1), then the convex optimization in (10.12) is
infeasible. Otherwise, since R(R1|PX , D1, D2) is a convex optimization
problem, the minimization in (10.12) is attained for some test channel
PX̂1X̂2|X satisfying∑

x,y,z

PX(x)PX̂1X̂2|X(x̂1, x̂2|x)d1(x, x̂1) = D1, (10.14)
∑
x,y,z

PX(x)PX̂1X̂2|X(x̂1, x̂2|x)d2(x, x̂2) = D2, (10.15)

I(PX , PX̂1|X) = R1. (10.16)

Therefore, a rate pair (R∗
1, R∗

2) lies on the boundary of the rate-distortion
region R(PX , D1, D2) if and only if R∗

1 = R(PX , D1) and R∗
1 + R∗

2 ≥
R(R∗

1|PX , D1, D2) or R∗
1 > R(PX , D1) and R∗

1 +R∗
2 = R(R∗

1|PX , D1, D2).

10.1.3 Successive Refinability

Next we introduce the notion of a successively refinable source-distortion
measure triplet [31], [64]. We recall the definitions with a slight general-
ization in accordance to [82, Definition 2].

Definition 10.3. Given distortion measures d1, d2 and a source X with
distribution PX , the source-distortion measure triplet (X, d1, d2) is said
to be (D1, D2)-successively refinable if the rate pair (R(PX , D1), R(PX ,

D2)) is (D1, D2)-achievable. If the source-distortion measure triplet is
(D1, D2)-successively refinable for all (D1, D2) such that R(PX , D1) <

R(PX , D2), then it is said to be successively refinable.

For a successively refinable source-distortion measure triplet, the
minimal sum rate R1 + R2 given R1 in a certain interval is exactly
the rate-distortion function (see (10.27) to follow). This reduces the
computation of the optimal rate region in (10.10).
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Koshelev [64] presented a sufficient condition for a source-distortion
measure triplet to be successively refinable while Equitz and Cover [31,
Theorem 2] presented a necessary and sufficient condition which we
reproduce below.

Theorem 10.2. A memoryless source-distortion measure triplet is suc-
cessively refinable if and only if there exists a conditional distribution
P ∗

X̂1X̂2|X such that

R(PX , D1) = I(PX , P ∗
X̂1|X), EPX×P ∗

X̂1|X
[d1(X, X̂1)] ≤ D1, (10.17)

R(PX , D2) = I(PX , P ∗
X̂2|X), EPX×P ∗

X̂2|X
[d2(X, X̂2)] ≤ D2, (10.18)

and

P ∗
X̂1X̂2|X = P ∗

X̂1|XP ∗
X̂2|X . (10.19)

In [31], it was shown that DMS with Hamming distortion measures,
GMS with quadratic distortion measures, and Laplacian sources with
absolute distortion measures are successively refinable. Note that in the
original paper of Equitz and Cover [31], the authors only considered
the case where both decoders use the same distortion measure, i.e.,
d1 = d2 = d. Interestingly, as pointed out in [82, Theorem 4], the result
still holds even when d1 ̸= d2. This can be verified easily for DMS by
invoking [95, Theorem 1].

10.2 Rate-Distortions-Tilted Information Density

Throughout the section, we assume that R(PX , D1) ≤ R∗
1 < R(PX , D2)

and R(PX , D1, D2) is smooth on a boundary rate pair (R∗
1, R∗

2) of our
interest, i.e.,

ξ∗ := −R(R1|PX , D1, D2)
∂R

∣∣∣∣
R=R∗

1

, (10.20)

is well-defined. Note that ξ∗ ≥ 0 since R(R1, D2, D2) is convex and
non-increasing in R1. Further, for a positive distortion pair (D1, D2),
define
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ν∗
1 := −R(PX , R1, D, D2)

∂D

∣∣∣∣
D=D1

, (10.21)

ν∗
2 := −R(PX , R1, D1, D)

∂D

∣∣∣∣
D=D2

. (10.22)

Note that for a successively refinable discrete memoryless source-dis-
tortion measure triplet, from (10.27), we obtain ξ∗ = 0 and ν∗

1 = 0.
Let P ∗

X̂1X̂2|X be the optimal test channel achieving R(R1|PX , D1, D2)
in (10.11) (assuming it is unique)1. Let P ∗

XX̂1
, P ∗

XX̂2
, P ∗

X̂1X̂2
, P ∗

X̂1
, and

P ∗
X̂1|X be the induced (conditional) marginal distributions. We are now

ready to define the tilted information density for successive refinement
source coding problem.

Let (R∗
1, R∗

2) be any boundary rate pair of the rate-distortion region
R(PX , D1, D2).

Definition 10.4. For any x ∈ X , the rate-distortions tilted information
density for the successive refinement problem is defined as

ȷ(x, R∗
1|D1, D2, PX)

:= − logEP ∗
X̂1X̂2

(
exp

{
− ξ∗

(
log

P ∗
X̂1|X(X̂1|x)

P ∗
X̂1

(X̂1)
− R∗

1

)

− ν∗
1(d1(x, X̂1) − D1) − ν∗

2(d2(x, X̂2) − D2))
})

. (10.23)

The properties of ȷ(x, R∗
1|D1, D2, PX) are summarized in the follow-

ing lemma.

Lemma 10.3. The following claims hold.

1. For any (x̂1, x̂2) such that P ∗
X̂1X̂2

(x̂1, x̂2) > 0,

ȷ(x, R∗
1|D1, D2, PX)

= log
P ∗

X̂1X̂2|X(x̂1, x̂2|x)
P ∗

X̂1X̂2
(x̂1, x̂2) + ξ∗

log
P ∗

X̂1|X(x̂1|x)
P ∗

X̂1
(x̂1) − R∗

1


− ν∗

1(d1(x, x̂1) − D1) − ν∗
2(d2(x, x̂2) − D2). (10.24)

1If optimal test channels are not unique, then following the proof of [127, Lemma
2], we can argue that the tilted information density is still well defined.
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2. The minimal sum rate R(R∗
1|PX , D1, D2) equals the expectation

of the rate-distortions-tilted information density, i.e.,

R(R∗
1|PX , D1, D2) = EPX

[ȷ(X, R∗
1|D1, D2, PX)] . (10.25)

3. Suppose that for all QX in the neighborhood of PX , supp(Q∗
X̂1X̂2

)
= supp(P ∗

X̂1X̂2
). Then for all a ∈ X ,

∂R(R∗
1|QX , D1, D2)
∂QX(a)

∣∣∣∣
QX=PX

= ȷ(a, R∗
1|D1, D2, PX) − (1 + ξ∗). (10.26)

Lemma 10.3 generalizes the properties of the distortion-tilted infor-
mation density for the rate-distortion problem in Lemma 3.2, which are
also available in [69, Properties 1-3] and [66, Theorems 2.1-2.2].

For a successively refinable discrete memoryless source-distortion
measure triplet, it follows from Definition 10.3 that if R(PX , D1) ≤
R1 < R(PX , D2),

R(R1|PX , D1, D2) = R(PX , D2). (10.27)

In this case, ξ∗ = 0, ν∗
1 = 0. The rate-distortions-tilted information

density ȷ(x, R∗
1|D1, D2, PX) reduces to the distortion-tilted information

density ȷ(x|D2, PX) in (3.17) for the rate-distortion problem, where

ȷ(x|D, PX) = − logEP ∗
X̂

[exp(−λ∗
1(d(x, X̂) − D))], (10.28)

λ∗ = −∂R(PX , D′)
∂D′

∣∣∣∣
D′=D

. (10.29)

10.3 Second-Order Asymptotics

10.3.1 Definitions and Discussions

Recall that for the rate-distortion problem with only one encoder, the
second-order coding rate is defined as the backoff from the minimal
achievable rate, i.e., the rate-distortion function R(PX , D) (cf. Definition
3.6). Analogously, for a multiterminal lossy source coding problem such
as successive refinement, in order to derive the second-order asymptotics,
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we need to study the backoff of the rates of encoders from a boundary
point on the rate-distortion region, which is a minimal achievable rate
pair and takes role of the rate-distortion function for the rate-distortion
problem.

Formally, let (R∗
1, R∗

2) be a rate pair on the boundary of the rate-
distortion region R(PX , D1, D2). The second-order coding region for
the successive refinement problem is defined as follows.

Definition 10.5. Given any ε ∈ (0, 1), a pair (L1, L2) is said to be
second-order (R∗

1, R∗
2, D1, D2, ε)-achievable if there exists a sequence of

(n, M1, M2)-codes such that

lim sup
n→∞

1√
n

(log M1 − nR∗
1) ≤ L1, (10.30)

lim sup
n→∞

1√
n

(log(M1M2) − n(R∗
1 + R∗

2)) ≤ L2, (10.31)

and

lim sup
n→∞

Pe,n(D1, D2) ≤ ε. (10.32)

The closure of the set of all second-order (R∗
1, R∗

2, D1, D2, ε)-achievable
pairs is called the second-order (R∗

1, R∗
2, D1, D2, ε) coding region and

denoted as L(R∗
1, R∗

2, D1, D2, ε).

We emphasize that the JEP criterion (10.32) is consistent with
original setting of successive refinement in Rimoldi’s work [95] and the
error exponent analysis of Kanlis and Narayan [55]. In contrast, Tuncel
and Rose [121] considered the separate excess-distortion events and
probabilities and derived the tradeoff between exponents of two excess-
distortion probabilities. Note that the rate-distortion region remains
the same [31], [95] regardless whether we consider vanishing joint or the
separate excess-distortion probabilities. In the study of second-order
asymptotics, the second-order coding region can also be defined under
the SEP criterion [82]. Specifically, the second-order coding region
Lsep(R∗

1, R∗
2, D1, D2, ε1, ε2) is defined similar to Definition 10.5, except

that (10.32) is replaced by
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lim sup
n→∞

Pr
{

d1(Xn, X̂n
1 ) > D1

}
≤ ε1, (10.33)

lim sup
n→∞

Pr
{

d2(Xn, X̂n
2 ) > D2

}
≤ ε2, (10.34)

for some fixed (ε1, ε2) ∈ (0, 1)2 and the boundary rate-pair (R∗
1, R∗

2)
is fixed as R∗

1 = R(PX , D1) and R∗
1 + R∗

2 = R(R(PX , D)|PX , D1, D2),
which corresponds to the case where both encoders respectively use
their own optimal (i.e., minimum possible) asymptotic rates.

The main content of this section is the characterization of L(R∗
1, R∗

2,

D1, D2, ε) and Lsep(R∗
1, R∗

2, D1, D2, ε1, ε2) for DMS under bounded dis-
tortion measures, e.g., a binary source with Hamming distortion mea-
sures. We note that L(R1, R2, D1, D2, ε) can, in principle, be evaluated
for rate pairs that are not on the boundary of the first-order region
R(PX , D1, D2). However, this would lead to degenerate solutions.

We next explain some advantages of using the JEP criterion over
the SEP criterion in second-order asymptotics.

1. The JEP criterion is consistent with recent works in the second-
order literature [78], [113], [127]. For example, in [78], Le, et
al. established the second-order asymptotics for the Gaussian
interference channel in the strictly very strong interference regime
under the joint error probability criterion. If in [78], one adopts
the separate error probabilities criterion, one would not be able
to observe the performance tradeoff between the two decoders.

2. In Section 10.3.4, we show, via different proof techniques com-
pared to existing works, that the second-order region is curved for
successively refinable source-distortion triplets. This shows that
if one second-order coding rate is small, the other is necessarily
large. This reveals a fundamental tradeoff that cannot be observed
if one adopts the separate excess-distortion probability criterion.

10.3.2 General DMS

Recall that Ψ(x1, x2; µ, Σ) is the bivariate generalization of the Gaussian
cdf. Given each i ∈ [2], let V(Di|PX) := Var[ȷ(X|Di, PX)] be the
rate-dispersion function (cf. (3.57)). Given a rate pair (R∗

1, R∗
2) on the
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boundary of R(PX , D1, D2), also define another rate-dispersion function
V(R∗

1|PX , D1, D2) := Var [ȷ(X, R∗
1|D1, D2, PX)]. Let V(R∗

1|PX , D1, D2)
⪰ 0 be the covariance matrix of the two-dimensional random vector
[ȷ(X|D1, PX), ȷ(X, R∗

1|D1, D2, PX)]⊤, i.e., the rate-dispersion matrix.
We impose the following conditions on the rate pair (R∗

1, R∗
2), the

distortion measures (d1, d2), the distortion levels (D1, D2) and the source
distribution PX :

1. R(R∗
1|PX , D1, D2) is finite;

2. ξ∗ ≥ 0 in (10.20) and ν∗
i , i = 1, 2 in (10.21), (10.22) are well-

defined;

3. (QX , D′
1) 7→ R(QX , D′

1) is twice differentiable in the neighborhood
of (PX , D1) and the derivatives are bounded (i.e., the spectral
norm of the Hessian matrix is bounded);

4. (R1, D′
1, D′

2, QX) 7→ R(R1|QX , D′
1, D′

2) is twice differentiable in
the neighborhood of (R∗

1, D1, D2, PX) and the derivatives are
bounded;

Note that similar regularity assumptions were made on second-order
asymptotics for the rate-distortion and Kaspi problems.

We first present the second-order asymptotics under the JEP crite-
rion.

Theorem 10.4. Under conditions (1) to (4), depending on the values of
(R∗

1, R∗
2), for any ε ∈ (0, 1), the second-order coding region satisfies:

• Case (i): R(PX , D1) < R∗
1 < R(R∗

1|PX , D1, D2) and R∗
1 + R∗

2 =
R(R∗

1|PX , D1, D2)

L(R∗
1, R∗

2, D1, D2, ε)

=
{

(L1, L2) : ξ∗L1 + L2 ≥
√

V(R∗
1|PX , D1, D2)Q−1(ε)

}
.

(10.35)

• Case (ii): R∗
1 = R(PX , D1) and R∗

1 + R∗
2 > R(R∗

1|PX , D1, D2)

L(R∗
1, R∗

2, D1, D2, ε)

=
{

(L1, L2) : L1 ≥
√

V(PX , D1)Q−1(ε)
}

. (10.36)
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• Case (iii): R∗
1 = R(PX , D1), R∗

1 + R∗
2 = R(R∗

1|PX , D1, D2)
and rank(V(R∗

1|PX , D1, D2)) ≥ 1,

L(R∗
1, R∗

2, D1, D2, ε)

=
{

(L1, L2) : Ψ(L1, ξ∗L1 + L2; 0, V(R∗
1|PX , D1, D2)) ≥ 1 − ε

}
.

(10.37)

The proof of Theorem 10.4 is provided in Section 10.4. In the
achievability part, we leverage the type covering lemma [82, Lemma
8]. In the converse part, we follow the perturbation approach proposed
by Gu and Effros in their proof for the strong converse of Gray-Wyner
problem [45], leading to a type-based strong converse. In the proofs
of both directions, we leverage the properties of appropriately defined
rate-distortions-tilted information densities and use the (multi-variate)
Berry-Esseen theorem. An alternative converse proof of Theorem 10.4 is
possible by applying the Berry-Esseen theorem to the non-asymptotic
converse bound in [68, Corollary 2] (see also Lemma 11.6 from our
analysis of the Fu-Yeung problem), analogous to the converse proof of
second-order asymptotics for the rate-distortion and Kaspi problems.
We omit the alternative converse proof of Theorem 10.4.

In both Cases (i) and (ii), the code is operating at a rate pair
bounded away from one of the first-order fundamental limits. Hence,
a univariate Gaussian suffices to characterize the second-order be-
havior. In contrast, for Case (iii), the code is operating at precisely
the two first-order fundamental limits. Hence, in general, we need
a bivariate Gaussian to characterize the second-order behavior. Us-
ing an argument by Tan and Kosut [113, Theorem 6], we note that
this result holds for both positive definite and rank deficient rate-
dispersion matrices V(R∗

1|PX , D1, D2). However, we exclude the de-
generate case in which rank(V(R∗

1|PX , D1, D2)) = 0. Note that if
the rank of V(R∗

1|PX , D1, D2) is 0, it means that the dispersion ma-
trix is all zeros matrix, i.e., Cov[ȷ(X|D1, PX), ȷ(X, R∗

1|D1, D2, PX)] =
0, V(PX , D1) = 0, and V(R∗

1|PX , D1, D2) = 0. This implies that
ȷ(x|D1, PX) and ȷ(x, R∗

1|D1, D2, PX) are both deterministic. In this
case, the second-order term (dispersion) vanishes, and if one seeks re-
fined asymptotic estimates for the optimal finite blocklength coding
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rates, one would then be interested to analyze the third-order or Θ(log n)
asymptotics (cf. [70, Theorem 18]).

We next present inner (achievability) and outer (converse) bounds
on the second-order coding region under the SEP criterion.

Theorem 10.5. Under conditions (1) to (4), for any (ε1, ε2) ∈ (0, 1)2,
the second-order coding region Lsep(R∗

1, R∗
2, D1, D2, ε1, ε2) satisfies that

when R∗
1 = R(PX , D1) and R∗

1 + R∗
2 = R(R(PX , D1)|PX , D1, D2),{

(L1, L2) : L1 ≥
√

V(PX , D1)Q−1(min{ε1, ε2}),

L2 ≥
√

V(R∗
1|PX , D1, D2)Q−1(min{ε1, ε2})

}
⊆ Lsep(R∗

1, R∗
2, D1, D2, ε1, ε2)

⊆
{

(L1, L2) : L1 ≥
√

V(PX , D1)Q−1(ε1),

L2 ≥
√

V(R∗
1|PX , D1, D2)Q−1(ε2)

}
. (10.38)

The achievability proof of Theorem 10.5 was proved by No et al.
using the type covering lemma for the successive refinement problem [82,
Section V] and the converse part follows by applying the Berry-Esseen
theorem to the non-asymptotic converse bound by Kostina and Tun-
cel [68, Theorem 3]. The inner bound could also be obtained similar to
the proof Case (iii) of Theorem 10.4 with ε replaced by min{ε1, ε2}.

The inner and outer bounds match when ε1 = ε2. It was claimed
by No et al. [82] that the outer bound was achievable for any (ε1, ε2) ∈
(0, 1)2. However, a careful check suggests that it is impossible. This is
because, in order not to incur an excess-distortion event at decoder ϕ2
for a sequence xn, decoder ϕ1 should not incur an excess-distortion event
since otherwise, “correct” decoding of decoder ϕ2 is not guaranteed.

10.3.3 Successively Refinable DMS

In this subsection, we specialize the results in Theorem 10.4 to succes-
sively refinable discrete memoryless source-distortion measure triplets.
Note that for such source-distortion measure triplets, R(R∗

1|PX , D1, D2)
= R(PX , D2) if R(PX , D1) ≤ R∗

1 < R(PX , D2). Hence, ξ∗ = 0, ν∗
1 =

0 and ȷ(X, R∗
1|D1, D2, PX) = ȷ(X|D2, PX). The covariance matrix
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V(R∗
1|PX , D1, D2) is also simplified to V(PX , D1, D2) with diagonal

elements being V(PX , D1) and V(PX , D2) and off-diagonal element be-
ing the covariance Cov[ȷ(X|D1, PX), ȷ(X|D2, PX)]. The conditions in
Theorem 10.4 are also now simplified to: (QX , D′

1) 7→ R(QX , D′
1) and

(QX , D′
2) 7→ R(QX , D′

2) are twice differentiable in the neighborhood of
(PX , D1, D2) and the derivatives are bounded.

Corollary 10.6. Under the conditions stated above, depending on
(R∗

1, R∗
2), the optimal second-order (R∗

1, R∗
2, D1, D2, ε) coding region for

a successively refinable discrete memoryless source-distortion measure
triplet is as follows:

• Case (i): R(PX , D1) < R∗
1 < R(PX , D2) and R∗

1 +R∗
2 = R(PX , D2)

L(R∗
1, R∗

2, D1, D2, ε)

=
{

(L1, L2) : L2 ≥
√

V(PX , D2)Q−1(ε)
}

. (10.39)

• Case (ii): R∗
1 = R(PX , D2) and R∗

1 + R∗
2 > R(PX , D2)

L(R∗
1, R∗

2, D1, D2, ε)

=
{

(L1, L2) : L1 ≥
√

V(PX , D1)Q−1(ε)
}

. (10.40)

• Case (iii): R∗
1 = R(PX , D2) and R∗

1 + R∗
2 = R(PX , D2)

and rank(V(PX , D1, D2)) ≥ 1,

L(R∗
1, R∗

2, D1, D2, ε)

=
{

(L1, L2) : Ψ(L1, L2; 0, V(PX , D1, D2)) ≥ 1 − ε
}

. (10.41)

Specifically, if V(PX , D1, D2) = V(PX , D1) · ones(2, 2), or equiva-
lently ȷ(X|D1, PX) − R∗

1 = ȷ(X|D2, PX) − R∗
2 almost surely,

L(R∗
1, R∗

2, D1, D2, ε)

=
{

(L1, L2) : min{L1, L2} ≥
√

V(PX , D1)Q−1(ε)
}

. (10.42)

Corollary 10.6 results from specializations of Theorem 10.4. The
special case in (10.42) is proved in Section 10.4.3. We notice that the
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expressions in the second-order regions are simplified for successively
refinable discrete memoryless source-distortion measure triplets. In par-
ticular, the optimization to compute the optimal test channel P ∗

X̂1X̂2|X
in R(R1, D1, D2|PX), defined in (10.11)–(10.12), is no longer necessary
since the Markov chain X − Z − Y holds for P ∗

X̂1X̂2|X [31].
Furthermore, in Section 10.4.4, we provide an alternative converse

proof of Corollary 10.6 by generalizing the one-shot converse bound
of Kostina and Verdú in [69, Theorem 1]. We remark that the alterna-
tive converse proof is also applicable to successively refinable continu-
ous memoryless source-distortion measure triplets such as GMS with
quadratic distortion measures.

The case in (10.42) pertains, for example, to a binary source with
Hamming distortion measures. For such a source-distortion measure
triplet, V(PX , D1, D2) is rank 1 and proportional to the all ones matrix.
See Section 10.3.4. The result in (10.42) implies that both excess-
distortion events in (10.5) are perfectly correlated so that the one
consisting of the smaller second-order rate Li, i = 1, 2 dominates,
since the first-order rates are fixed at the first-order fundamental limits
(R(PX , D1), R(PX , D2)). In fact, our result in (10.42) specializes to the
scenario where one considers the separate excess-distortion criterion [82]
in (10.33)–(10.34) with ε1 = ε2 = ε and V(PX , D1) = V(PX , D2). More
importantly, the case in (10.41) when V(PX , D1, D2) is full rank pertains
to a source-distortion measure triplets with more “degrees-of-freedom”.
See Section 10.3.4 for a concrete example. Thus our work is a strict
generalization of that in [82].

The result under the SEP criterion follows from Theorem 10.5.

Corollary 10.7. Under conditions (1) to (4), for any (ε1, ε2) ∈ (0, 1)2,
the second-order coding region Lsep(R∗

1, R∗
2, D1, D2, ε1, ε2) satisfies that

when R∗
1 = R(PX , D1) and R∗

1 + R∗
2 = R(PX , D2),
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{
(L1, L2) : L1 ≥

√
V(PX , D1)Q−1(min{ε1, ε2}),

L2 ≥
√

V(PX , D2)Q−1(min{ε1, ε2})
}

⊆ Lsep(R∗
1, R∗

2, D1, D2, ε1, ε2)

⊆
{

(L1, L2) : L1 ≥
√

V(PX , D1)Q−1(ε1),

L2 ≥
√

V(PX , D2)Q−1(ε2)
}

. (10.43)

The converse part also follows from the converse proof of second-
order asymptotics for the rate-distortion problem in Theorem 3.5.
Corollary 10.7 implies that when ε1 = ε2, for successively refinable
DMS, under the SEP criterion, the second-order coding rates are also
successively refinable since the pair L1 =

√
V(PX , D1)Q−1(ε1) and

L2 =
√

V(PX , D2)Q−1(ε2) is second-order achievable for the boundary
rate pair (R∗

1, R∗
2) = (R(PX , D1), R(PX , D2)). Such a result implies that

it is optimal to interrupt a transmission to provide a finer reconstruc-
tion of the source sequence without any loss in terms of second-order
asymptotics, which is stronger than the original definition of succes-
sively refinability in terms of first-order asymptotics and coined “strong
successive refinability” in [82].

10.3.4 Numerical Examples

Recall that any discrete memoryless source with Hamming distortion
measures is successively refinable [31]. In this subsection, we consider two
such numerical examples originated in [70] to illustrate Corollary 10.6.
We use the logarithm with base 2 in this subsection.

A Binary Memoryless Source with Hamming Distortion Measures

Fix p ∈ [0, 1]. We consider a binary source with PX(0) = p. For any
distortion levels D2 < D1 < p, it follows from (3.28) that for each
i ∈ [2],

ȷ(x|Di, PX) = ı(x|PX) − Hb(Di). (10.44)
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Figure 10.2: Rate-dispersion function V(PX , D) for the source PX =
[1/3, 1/4, 1/4, 1/6] [70, Section VII.B] as a function of the distortion D.

Hence,

V(PX , D1) = V(PX , D2) = p(1 − p) log2
(1 − p

p

)
, (10.45)

and the rate-dispersion matrix is

V(PX , D1, D2) = V(PX , D1) · ones(2, 2) (10.46)

= p(1 − p) log2
(1 − p

p

)
· ones(2, 2), (10.47)

which does not depend on (D1, D2). From the above considerations,
we see that a binary source with Hamming distortion measures is an
example that falls under (10.42) in Corollary 10.6.

A Quaternary Memoryless Source with Hamming Distortion Measures

We next consider a more interesting source with the joint excess-
distortion probability upper bounded by ε = 0.005. In particular,
we consider a quaternary memoryless source with distribution PX =
[1/3, 1/4, 1/4, 1/6]. This example illustrates Case (iii) of Corollary 10.6
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Figure 10.3: Boundaries of the second-order coding region L(R∗
1, R∗

2, D1, D2, ε) for
Case (iii) in Corollary 10.6. The regions are to the top right of the boundaries.

and is adopted from [70, Section VII.B]. The expressions for the rate-
distortion function and the distortion-tilted information density are
given in [70, Section VII.B] (and will not be reproduced here as they
are not important for our discussion). Since ȷ(x|D1, PX) = ȷ(x|D2, PX)
when D1 = D2 = D, we use ȷ(x|D, PX) to denote the common value of
the distortion-tilted information density. Similarly, let V(PX , D) be the
common value of V(PX , D1) and V(PX , D2) when D1 = D2 = D. As
shown in Figure 10.2 (reproduced from [70, Section VII.B, Figure 4]),
the rate-dispersion function V(PX , D) is dependent on the distortion
level D, unlike the binary example in Section 10.3.4.

In this numerical example, we fix D2 = 0.3, which is denoted by
the circle in Figure 10.2. Then we decrease D1 from 0.6 to 0.55 and
finally to 0.5. These points are denoted respectively by the diamond, the
pentagram and the square in Figure 10.2. Given these values of (D1, D2),
we plot the second-order coding rate for Case (iii) of Corollary 10.6 in
Figure 10.3.

From Figure 10.3, we make the following observations and conclu-
sions.
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• The minimum L1 converges to
√

V (PX , D1)Q−1(ε) as L2 ↑ ∞.
This is because as L2 increases, the bivariate Gaussian cdf asymp-
totically degenerates to the univariate Gaussian cdf with mean 0
and variance V(PX , D1). A similar observation was made for the
Slepian-Wolf problem in [113].

• As we decrease the value of D1, the second-order coding region
shrinks. We remark that there is a transition from (10.41) with
rank(V(D1|PX , D2)) = 2 to (10.42) (where rank(V(D1|PX , D2))
= 1) as we decrease D1 with the critical value of D1 being 0.5.

• When D2 < D1 ≤ 0.5, the rate-dispersion matrix V(PX , D1, D2) is
rank 1 (and proportional to the all ones matrix). Correspondingly,
the result in (10.42) applies. Here, the second-order region is a
(unbounded) rectangle with a sharp corner at the left bottom
since the smaller Li, i = 1, 2 dominates. The second-order region
remains unchanged as we decrease D1 towards D2 for fixed D2 =
0.3.

• When 0.5 < D1 < 2/3, the result in (10.41) applies. In this
case, neither L1 nor L2 dominates. The second-order coding rates
(L1, L2) are coupled together by the full rank rate-dispersion
matrix V(PX , D1, D2), resulting the smooth boundary at the left
bottom.

We conclude that depending on the value of the distortion lev-
els, the rate-dispersion matrix is either rank 1 or rank 2, illustrating
Case (iii) of Corollary 10.6. These interesting observations cannot be
gleaned from the work of No et al. [82] in which the separate excess-
distortion criteria are employed for the successive refinement problem.
When V(D1|PX , D2) is rank 1, exactly one excess-distortion event dom-
inates the probability in (10.5) entirely; when V(D1|PX , D2) is rank 2,
both excess-distortion events contribute non-trivially to the probability
and a bivariate Gaussian is required to characterize the second-order
fundamental limit.
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10.4 Proof of Second-Order Asymptotics

10.4.1 Achievability

We make use of the type covering lemma [82, Lemma 8], which is
modified from [55, Lemma 1]. Leveraging the type covering lemma,
we can then upper bound the excess-distortion probability. Finally, we
Taylor expand appropriate terms and invoke the Berry-Essen theorem
to obtain an achievable second-order coding region.

Define two constants

c1 := 4|X ||X̂1| + 9, (10.48)
c2 := 6|X ||X̂1||X̂2| + 2|X ||X̂1| + 17. (10.49)

We are now ready to recall the discrete type covering lemma for succes-
sive refinement.

Lemma 10.8. Given type QX ∈ Pn(X ), for all R1 ≥ R(QX , D1), the
following holds:

• There exists a set B1 ⊂ X̂ n
1 such that

1
n

log |B1| ≤ R1 + c1
log n

n
(10.50)

and the type class is D1-covered by the set B1, i.e.,

TQX
⊂

⋃
x̂n

1 ∈B1

{xn : d1(xn, x̂n
1 ) ≤ D1} . (10.51)

• For each xn ∈ TQ and each x̂n
1 ∈ B1, there exists a set B2(x̂n

1 ) ⊂ X̂ n
2

such that

1
n

log

∑
x̂n

1 ∈B
|B2(x̂n

1 )|

 ≤ R(R1|QX , D1, D2) + c2
log n

n
(10.52)

and the D1-distortion ball N1(x̂n
1 , D1) := {xn : d1(xn, x̂n

1 ) ≤ D1}
is D2-covered by the set B2(x̂n

1 ) i.e.,

N1(x̂n
1 , D1) ⊂

⋃
x̂n

2 ∈B2(x̂n
1 )

{xn : d2(xn, x̂n
2 ) ≤ D2} . (10.53)
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Invoking Lemma 10.8, we can then upper bound the excess-distortion
probability for some (n, M1, M2)-code. Given any (n, M1, M2)-code,
define

R1,n := 1
n

(
log M1 − c1 log n − |X | log(n + 1)

)
, (10.54)

R2,n := 1
n

(
log(M1M2) − c2 log n

)
− R1,n. (10.55)

Lemma 10.9. There exists an (n, M1, M2)-code such that

Pe,n(D1, D2) ≤ Pr
{

R1,n < R(T̂Xn , D1) or

R1,n + R2,n < R(R1,n, D1, D2|T̂Xn)
}

. (10.56)

The proof of Lemma 10.9 is similar to [127, Lemma 5] and available
in [151, Appendix D].

Recall the definition of the typical set in (3.87) and the result in
(3.88) that

Pr
{

T̂Xn /∈ An(PX)
}

≤ 2|X |
n2 . (10.57)

For a rate pair (R∗
1, R∗

2) satisfying the conditions in Theorem 10.4, we
choose

1
n

log M1 = R∗
1 + L1√

n
+ c1 log n + |X | log(n + 1)

n
, (10.58)

1
n

log(M1M2) = R∗
1 + R∗

2 + L2√
n

+ c2
log n

n
. (10.59)

Hence,

R1,n = R∗
1 + L1√

n
, (10.60)

R1,n + R2,n = R∗
1 + R∗

2 + L2√
n

. (10.61)

From the conditions in Theorem 10.4, we know that the second derivative
of R(QX , D1) is bounded in the neighborhood of PX , and that the
second derivative of R(R1|QX , D1, D2) with respect to (R1, R2, QX) is
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bounded around a neighborhood of (R∗
1, PX). Hence, for any xn such

that T̂xn ∈ An(PX), applying Taylor’s expansion and invoking Lemmas
3.2 and 10.3, we obtain

R(T̂xn , D1)

= R(PX , D1) +
∑

x

(
T̂xn(x) − PX(x)

)
ȷ(x|D1, PX) + O

( log n

n

)
(10.62)

= 1
n

∑
i∈[n]

ȷ(xi|D1, PX) + O

( log n

n

)
, (10.63)

and

R(R1,n, D1, D2|T̂xn)

= R(R∗
1, D1, D2|PXY ) − ξ∗ L1√

n
+ O

( log n

n

)
+
∑

x

(
T̂xn(x) − PX(x)

)
ȷ(x, R∗

1|D1, D2, PX) (10.64)

= 1
n

∑
i∈[n]

ȷ(xi, R∗
1|D1, D2, PX) − ξ∗ L1√

n
+ O

( log n

n

)
. (10.65)

Define ηn = log n
n .

In subsequent analyses, for ease of notation, we use ȷ(x, R∗
1) and

ȷ(x, R∗
1|D1, D2, PX) interchangeably. It follows from Lemma 10.9 that

Pe,n(D1, D2)

≤ Pr
{

R1,n < R(T̂Xn , D1) or R1,n + R2,n < R(R1,n, D1, D2|T̂Xn)
}

(10.66)

≤ Pr
{

R1,n < R(T̂Xn , D1) or R1,n + R2,n < R(R1,n, D1, D2|T̂Xn),

and T̂Xn ∈ An(PX)
}

+ Pr
{

T̂Xn /∈ An(PX)
}

(10.67)
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≤ Pr
{

R∗
1 + L1√

n
<

1
n

∑
i∈[n]

ȷ(Xi|D1, PX) + O (ηn) or

R∗
1 + R∗

2 + L2√
n

<
1
n

∑
i∈[n]

ȷ(Xi, R∗
1) − ξ∗ L1√

n
+ O(ηn)

}

+ 2|X |
n2 (10.68)

= Pr
{

R∗
1 + L1√

n
<

1
n

∑
i∈[n]

ȷ(Xi|D1, PX) + O (ηn) or

R∗
1 + R∗

2 + ξ∗ L1√
n

+ L2√
n

<
1
n

∑
i∈[n]

ȷ(Xi, R∗
1) + O(ηn)

}

+ 2|X |
n2 . (10.69)

Thus,

1 − Pe,n(D1, D2)

≥ Pr
{ 1

n

∑
i∈[n]

ȷ(Xi|D1, PX) ≤ R∗
1 + L1√

n
+ O (ηn) ,

1
n

∑
i∈[n]

ȷ(Xi, R∗
1) ≤ R∗

1 + R∗
2 + ξ∗ L1√

n
+ L2√

n
+ O(ηn)

}

− 2|X |
n2 . (10.70)

We first consider Case (i) where R(PX , D1) < R∗
1 < R(R∗

1|PX , D1,

D2) and R∗
1 + R∗

2 = R(R∗
1|PX , D1, D2). Using the weak law of large

numbers in Theorem 1.1, we obtain

Pr
{ 1

n

∑
i∈[n]

ȷ(Xi|D1, PX) ≤ R∗
1 + L1√

n
+ O (ηn)

}
→ 1. (10.71)

Invoking the Berry-Esseen Theorem in Theorem 1.3, we obtain

Pr
{ 1

n

∑
i∈[n]

ȷ(Xi, R∗
1) ≤ R∗

1 + R∗
2 + ξ∗ L1√

n
+ L2√

n
+ O(ηn)

}

≥ 1 − Q

ξ∗L1 + L2 + O(
√

nηn)√
V(R∗

1|PX , D1, D2)

− 6T(R∗
1|PX , D1, D2)√

nV3/2(R∗
1|PX , D1, D2)

,

(10.72)
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where T(R∗
1|PX , D1, D2) is the third absolute moment of ȷ(X, R∗

1|D1, D2,

PX), which is finite for DMS. Hence,

Pe,n(D1, D2)

≤ Q

ξ∗L1 + L2 + O(
√

nηn)√
V(R∗

1|PX , D1, D2)

+ 6T(R∗
1|PX , D1, D2)√

nV3/2(R∗
1|PX , D1, D2)

+ 2|X |
n2 . (10.73)

Hence, if (L1, L2) satisfies

ξ∗L1 + L2 ≥
√

V(R∗
1|PX , D1, D2)Q−1(ε), (10.74)

then lim supn→∞ Pe,n(D1, D2) ≤ ε. The proof of Case (ii) is omitted
since it is similar to Case (i).

The most interesting case is Case (iii) where R∗
1 = R(PX , D1) and

R∗
1 + R∗

2 = R(R∗
1|PX , D1, D2). If V(R∗

1|PX , D1, D2) is positive definite
we invoke the multi-variate Berry-Esseen Theorem in Theorem 1.5 to
obtain

Pe,n(D1, D2)
≤ 1 − Ψ (L1 + O (ηn) , ξ∗L1 + L2 + O (ηn) ; 0, V(R∗

1|PX , D1, D2))

+ O

( 1√
n

)
. (10.75)

Note that if V(R∗
1|PX , D1, D2) is rank 1, we can use the argument

(projection onto a lower-dimensional subspace) in [113, Proof of Theorem
6] to conclude that (10.75) also holds. Now if we choose (L1, L2) such
that

Ψ (L1, ξ∗L1 + L2; 0, V(R∗
1|PX , D1, D2)) ≥ 1 − ε, (10.76)

then lim supn→∞ Pe,n(D1, D2) ≤ ε. The achievability proof is now com-
pleted.
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10.4.2 Converse

We first prove a type-based strong converse. Define di := maxx,y d1(x, x̂i)
for each i ∈ [2]. Given a type QX ∈ Pn(X ), define

g(QX)
:= Pr

{
d1(Xn, X̂n

1 ) ≤ D1, and d2(Xn, X̂n
2 ) ≤ D2

∣∣Xn ∈ TQX

}
.

(10.77)

Lemma 10.10. Fix α > 0 and a type QX ∈ Pn(X ). If the excess-
distortion probability satisfies

g(QX) ≥ exp(−nα), (10.78)

then there exists a conditional distribution QX̂1X̂2|X such that

log M1 ≥ nI(QX , QX̂1|X) − ϑn, (10.79)

log(M1M2) ≥ nI(QX , QX̂1X̂2|X) − ϑn, (10.80)

where ϑn := |X | log(n + 1) + log n + nα, and the expected distortions
are bounded as

EQX×QX̂1X̂2|X
[d1(X, X̂1)] ≤ D1 + d1

n
=: D1,n, (10.81)

EQX×QX̂1X̂2|X
[d2(X, X̂2)] ≤ D2 + d2

n
=: D2,n. (10.82)

The proof of Lemma 10.10 is inspired by [45], which generalizes
Lemma 3.8 for the rate-distortion problem and is available in [151,
Appendix E].

Invoking Lemma 10.10 with α = log n
n , we can lower bound the

excess-distortion probability for any (n, M1, M2)-code. Define βn =
|X | log(n + 1) + 2 log n. Define

R′
1,n := 1

n
log M1 + βn, (10.83)

R′
2,n := 1

n
log(M1M2) + βn − R′

1,n. (10.84)
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Lemma 10.11. For any (n, M1, M2)-code, we have

Pe,n(D1, D2)

≥ Pr
{

R′
1,n < R(T̂Xn , D1,n) or R′

1,n + R′
2,n < R(R1,n, D1,n, D2,n|T̂Xn)

}
− 1

n
. (10.85)

Choose log M1 = nR∗
1 + L1

√
n + βn and log(M1M2) = n(R∗

1 + R∗
2) +

L2
√

n + βn. Recall the shorthand notation ηn := log n
n . Now for xn

such that T̂xn ∈ An(PX), applying Taylor’s expansion in a similar
manner as (10.63) and (10.65), invoking Lemma 10.11 and noting that
Pr {F ∩ G} ≥ Pr{F} − Pr{Gc}, we obtain

1 − Pe,n(D1, D2)

≤ Pr
{ 1

n

∑
i∈[n]

ȷ(Xi|D1, PX) ≤ R∗
1 + L1√

n
+ O (ηn) ,

1
n

∑
i∈[n]

ȷ(Xi, R∗
1) ≤ R∗

1 + R∗
2 + ξ∗ L1√

n
+ L2√

n
+ O(ηn)

}

+ 1
n

+ 2|X |
n2 . (10.86)

Note that in (10.86), we Taylor expand R(T̂Xn , D1,n) around the source
distribution PX and distortion level D1. We also Taylor expand the min-
imal sum rate function R(R1,n, D1, D2|T̂Xn) at (PX , D1, D2). The resid-
ual terms when we Taylor expand with respect to the distortion levels
are of the order O( 1

n), which can be absorbed into O(ηn). Furthermore,
recall that we use ȷ(x, R∗

1) and ȷ(x, R∗
1|D1, D2, PX) interchangeably.

The rest of converse proof can be done similarly as the achievability
part in Section 10.4.1 by using the uni- or multi-variate Berry-Esseen
Theorem for Cases (i), (ii) and (iii).

10.4.3 Proof of a Special Case

We now present a proof for the special case where the source-distortion
measure triplet is successively refinable. Recall that for this case, ξ∗ = 0,
ν∗

1 = 0, and ȷ(x, R∗
1|D1, D2, PX) = ȷ(x|D2, PX) for R(PX , D1) ≤ R∗

1 <

R(PX , D2). For the achievability part, invoking (10.70), we obtain
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1 − Pe,n(D1, D2)

≥ Pr
{ 1

n

∑
i∈[n]

(ȷ(Xi|D1, PX) − R∗
1) ≤ L1√

n
+ O (ηn) ,

1
n

∑
i∈[n]

(ȷ(Xi|D2, PX) − (R∗
1 + R∗

2)) ≤ L2√
n

+ O(ηn)
}

− 2|X |
n2 . (10.87)

According to the assumption in (10.42) of Corollary 10.6, we have
ȷ(Xi|D1, PX)−R∗

1 = ȷ(Xi|D2, PX)−(R∗
1 +R∗

2). Given a random variable
X and two real numbers a < b, we obtain Pr{X < a and X < b} =
Pr{X < a}. Hence,

1 − Pe,n(D1, D2)

≥ Pr
{ 1

n

∑
i∈[n]

(ȷ(Xi|D1, PX) − R∗
1) ≤ min{L1, L2}√

n
+ O (ηn)

}
.

(10.88)

The rest of the proof is similar to Case (i) in Section 10.4.1.
Using (10.86), similar to the achievability part, we complete the

proof of converse part.

10.4.4 Alternative Converse Proof

We next present an alternative converse proof of Corollary 10.6 using the
finite blocklength converse bound in [151, Lemma 15] that generalizes
Theorem 3.4 for the rate-distortion problem.

Lemma 10.12. Given any (γ1, γ2) ∈ R2
+, any (n, M1, M2)-code for the

successive refinement problem satisfies

Pe,n(D1, D2) ≥ Pr
{ ∑

i∈[n]
ȷ(Xi|D1, PX) ≥ log M1 + γ1 or

∑
i∈[n]

ȷ(Xi|D2, PX) ≥ log(M1M2) + γ2
}

− exp(−nγ1) − exp(−nγ2). (10.89)
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Choose γ1 = γ2 = log n
2n . Let log M1 = nR∗

1 + L1
√

n − 1
2 log n and

log(M1M2) = n(R∗
1 + R∗

2) + L2
√

n − 1
2 log n. Invoking Lemma 10.12, we

obtain

1 − Pe,n(D1, D2)

≤ 2√
n

+ Pr
{ ∑

i∈[n]
ȷ(Xi|D1, PX) < nR∗

1 + L1
√

n

and
∑
i∈[n]

ȷ(Xi|D2, PX) < n(R∗
1 + R∗

2) + L2
√

n
}

. (10.90)

The rest of the proof is similar to the converse proof of Corollary 10.6
in Section 10.4.3. We remark that this alternative converse proof also
applies to continuous memoryless sources, such as GMS under quadratic
distortion measures and a Laplacian source with absolute distortion
measures [146].

A stronger non-asymptotic converse bound is provided in [68, Corol-
lary 2], which holds for any memoryless source and yields an alternative
converse proof of Theorem 10.4. The same bound is also presented in
Lemma 11.6 in the next section, which is obtained as a special case of
the non-asymptotic converse bound in Theorem 11.5 for the Fu-Yeung
problem.

Full text available at: http://dx.doi.org/10.1561/0100000134



11
Fu-Yeung Problem

In this section, we study a special case of the multiple descriptions
problem [1], [37], [122], [123], [132], [143], [144] with two encoders and
three decoders proposed by Fu and Yeung [34] and thus we term the
problem as the Fu-Yeung problem. The Fu-Yeung problem generalizes
the successive refinement problem by adding an additional decoder that
aims to recover a deterministic function of the source sequence losslessly.
The rate-distortion region was characterized by Fu and Yeung [34,
Theorem 1], which collects rate pairs to ensure reliable lossy compression
at two decoders and reliable lossless data compression at the other
decoder. For this special case of multiple descriptions, the El Gamal-
Cover inner bound [37] was proved optimal.

Through the lens of the Fu-Yeung problem, this section reveals the
tradeoff between encoders for simultaneous lossless and lossy compres-
sion. We will present a non-asymptotic converse bound and second-order
asymptotics for the Fu-Yeung problem. Specifically, we first present
properties of the minimal sum rate function given the rate of one encoder.
Subsequently, we generalize the rate-distortions-tilted information for
the successive refinement problem to the Fu-Yeung problem and present
a non-asymptotic converse bound. This non-asymptotic bound, when

167
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168 Fu-Yeung Problem

specialized to the case where |Y| = 1, gives a stronger non-asymptotic
converse bound for the successive refinement problem than Lemma
10.12. Finally, we present the second-order asymptotics for DMS under
bounded distortion measures and illustrate the results with numerical
examples. This section is largely based on [149] and the second part of
[147].

11.1 Problem Formulation and Asymptotic Result

11.1.1 Problem Formulation

The setting for the Fu-Yeung problem is shown in Figure 11.1. There
are two encoders and three decoders. Each encoder fi, i = 1, 2 has
access to the source sequence Xn and compresses it into a message
Si, i = 1, 2. Decoder ϕ1 aims to recover Xn with distortion level D1
using the encoded message S1 from encoder f1. Decoder ϕ2 aims to
recover Xn with distortion level D2 using encoded messages S1 and S2.
Decoder ϕ3 aims to recover Y n, which is a symbolwise deterministic
function of the source sequence Xn.

Xn

f2

f1

ϕ2

ϕ1

ϕ3
S2

S1

Y n

(X̂n
1 , D1)

(X̂n
2 , D2)

Figure 11.1: System model for the Fu-Yeung problem of multiple descriptions with
one Semi-deterministic decoder [34].

Consider a memoryless source Xn generated i.i.d. from a probability
mass function PX supported on a finite alphabet X . Let reproduction
alphabets for decoders ϕ1, ϕ2 be X̂1 and X̂2 respectively. Fix a finite set
Y and define a deterministic function g : X → Y. Let Yi = g(Xi), i ∈
[1 : n]. Note that PY is induced by the source distribution PX and
the deterministic function g, i.e., for y ∈ Y, PY (y) =

∑
x:g(x)=y PX(x).

We assume that for each y, PY (y) > 0. Decoder ϕ3 is required to
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recover Y n = g(Xn) = (g(X1), . . . , g(Xn)) losslessly and the decoded
sequence is denoted as Ŷ n. We follow the definitions of codes and the
rate-distortion region in [34].

Definition 11.1. An (n, M1, M2)-code for the Fu-Yeung problem con-
sists of two encoders:

f1 :X n → M1 = [M1], (11.1)
f2 :X n → M2 = [M2], (11.2)

and three decoders:

ϕ1 : M1 → X̂ n
1 , (11.3)

ϕ2 : M1 × M2 → X̂ n
2 , (11.4)

ϕ3 : M2 → Yn. (11.5)

Using the encoding and decoding functions, we have X̂n
1 = ϕ1(f1

(Xn)), X̂n
2 = ϕ2(f1(Xn), f2(Xn)) and Ŷ n = ϕ3(f2(Xn)). Let dH denote

the Hamming distortion measure in (3.1) and let the average distortion
between yn and its reproduced version ŷn be defined as dH(Y n, Ŷ n) :=
1
n

∑
i∈[n] dH(Yi, Ŷi). For each i ∈ [2], let the distortion function di :

X × X̂i → [0, ∞) be a bounded distortion measure and let di(xn, x̂n
i ) =

1
n

∑
j∈[n] di(xj , x̂j,i). The rate-distortion region for the Fu-Yeung problem

is defined as follows.

Definition 11.2. A rate pair (R1, R2) is said to be (D1, D2)-achievable
for the Fu-Yeung problem if there exists a sequence of (n, M1, M2)-codes
such that

lim sup
n→∞

log Mi

n
≤ Ri, i = 1, 2, (11.6)

and

lim sup
n→∞

E[di(Xn, X̂n
i )] ≤ Di, i = 1, 2, (11.7)

lim
n→∞

E[dH(Y n, Ŷ n)] = 0. (11.8)

The closure of the set of all (D1, D2)-achievable rate pairs is called the
first-order (D1, D2)-coding region and denoted as R(D1, D2|PX).
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11.1.2 Rate-Distortion Region

The first-order coding region R(D1, D2|PX) was characterized by Fu
and Yeung in [34] for DMS. In particular, Fu and Yeung [34] showed
that the El-Gamal-Cover inner bound [37] for the multiple description
coding problem is tight.

To present the result, let P(PX , D1, D2) be the set of all pairs of
conditional distributions (PX̂1|X , PX̂2|XX̂1

) ∈ P(X̂1|X) × P(X̂2|X X̂1)
such that E[d1(X, X̂1)] ≤ D1 and E[d2(X, X̂2)] ≤ D2. Given a pair of
conditional distributions (PX̂1|X , PX̂2|XX̂1

), let R(PX̂1|X , PX̂2|XX̂1
) be

the collection of rate pairs (R1, R2) ∈ R2
+ such that

R1 ≥ I(PX , PX|X̂1
), (11.9)

R2 ≥ H(PY ), (11.10)
R1 + R2 ≥ H(PY ) + I(PX̂1

, PX̂1|Y ) + I(PX|Y , PX|Y X̂1X̂2
|PY ). (11.11)

Theorem 11.1. The rate-distortion region for the Fu-Yeung problem
satisfies

R(D1, D2|PX)

=
⋃

(PX̂1|X ,PX̂2|XX̂1
)∈P(PX ,D1,D2)

R(PX̂1|X , PX̂2|XX̂1
). (11.12)

When the Y is a constant, i.e., |Y| = 1, the rate-distortion region
in Theorem 11.1 reduced to the rate-distortion region of the successive
refinement problem. The rate-distortion function of the Kaspi problem
can also be recovered from Theorem 11.1 as the minimal rate R1 by
setting R2 = H(Y ) and choosing the source as X = (S1, S2) and the
side information as Y = S2 for correlated discrete random variables
(S1, S2).

Although Theorem 11.1 was derived under the average distortion
criterion, the same rate-distortion region holds when one considers
a vanishing joint excess-distortion and error probability Pe,n(D1, D2)
defined as follows:

Pe,n(D1, D2) := Pr
{

d1(Xn, X̂n
1 ) > D1 or d2(Xn, X̂n

2 ) > D2

or Ŷ n ̸= Y n
}

. (11.13)
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The reason is analogous to why Theorem 3.1 derived under the average
distortion criterion still holds under the excess-distortion probability
criterion for the rate-distortion problem.

11.1.3 Boundary Rate Pairs

We next discuss conditions for a rate pair (R∗
1, R∗

2) to be on the boundary
of the rate-distortion region R(D1, D2|PX), which enables our definition
and analyses of second-order asymptotics.

Given any distributions (PX̂1|X , PX̂2|XX̂1
), let PXY , PX|Y , PX̂1

,
PY X̂1

, PXX̂1
, PXX̂2

, PXY X̂1
, PX̂1|XY and PX̂2|Y X̂1

be induced by PX ,
PX̂1|X , PX̂2|XX̂1

and the deterministic function g : X → Y. Recall the
definition of P(PX , D1, D2) above Theorem 11.1. Given any rate R1 of
encoder f1, define the following function:

R(R1|PX , D1, D2)
:= min

(PX̂1|X ,PX̂2|XX̂1
)

∈P(PX ,D1,D2):R1≥I(PX ,PX|X̂1
)

I(PX̂1
, PX̂1|Y ) + I(PX|Y , PX|Y X̂1X̂2

|PY ).

(11.14)

It follows from the rate-distortion region in Theorem 11.1 that given a
rate R1 of encoder f1, the minimal achievable sum rate is
R(R1|PX , D1, D2) + H(PY ). Furthermore, the minimal achievable rate
R1 for encoder f1 is the rate-distortion function R(PX , D1) [19] and the
minimal achievable rate R2 for encoder f2 is the entropy H(PY ). When
R1 = R(PX , D1), the minimal achievable rate R2 is

R∗
2(PX , D1, D2)

:= H(PY ) + R(R(PX , D1), D1, D2|PX) − R(PX , D1), (11.15)

and when R2 = H(PY ), the minimal achievable rate R1 is

R∗
1(PX , D1, D2)

:= min
PX̂1|X ,PX̂2|XX̂1

∈P(PX ,D1,D2)
I(PX̂1

, PX̂1|Y ) + I(PX|Y , PX|Y X̂1X̂2
|PY ),

(11.16)

since R∗
1(PX , D1, D2) is the solution to R1 = R(R1|PX , D1, D2). With

these observations, we find all cases of boundary rate pairs and illustrate

Full text available at: http://dx.doi.org/10.1561/0100000134



172 Fu-Yeung Problem

(ii)

(i)

(iii)

(iv) (v)

R1

R2

R2

R2

R1 R1

Figure 11.2: Illustration of boundary rate pairs on the rate-distortion region of the
Fu-Yeung problem, where R1 = R(PX , D), R1 = R∗

1(PX , D1, D2), R2 = H(PY ) and
R2 = R∗

2(PX , D1, D2).

it in Figure 11.2. Note that the Curve from case (ii) to Case (iv) is
drawn as a line segment for ease of plot. In fact, it should be a convex
curve.

11.2 Minimal Sum Rate Function and Its Properties

11.2.1 Definitions

Note that (11.14) is a convex optimization problem. Assume that
(R1, D1, D2) is chosen such that R(R1|PX , D1, D2) is finite. Therefore,
there exist test channels achieving R(R1|PX , D1, D2). Let (ξ∗, λ∗

1, λ∗
2) be

the optimal solutions to the dual problem of R(R1|PX , D1, D2), i.e.,

ξ∗ := −∂R(R, D1, D2|PX)
∂R

∣∣∣∣∣
R=R1

, (11.17)

λ∗
1 := −∂R(R1, D, D2|PX)

∂D

∣∣∣∣∣
D=D1

, (11.18)

λ∗
2 := −∂R(R1, D1, D|PX)

∂D

∣∣∣∣∣
D=D2

. (11.19)
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Given distributions (QX̂1
, QX̂2|Y X̂1

) and (x, y, x̂1), define the follow-
ing two functions:

β2(x, y, x̂1|QX̂2|Y X̂1
)

:=
{

EQX̂2|Y X̂1

[
exp(−λ∗

2d2(x, X̂2))
∣∣Y = y, X̂1 = x̂1

]}−1
, (11.20)

β(x, y|QX̂1
, QX̂2|Y X̂1

)

:=
{

EQX̂1

[
exp

(
− λ∗

1d1(x, X̂1)
1 + ξ∗ −

log β2(x, y, X̂1|QX̂2|Y X̂1
)

1 + ξ∗

)]}−1

.

(11.21)

11.2.2 Properties

We first present the properties of the optimal test channels that achieve
(11.14).

Lemma 11.2. A pair of test channels (P ∗
X̂1|X , P ∗

X̂2|XX̂1
) achieves

R(R1|PX , D1, D2) if and only if

• For all (x, y, x̂1, x̂2) such that y = g(x),

P ∗
X̂1|X(x̂1|x) = β(x, y|P ∗

X̂1
, P ∗

X̂2|Y X̂1
)P ∗

X̂1
(x̂1)

× exp
(

−
λ∗

1d1(x, x̂1) + log β2(x, y, x̂1|P ∗
X̂2|Y X̂1

)
1 + ξ∗

)
, (11.22)

• For all (x, y, x̂1, x̂2) such that y = g(x) and P ∗
X̂1|X(x̂1|x) > 0

P ∗
X̂2|XX̂1

(x̂2|x, x̂1) = β2(x, y, x̂1|P ∗
X̂2|Y X̂1

)

× P ∗
X̂2|Y X̂1

(x̂2|y, x̂1) exp(−λ∗
2d2(x, x̂2)). (11.23)

• For all (x, x̂1, x̂2) such that P ∗
X̂1|X(x̂1|x) = 0, P ∗

X̂2|XX̂1
(·|x, x̂1) can

be arbitrary distribution.

Furthermore, if a pair of channels (P ∗
X̂1|X , P ∗

X̂2|XX̂1
) achieves R(R1, D1,

D2), the following claims hold.
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• The parametric representation of R(R1|PX , D1, D2) is

R(R1|PX , D1, D2)
= (1 + ξ∗)EPXY

[log β(X, Y |P ∗
X̂1

, PX̂2|Y X̂∗
1
)]

− ξ∗R1 − λ∗
1D1 − λ∗

2D2. (11.24)

• For (x, y, x̂1, x̂2) such that y = g(x) and
P ∗

X̂1
(x̂1)P ∗

X̂2|Y X̂1
(x̂2|g(x), x̂1) > 0,

(1 + ξ∗) log β(x, y|P ∗
X̂1

, P ∗
X̂2|Y X̂1

)

= (1 + ξ∗) log
P ∗

X̂1|X(x̂1|x)
P ∗

X̂1
(x̂1) + λ∗

1d1(x, x̂1)

+ log
P ∗

X̂2|XX̂1
(x̂2|x, x̂1)

P ∗
X̂2|Y X̂1

(x̂2|y, x̂1) + λ∗
2d2(x, x̂2). (11.25)

The proof of Lemma 11.2 is similar to [20, Lemma 1.4], [127, Lemma
3], Lemma 9.3 for the Kaspi problem and Lemma 10.3 for the successive
refinement problem.

Similar to [127], we can show that, for any pair of optimal test
channels (P ∗

X̂1|X , P ∗
X̂2|XX̂1

), the value of β(x, y|P ∗
X̂1

, P ∗
X̂2|Y X̂1

) and
β2(x, y, x̂1|P ∗

X̂2|Y X̂1
) remain the same. From now on, fix a pair of test

channels (P ∗
X̂1|X , P ∗

X̂2|XX̂1
) such that that i) (11.22), (11.23) hold; ii)

for any (y, x̂1) such that P ∗
Y X̂1

(y, x̂1) = 0, the induced distribution
defined as P ∗

X̂2|Y X̂1
(x̂2|y, x̂1) :=

∑
x PX(x)1(y = g(x))P ∗

X̂2|XX̂1
(x̂2|x, x̂1)

satisfies

P ∗
X̂2|Y X̂1

= arg sup
QX̂2|Y X̂1

EPX|y

[
β(X, y)β

− 1
1+ξ∗

2 (X, y, x̂1|QX̂2|Y X̂1
)

× exp
(

− λ∗
1

1 + ξ∗ d1(X, x̂1)
)]

. (11.26)

Note that the choice of P ∗
X̂2|XX̂1

satisfying (11.26) is possible since the
set {x : g(x) = y} is disjoint for each y ∈ Y.
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For simplicity, given any (x, y, x̂1), let

β2(x, y, x̂1) := β2(x, y, x̂1|P ∗
X̂2|Y X̂1

), (11.27)

β(x, y) := β(x, y|P ∗
X̂1

, P ∗
X̂2|Y X̂1

), (11.28)

ı1(x, y, x̂1) := log β(x, y) − 1
1 + ξ∗ log β2(x, y, x̂1), (11.29)

ı2(x, y, x̂1) := log β(x, y) + ξ∗

1 + ξ∗ log β2(x, y, x̂1). (11.30)

Furthermore, given any x̂1 and arbitrary conditional distribution
QX̂2|Y X̂1

, define

w1(x̂1) := EPXY

[
exp

(
ı1(X, Y, x̂1) − λ∗

1d1(X, x̂1)
1 + ξ∗

)]
, (11.31)

w2(x̂1, QX̂2|Y X̂1
)

:= EPXY ×QX̂2|Y X̂1

[
exp

(
ı2(X, Y, x̂1) − λ∗

1
1 + ξ∗ d1(X, x̂1)

− λ∗
2d2(X, X̂2)

)∣∣∣X̂1 = x̂1

]
. (11.32)

In the following, we present an important property of the quantities
in (11.31) and (11.32).

Lemma 11.3. Given any (P ∗
X̂1|XY

, P ∗
X̂2|XX̂1

) satisfying (11.22), (11.23),
and (11.26), for any x̂1 ∈ X̂1 and arbitrary distribution QX̂2|Y X̂1

,

w2(x̂1, QX̂2|Y X̂1
) ≤ w1(x̂1) ≤ 1. (11.33)

The proof of Lemma 11.3 is inspired by [120, Lemma 5], [68, Theorem
2] and omitted due to similarity to Lemma 9.3 for the Kaspi problem.
We remark that Lemmas 11.2 and 11.3 hold for any memoryless source,
not restricted to DMS. As we shall show, the result in Lemma 11.3
leads to a non-asymptotic converse bound for the Fu-Yeung problem.

11.3 Rate-Distortions-Tilted Information Density

Recall that PXY is induced by PX and the deterministic function
g : X → Y.
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Definition 11.3. For any (x, y) ∈ X × Y such that y = g(x), the
rate-distortions-tilted information density for the Fu-Yeung problem is
defined as

ȷ(x, y|R1, D1, D2, PX) := (1 + ξ∗) log β(x, y) − ξ∗R1

− λ∗
1D1 − λ∗

2D2, (11.34)

where β(·) was defined in (11.28).

The properties of ȷ(x, y|R1, D1, D2, PX) follow from Lemma 11.2.
For example, it follows from (11.24) that

R(R1|PX , D1, D2)
= EPXY

[ȷ(X, Y |R1, D1, D2, PX)] (11.35)
= EPX

[ȷ(X, g(X)|R1, D1, D2, PX)]. (11.36)

Let ȷ(x|D1, PX) be the D1-tilted information density in (3.17), i.e.,

ȷ(x|D1, PX)

:= − log
(∑

x̂1

P ∗
X̂1

(x̂1) exp(−λ∗(d1(x, x̂1) − D1))
)
, (11.37)

where P ∗
X̂1

is induced by the source distribution PX and the optimal
test channel P ∗

X̂1|X for the rate-distortion function R(PX , D1) (cf. (3.7))

and λ∗ = −∂R(PX ,D)
∂D |D=D1 .

Furthermore, similar to the proofs Lemma 9.4 for the Kaspi problem
and Claim (iii) in Lemma 10.3, we have the following lemma that further
relates the rate-distortions-tilted information density with the derivative
of the minimum sum rate function with respect to the distribution PX

for the Fu-Yeung problem.

Lemma 11.4. Suppose that for all QX in the neighborhood of PX ,
supp(Q∗

X̂1X̂2
) = supp(P ∗

X̂1X̂2
). Then for any a ∈ supp(PX),

∂R(R1|QX , D1, D2)
∂QX(a)

∣∣∣∣∣
QX=PX

= ȷ(x, g(x)|R1, D1, D2, PX) − (1 + s∗). (11.38)
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11.4 A Non-Asymptotic Converse Bound

We next present a non-asymptotic converse bound for the Fu-Yeung
problem. Given any γ ∈ R+, define the following three sets:

An
1 :=

{
(xn, yn) :

∑
i∈[n]

ȷ(xi|D1, PX) ≥ log M1 + nγ
}

, (11.39)

An
2 :=

{
(xn, yn) : −

∑
i∈[n]

log PY (yi) ≥ log M2 + nγ
}

, (11.40)

An
3 :=

{
(xn, yn) :

∑
i∈[n]

ȷ(xi, yi|R1, D1, D2, PX) ≥ log M1M2

+ ξ∗ log M1 + (1 + ξ∗)nγ
}

. (11.41)

Lemma 11.5. Any (n, M1, M2)-code for the Fu-Yeung problem satisfies
that for any γ ≥ 0,

Pe,n(D1, D2) ≥ Pr
{

(Xn, Y n) ∈
⋃

i∈[3]
An

i

}
− 4 exp(−γ). (11.42)

We remark that Lemma 11.3 plays an important role in the proof of
Lemma 11.5. This can be made clear by the following definitions. Given
(x, y, x̂1, x̂2), using the definitions of ı1(·) in (11.29) and ı2(·) in (11.30),
we define

ȷ1(x, y, x̂1, D1) := ı1(x, y, x̂1) − λ∗
1D1

1 + ξ∗ , (11.43)

ȷ2(x, y, x̂1, D1, D2) := ı2(x, y, x̂1) − λ∗
1D1

1 + ξ∗ − λ∗
2D2. (11.44)

Using the definition of the rate-distortions-tilted information density in
(11.34), we conclude that

ȷ(x, y|R1, D1, D2, PX) = ξ∗ȷ1(x, y, x̂1, D1)
+ ȷ2(x, y, x̂1, D1, D2) − ξ∗R1. (11.45)

In the proof of Lemma 11.5, we make use of (11.45) and the fact that
Pr{A + B ≥ c + d} ≤ Pr{A ≥ c} + Pr{B ≥ d} for any variables (A, B)
and constants (c, d).

Recall the setting of the Fu-Yeung problem in Figure 11.1. Note
that when Y is a constant, i.e. |Y| = 1, we recover the setting of
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the successive refinement problem [95]. Recall the definitions of an
(n, M1, M2)-code for the successive refinement problem Definition 10.1,
the definition of the joint excess-distortion probability PSR

e,n(D1, D2)
in (10.5), the definition of the minimal sum rate RSR(R1|PX , D1, D2|)
in (10.11) and the definition of the rate-distortions tilted information
density ȷSR(x, R1|D1, D2, PX) in (10.23). When |Y| = 1, it follows that

RSR(R1|PX , D1, D2|) = R(R1|PX , D1, D2), (11.46)
ȷSR(x, R1|D1, D2, PX) = ȷ(x, g(x)|R1, D1, D2, PX). (11.47)

We remark that although the definition of the rate-distortions-tilted
information density for the successive refinement problem in the right
hand side of (11.47) appears different from (10.23), the two quantities
share same properties (cf. [151, Lemma 3]) and are thus essentially the
same. Invoking Lemma 11.5 with Y = {1}, we obtain the following
non-asymptotic converse bound for the successive refinement problem.

Lemma 11.6. Any (n, M1, M2)-code for the successive refinement prob-
lem satisfies that for any γ ≥ 0,

PSR
e,n(D1, D2)

≥ Pr
{ ∑

i∈[n]
ȷ(Xi|D1, PX) ≥ log M1 + nγ or

∑
i∈[n]

ȷSR(Xi, R1|D1, D2, PX) ≥ log M1M2

+ ξ∗ log M1 + (1 + ξ∗)nγ
}

− 4 exp(−nγ). (11.48)

Lemma 11.6 was also derived by Kostina and Tuncel [68, Corollary
2]. We remark that the non-asymptotic converse bound in (11.48) can
be used to establish converse results for second-order asymptotics for
any memoryless source, including the results in Theorem 10.4 for DMS.
Invoking Lemma 11.6, for the successive refinement problem, we have the
potential to establish tight second-order asymptotics for non-successively
refinable continuous memoryless sources, e.g., symmetric GMS under
quadratic distortion measures [17].
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11.5 Second-Order Asymptotics

11.5.1 Preliminaries

Let ε ∈ (0, 1) be fixed and let (R∗
1, R∗

2) be a boundary rate pair on the
rate-distortion region D(D1, D2|PX) of the Fu-Yeung problem.

Definition 11.4. Given any ε ∈ (0, 1), a pair (L1, L2) is said to be
second-order (R∗

1, R∗
2, D1, D2, ε)-achievable for the Fu-Yeung problem if

there exists a sequence of (n, M1, M2)-codes such that

lim sup
n→∞

log Mi − nRi√
n

≤ Li, i = 1, 2, (11.49)

and

lim sup
n→∞

Pe,n(D1, D2) ≤ ε. (11.50)

The closure of the set of all second-order (R∗
1, R∗

2, D1, D2, ε)-achievable
pairs is called the second-order (R∗

1, R∗
2, D1, D2, ε) coding region and

denoted as L(R∗
1, R∗

2, D1, D2, ε).

To present characterization of L(R∗
1, R∗

2, D1, D2, ε), we need several
definitions. Recall that PXY and PY are induced by PX and the deter-
ministic function g : X → Y and the definition of the source dispersion
function (cf. (2.27)), i.e.,

V(PY ) =
∑

y

PY (y)
(

− log PY (y) − H(PY )
)2 (11.51)

=
∑

x

PX(x)
(

− log PY (g(x)) − H(PY )
)2

. (11.52)

Recall that V(PX , D1) = Var[ȷ(X|D1, PX)] is the distortion-dispersion
function (cf. (3.57)). Let the rate-distortion-dispersion function be

V(R1|PX , D1, D2)

:= Var
[
ȷ(X, g(X)|R1, D1, D2, PX) − log PY (Y )

]
. (11.53)
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Define two covariance matrices:

V1(R1|PX , D1, D2)

:= Cov
(
[ȷ(X, g(X)|R1, D1, D2, PX) − log PY (g(X))]⊤,

ȷ(X|D1, PX)
)
, (11.54)

V2(R1|PX , D1, D2)

:= Cov
(
[ȷ(X, g(X)|R1, D1, D2, PX) − log PY (g(X)),

− log PY (g(X))]T
)
. (11.55)

Finally, recall that Ψ(x1, x2; µ, Σ) is the bivariate generalization of the
Gaussian cdf.

11.5.2 Main Result and Discussions

Suppose the following conditions hold:

1. (QX , D′
1) → R(QX , D′

1) is twice differentiable in the neighborhood
of (PX , D1) and the derivatives are bounded;

2. (QX , R′
1, D′

1, D′
2) → R(R′

1|QX , D′
1, D′

2) is twice differentiable in
the neighborhood of (PX , R1, D1, D2) and the derivatives are
bounded;

3. The functions R(PX , D1), R∗
1(D1, D2|PX), R∗

2(D1, D2|PX) are pos-
itive and finite;

4. The dispersion functions V(PX , D1) and V(PY ) are positive and
the dispersion function V(R∗

1|PX , D1, D2) is positive for
R(PX , D1) < R∗

1 < R∗
1(PX , D1, D2);

5. The covariance matrices V1(R(PX , D1)|PX , D1, D2) and
V2(R∗

1(PX , D1, D2)PX , D1, D2|) are positive semi-definite.

Conditions (i) and (ii) concern the differentiability of rate-distortion
functions and have been discussed in detail by Ingber and Kochman in
[54, Section III.A]. Condition (iii) can easily verified by calculating the
values of rate-distortion functions using convex optimization tools such
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as [14]. In order to verify conditions (iv) and (v), in general, one needs
to develop specialized Blahut-Arimoto-type algorithms [22, Chapter 8]
to solve for the optimal test channels.

Theorem 11.7. Under conditions (1) to (5), depending on (R∗
1, R∗

2), for
any ε ∈ (0, 1), the second-order coding region satisfies

• Case (i): R∗
1 = R(PX , D1) and R∗

2 > R∗
2(PX , D1, D2)

L(R∗
1, R∗

2, D1, D2, ε) =
{
(L1, L2) : L1 ≥

√
V(PX , D1)Q−1(ε)

}
.

(11.56)

• Case (ii): R∗
1 = R(PX , D1) and R∗

2 = R∗
2(PX , D1, D2)

L(R∗
1, R∗

2, D1, D2, ε) =
{
(L1, L2) :

Ψ(L1, (1 + ξ∗)L1 + L2; 02; V1(R∗
1|PX , D1, D2)) ≥ 1 − ε

}
.

(11.57)

• Case (iii): R(PX , D1) < R∗
1 < R∗

1(PX , D1, D2) and
R∗

2 = R∗(R∗
1|PX , D1, D2) + H(PY ) − R∗

1,

L(R∗
1, R∗

2, D1, D2, ε) =
{
(L1, L2) :

(1 + ξ∗)L1 + L2 ≥
√

V(R∗
1|PX , D1, D2)Q−1(ε)

}
. (11.58)

• Case (iv) R∗
1 = R∗

1(PX , D1, D2) and R∗
2 = H(PY )

L(R∗
1, R∗

2, D1, D2, ε) =
{
(L1, L2) :

Ψ(L1 + L2, L2; 02, V2(R∗
1|PX , D1, D2)) ≥ 1 − ε

}
. (11.59)

• Case (v) R∗
1 > R∗

1(PX , D1, D2) and R∗
2 = H(PY )

L(R∗
1, R∗

2, D1, D2, ε) =
{
(L1, L2) : L2 ≥

√
V(PY )Q−1(ε)

}
.

(11.60)

The proof of Theorem 11.7 is provided in Section 11.6. The achiev-
ability part follows by the method of types, where we first prove a
type-covering lemma tailored to the Fu-Yeung problem, and subse-
quently apply Taylor expansions of the rate-distortion function and the
minimal sum rate function of empirical distributions around the source
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distribution PX , and finally apply the Berry-Esseen theorem for each
case. The converse part follows by deriving a type-based strong converse
analogously to the converse proof the successive refinement problem in
Theorem 10.4 and proceeding similarly to the achievability proof.

Since the successive refinement problem is special case of the Fu-
Yeung problem when Y = g(X) is a constant, the second-order asymp-
totics for the successive refinement problem for DMS under bounded
distortion measures in Theorem 10.4 is recovered by cases (i)-(iii) in
Theorem 11.7.

11.5.3 An Numerical Example

We consider the numerical example inspired by [90] and calculate the
dispersion function for cases (iii) and (iv) in Theorem 11.7. Let S1 =
{0, 1} and S2 = {0, 1, e}. Let S1 take values in S1 with equal probability
and let PS2|S1(s2|s1) = (1−p)1(s1 = s2)+p1(s2 = e). Let the source be
X = (S1, S2) and the deterministic function be Y = g(X) = g(S1, S2) =
S2. Let X̂1 = X̂2 = {0, 1} and the distortion measures be d1(x, x̂1) =
1(s1 = x̂1) and d2(x, x̂2) = 1(s2 = x̂2). Choose (p, D1, D2) such that
D1 ≤ 1

2 and D1 − 1−p
2 ≤ D2 ≤ pD1. For this case, using the definitions

of ξ∗ in (11.17), λ∗
1 in (11.18) and λ∗

2 in (11.19), we have

ξ∗ = 0, (11.61)
λ∗

1 = log
(
(1 − p)/(D1 − D2) − 1

)
, (11.62)

λ∗
2 = −λ∗

1 + log
(
p/D2 − 1

)
. (11.63)

Recall that Hb(·) is the binary entropy function. Let

α0 := log
(
2/(1 + exp(−λ∗

1))
)

− λ∗
1D1 − λ∗

2D2, (11.64)
α := log

(
2/(1 + exp(−λ∗

1 − λ∗
2)
)

− λ∗
1D1 − λ∗

2D2, (11.65)

g1(p, D1, D2) := log 2 − (1 − p)Hb((D1 − D2)/(1 − p))
− pHb(D2/p), (11.66)

g2(p, D1, D2) := p(1 − p)
{

log(1 − D2/p)

− log(1 − (D1 − D2)/(1 − p))
}2

, (11.67)

g3(p, D1, D2) := (1 − p)α0 log 2
1 − p

+ pα log 1
p

. (11.68)
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Then, it can be verified that

H(PY ) = (1 − p) log 2 + Hb(p), (11.69)

V(PY ) = p(1 − p)
(

log 2p

1 − p

)2
. (11.70)

Thus,

V(R1|PX , D1, D2) = g2(p, D1, D2) + V(PY )

+ 2
(
g3(p, D1, D2) − H(PY )g1(p, D1, D2)

)
. (11.71)

11.6 Proof of Second-Order Asymptotics

11.6.1 Achievability

In this subsection, we first present a type covering lemma tailored to
the Fu-Yeung problem, using which we derive an upper bound on the
joint excess-distortion and error probability. Finally, invoking Taylor
expansions and the Berry-Esseen Theorem, we derive an achievable
second-order coding region.

Define

c1 = |X | · |Y| · |X̂1| + 2, (11.72)
c2 = 7|X | · |Y| · |X̂1| · |X̂2| + 4. (11.73)

We are now ready to present the type covering lemma.

Lemma 11.8. Consider any type QX ∈ Pn(X ). Let QY be induced by
QX and the deterministic function g : X → Y , and let R1 ≥ R(QX , D1).
The following conclusions hold.

1. There exists a set B ∈ X n
1 such that for each xn ∈ TQX

,
d1(xn, (zn)∗) ≤ D1 where (zn)∗ := arg minz∈B d1(xn, z).

2. Given (zn)∗, there exists a set B((zn)∗) ∈ X n
2 such that

min
x̂n

2 ∈B((zn)∗)
d2(xn, x̂n

2 ) ≤ D2. (11.74)

3. There exists a set BY ∈ Ŷn satisfying that 1
n log |BY | ≤ H(QY )

and there exists ŷn ∈ BY such that ŷn = g(xn).
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4. The sizes of sets B and B((zn)∗) satisfy

1
n

log |B| ≤ R1 + c1 log(n + 1), (11.75)
1
n

log(|B| · |B((zn)∗)|) ≤ R(R1|QX , D1, D2)

+ (c1 + c2) log(n + 1). (11.76)

The proof of Lemma 11.8 is similar to the type covering lemma for
the successive refinement problem [82].

Let

R1,n : = 1
n

(
log M1 − (c1 + |X |) log(n + 1)

)
, (11.77)

R2,n : = 1
n

(
log M2 − (c2 + |Y|) log(n + 1)

)
. (11.78)

Invoking Lemma 11.8, we can upper bound the joint excess-distortion
and error probability for an (n, M1, M2)-code.

Lemma 11.9. There exists an (n, M1, M2)-code such that

Pe,n(D1, D2)

≤ Pr
{

R1,n < R(T̂Xn , D1) or R2,n + c2 log(n + 1)
n

< H(T̂g(Xn))

or R1,n + R2,n < R(R1,n|T̂Xn , D1, D2) + H(T̂g(Xn))
}

. (11.79)

Proof. Set (R1, R2) = (R1,n, R2,n). Consider the following coding
scheme. Given a source xn, the encoder f2 calculates its type
T̂xn . Then, the encoder f2 obtain yn using the deterministic func-
tion yi = g(xi) and its type T̂yn . Now encoder f2 calculates
R(T̂xn , D1) and R(R1,n|T̂xn , D1, D2). If log M1 < nR(T̂xn , D1) + (c1 +
|X |) log(n + 1) or log M2 < nH(T̂yn) + |Y| log(n + 1) or log M1M2 <

nR(R1,n|T̂xn , D1, D2) + nH(T̂yn) + (c1 + c2 + |X | + |Y|) log(n + 1), then
the system declares an error. Otherwise, the encoder f1 sends the type of
xn with at most |X | log(n+1) nats and the encoder f2 sends the type of
yn using at most |Y| log(n + 1) nats. Furthermore, the encoder f2 sends
the index of yn = g(xn) in the type class TT̂yn

. Now, choose B ∈ X n
1 in

Lemma 11.8 and let (zn)∗ = arg minz∈B d1(xn, z). Given (zn)∗, choose
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B((zn)∗) in Lemma 11.8 and let z∗
2 = arg minz2∈B((zn)∗) d2(xn, z2). Fi-

nally, we use the encoder f1 to send the index of z∗
1 and use either

f1 or f2 to send out the index of z∗
2 . Invoking Lemma 11.8, we con-

clude that no error will be made if log M1 ≥ nR(T̂xn , D1) + (c1 +
|X |) log(n + 1), log M2 ≥ nH(T̂yn) + |Y| log(n + 1) and log M1M2 ≥
nR(R1,n|T̂xn , D1, D2) + nH(T̂yn) + (c1 + c2 + |X | + |Y|) log(n + 1). The
proof is now complete.

Recall that (R∗
1, R∗

2) is a boundary rate-pair on the rate-distortion
region of the Fu-Yeung problem. Choose (M1, M2) such that

log M1 = nR∗
1 + L1

√
n + (c1 + |X |) log(n + 1), (11.80)

log M2 = nR∗
2 + L2

√
n + (c2 + |Y|) log(n + 1). (11.81)

It follows from (11.77) and (11.78) that

Ri,n = R∗
i + Li√

n
, i = 1, 2. (11.82)

Recall the definition of the typical set An(PX) in (3.87). The result in
(3.88) states that

Pr
{

T̂Xn /∈ An(PX)
}

≤ 2|X |
n2 . (11.83)

Recall that PY is induced by the source distribution PX and the deter-
ministic function g : X → Y. Thus, given any xn, for each y ∈ Y,

T̂yn(y) − PY (y) = T̂g(xn)(y) − PY (y) (11.84)

=
∑

x:g(x)=y

(
T̂xn(x) − PX(x)

)
. (11.85)

Thus, if T̂Xn ∈ An(PX),

∥T̂Y n − PY ∥∞ ≤ |X |

√
log n

n
. (11.86)
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For xn such that T̂xn ∈ An(PX), applying Taylor’s expansions and
noting that yn = g(xn), we obtain

H(T̂g(xn)) = H(T̂yn) (11.87)

= H(PY ) +
∑

y

(
T̂yn(y) − PY (y)

)
(− log PY (y))

+ O
(
∥T̂yn − PY ∥2

)
(11.88)

=
∑

y

−T̂yn(y) log PY (y) + O

(
log n

n

)
(11.89)

= 1
n

∑
i∈[n]

− log PY (yi) + O

(
log n

n

)
, (11.90)

and

R(R1,n|T̂xn , D1, D2)

= R(R∗
1|PX , D1, D2) − s∗ L1√

n
+ O(|R1,n − R∗

1|2)

+
∑

x

(
T̂xn − PX(x)

)
ȷ(x, g(x)|R∗

1, D1, D2, PX)

+ O
(
∥T̂xn − PX∥2

)
(11.91)

= 1
n

∑
i∈[n]

ȷ(xi, g(xi)|R∗
1, D1, D2, PX) − s∗L1√

n
+ O

( log n

n

)
, (11.92)

where (11.91) follows from Lemma 11.4. Furthermore, for xn such that
T̂xn ∈ An(PX), it follows from (3.90)that

R(T̂xn , D) = 1
n

∑
i∈[n]

ȷ(xi|D, PX) + O

(
log n

n

)
. (11.93)
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Recall that ξn = log n
n . Therefore, invoking Lemma 11.9, we obtain

Pe,n(D1, D2)

≤ Pr
{

R1,n < R(T̂Xn , D1) or R2,n + c2 log(n + 1)
n

< H(T̂g(Xn))

or R1,n + R2,n < H(T̂g(Xn)) + R(R1,n|T̂xn , D1, D2)

and T̂Xn ∈ An(PXY )
}

+ Pr
{

T̂Xn /∈ An(PXY )
}

(11.94)

≤ Pr
{

R1 + L1√
n

<
1
n

∑
i∈[n]

ȷ(Xi|D1, PX) + O(ξn)

or R2 <
1
n

∑
i∈[n]

log 1
PY (Yi)

+ O(ξn)

or R1 + R2 + (1 + s∗)L1 + L2
n

<
1
n

∑
i∈[n]

(
ȷ(Xi, g(Xi)|R1, D1, D2, PX) − log PY (Yi)

)

+ O(ξn)
}

+ 2|X |
n2 . (11.95)

Subsequently, we upper bound (11.95) for different cases of boundary
rate pairs (R∗

1, R∗
2) in Theorem 11.7. For simplicity, let ȷ(x|R∗

1) denote
ȷ(x∗, g(x∗)|R∗

1, D1, D2, PX) for each x ∈ X .

• Case (i) R∗
1 = R(PX , D1) and R∗

2 > R∗
2(PX , D1, D2)

In this case R∗
2 > H(PY ). Thus, it follows from the weak law of

large numbers in Theorem 1.1 that

κ1,n := Pr
{

R∗
2 <

1
n

∑
i∈[n]

log 1
PY (Yi)

+ O(ξn)
}

→ 0 (11.96)
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and

κ2,n := Pr
{

R∗
1 + R∗

2 + (1 + s∗)L1 + L2
n

<
1
n

∑
i∈[n]

(
ȷ(Xi|R∗

1) − log PY (Yi)
)

+ O(ξn)
}

→ 0.

(11.97)

It follows from (11.95) that

Pe,n(D1, D2)

≤ Pr
{

R∗
1 + L1√

n
<

1
n

∑
i∈[n]

ȷ(Xi|D1, PX) + O(ξn)
}

+ 2|X |
n2 + κ1,n + κ2,n (11.98)

≤ Q
(

L1 + O(
√

nξn)√
V(PX , D1)

)
+ 6T(PX , D1)√

nV(PX , D1)

+ 2|X |
n2 + κ1,n + κ2,n, (11.99)

where T(PX , D1) is the third absolute moment of ȷ(X|D1, PX)
(which is finite for DMS) and (11.99) follows by applying the
Berry-Esseen theorem to the first term in (11.98). If we choose
(L1, L2) such that

L1 ≥
√

V(PX , D1)Q−1(ε), (11.100)

then lim supn→∞ Pe,n(D1, D2) ≤ ε as desired.

• Case (ii) R∗
1 = R(PX , D1) and R∗

2 = R∗
2(PX , D1, D2)

In this case, R∗
2 > H(PY ) still holds. Hence, invoking (11.95), we

obtain
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1 − Pe,n(D1, D2)

≥ Pr
{

R∗
1 + L1√

n
≥ 1

n

∑
i∈[n]

ȷ(Xi|D1, PX) + O(ξn),

R∗
1 + R∗

2 + (1 + s∗)L1 + L2√
n

≥

1
n

∑
i∈[n]

(
− log PY (Yi) + ȷ(Xi|R∗

1) + O(ξn)
}

− 2|X |
n2 − κ1,n (11.101)

≥ 1 − Ψ
(
L1 + O(ξn), (1 + s∗)L1 + L2 + O(ξn);

02; V1(R∗
1|PX , D1, D2)

)
(11.102)

− 2|X |
n2 − κ1,n + O

( 1√
n

)
. (11.103)

Hence, if we choose (L1, L2) such that

Ψ
(
L1, (1 + s∗)L1 + L2; 02; V1(R∗

1|PX , D1, D2)
)

≥ 1 − ε,

(11.104)

lim supn→∞ Pe,n(D1, D2) ≤ ε.

• Case (iii) R(PX , D1) < R∗
1 < R∗

1(PX , D1, D2), and
R∗

2 = R∗
1(PX , D1, D2) + H(PY ) − R∗

1

In this case, R∗
2 > H(PY ) holds again. The analysis is similar to

Case (i). It can be verified that if we choose (L1, L2) such that

(1 + s∗)L1 + L2 ≥
√

V(R∗
1|PX , D1, D2)Q−1(ε), (11.105)

lim supn→∞ Pe,n(D1, D2) ≤ ε.

• Case (iv) R∗
1 = R∗

1(PX , D1, D2) and R∗
2 = H(PY )

The analysis is similar to Case (ii). It can be verified that if

Ψ((1 + s∗)L1 + L2, L2; 02; V2(R∗
1, D1, D2|PX)) ≥ 1 − ε,

(11.106)

lim supn→∞ Pe,n(D1, D2) ≤ ε.
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• Case (v) R1 > R∗
1(PX , D1, D2) and R∗

2 = H(PY )
The analysis is similar to Case (i). It can be verified that if

L2 ≥
√

V(PY )Q−1(ε), (11.107)

we have lim supn→∞ Pe,n(D1, D2) ≤ ε.

The achievability proof of Theorem 11.7 is now completed.

11.6.2 Converse

The following type-based strong converse lemma is critical in the con-
verse proof.

Lemma 11.10. Fix c > 0 and a type QX ∈ Pn(PX). For any (n, M1,

M2)-code such that

Pr
{

d1(Xn, X̂n
1 ) ≤ D1, d2(Xn, X̂n

2 ) ≤ D2, Ŷ n = Y n|Xn ∈ TQX

}
≥ exp(−nc), (11.108)

there exists a conditional distribution QX̂1X̂2|X such that

1
n

log M1 ≥ I(QX , QX̂1|X) − ξ1,n, (11.109)
1
n

log M2 ≥ H(QY ) − ξ2,n, (11.110)
1
n

log M1M2 ≥ H(QY ) + I(QY , QX̂1|Y )

+ I(QX|Y , QX̂1X̂2|XY |QY ) − ξ1,n − ξ2,n, (11.111)

where

ξ1,n = |X | log(n + 1) + log n + nc

n
, (11.112)

ξ2,n = 2ξ1,n + 2(log n + nc) + |X | · |Y| log(n + 1)
n

+ log |Y| + hb(1/n)
n

. (11.113)

and QX|Y , QX̂1|Y , QX̂1X̂2|XY are induced by QX , QX̂1X̂2|X and the
deterministic function y = g(x).
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Furthermore, the expected distortions are bounded as

EQX×QX̂1X̂2|X
[d1(X, X̂1)] ≤ D1 + d1

n
:= D1,n, (11.114)

EQX×QX̂1X̂2|X
[d2(X, X̂2)] ≤ D2 + d2

n
:= D2,n. (11.115)

The proof of Lemma 11.10 is similar to Lemma 3.8 for the rate-
distortion problem and Lemma 10.10 for the successive refinement
problem. The main technique is the perturbation approach by Gu and
Effros [45] and the generalization with method of types [127].

Let c = log n
n , then we have

ξ1,n = |X | log(n + 1) + 2 log n

n
, (11.116)

ξ2,n = 8 log n + (|X | · |Y| + 2|X |) log(n + 1)
n

+ log |Y| + hb(1/n)
n

. (11.117)

Define

Ri,n = 1
n

(log Mi + nξi,n), i ∈ [2]. (11.118)

Invoking Lemma 11.10, we can prove the following lower bound on
the joint excess-distortion and error probability for any (n, M1, M2)-
code.

Lemma 11.11. Any (n, M1, M2)-code satisfies that

Pe,n(D1, D2)

≥ Pr
{

R1,n < R(T̂Xn , D1,n) or R2,n < H(T̂g(Xn)) or

R1,n + R2,n < R(R1,n|T̂Xn , D1,n, D2,n) + H(T̂g(Xn))
}

. (11.119)

The rest of the converse proof is omitted since it is analogous to the
achievability proof where we use Taylor expansions similar to (11.90) to
(11.93) and apply (multi-variate) Berry-Esseen theorems for each case
of boundary rate pairs (R∗

1, R∗
2) in Theorem 11.7.
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Gray-Wyner Problem

This section studies the lossy Gray-Wyner problem where three en-
coders cooperatively compress two correlated source sequences so that
each of the two decoders could recover a source sequence reliably in
a lossy manner. The lossy Gray-Wyner problem is a paradigm of the
multiterminal lossy source coding problem where there exist multiple
source sequences, multiple encoders and multiple decoders. The problem
significantly generalizes the rate-distortion problem by introducing one
more source sequence, two more encoders and one more decoder.

The rate-distortion region for the problem was derived by Gray
and Wyner [43] and this is why the problem is so named. An auxiliary
random variable is needed to characterize the rate-distortion region of
the lossy Gray-Wyner problem, which makes it significantly different
from all problems discussed in previous sections. The second-order
asymptotics for the lossless version of the Gray-Wyner problem was
derived by Watanabe [127]. This section presents the generalization of
[127] to the lossy case, analogous to the generalization of second-order
asymptotics from lossless source coding in Section 2 (cf. [49], [109]) to
the rate-distortion problem in Section 3 (cf. [54], [70]).

192
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The Gray-Wyner problem is interesting beyond data compression. In
the Gray-Wyner problem, there is an encoder who transmits messages
to both decoders and its rate is known as the common rate. Given
rates of the other two encoders, the minimal common rate equals a
measure of common information of two correlated random variables [125].
Leveraging results on lossy common information by Viswanatha et al.
[125] and considering rate triples on the Pangloss plane where the sum
rate is constrained, the second-order asymptotic result is simplified and
numerically illustrated. This section is largely based on [150].

12.1 Problem Formulation and Asymptotic Result

12.1.1 Problem Formulation

The lossy Gray-Wyner source coding problem [43] is shown in Figure
12.1. There are three encoders and two decoders. Encoder fi has access
to a source sequence pair (Xn, Y n) and compresses it into a message Si.
Decoder ϕ1 aims to recover source sequence Xn under fidelity criterion
d1 and distortion level D1 with the encoded message S0 from encoder
f0 and S1 from encoder f1. Similarly, the decoder ϕ2 aims to recover Y n

with messages S0 and S2. We consider a correlated memoryless source
(Xn, Y n) generated i.i.d. from a joint distribution PXY defined on a
finite alphabet X × Y.

(Xn, Y n)

f2

f0

f1 ϕ1

ϕ2
S2

S0

S1

(Ŷ n, D2)

(X̂n, D1)

Figure 12.1: System model for the lossy Gray-Wyner source coding problem [43].
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Definition 12.1. An (n, M0, M1, M2)-code for lossy Gray-Wyner source
coding consists of three encoders:

f0 : X n × Yn → M0 := [M0], (12.1)
f1 : X n × Yn → M1 := [M1], (12.2)
f2 : X n × Yn → M2 := [M2], (12.3)

and two decoders:

ϕ1 : M0 × M1 → X̂ n, (12.4)
ϕ2 : M0 × M2 → Ŷn. (12.5)

Let d1 : X × X̂ → [0, ∞) and d2 : Y × Ŷ → [0, ∞) be two
bounded distortion measures. Let d1 := maxx,x̂ d1(x, x̂) and d1 :=
minx,x̂:d1(x,x̂)>0 d1(x, x̂) denote the maximal and minimal distortion, re-
spectively. Similarly, we define d2 and d2. Furthermore, let the average
distortion between xn and x̂n be defined as d1(xn, x̂n) := 1

n

∑n
i=1 d1(xi,

x̂i) and the average distortion d2(yn, ŷn) be defined similarly.

12.1.2 Rate-Distortion Region

The rate-distortion region of the lossy Gray-Wyner problem is defined
as follows.

Definition 12.2. A rate triplet (R0, R1, R2) is said to be (D1, D2)-
achievable if there exists a sequence of (n, M0, M1, M2)-codes such that

lim sup
n→∞

1
n

log M0 ≤ R0, (12.6)

lim sup
n→∞

1
n

log M1 ≤ R1, (12.7)

lim sup
n→∞

1
n

log M2 ≤ R2, (12.8)

and

lim sup
n→∞

E
[
d1(Xn, X̂n)

]
≤ D1, (12.9)

lim sup
n→∞

E
[
d2(Y n, Ŷ n)

]
≤ D2. (12.10)

The closure of the set of all (D1, D2)-achievable rate triplets is the
(D1, D2)-optimal rate region and denoted as R(PXY , D1, D2).
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Gray and Wyner characterized the (D1, D2)-achievable rate region
in [43]. Let P(PXY ) be the set of all joint distributions PXY W ∈ P(X ×
Y ×W) such that the X ×Y-marginal of PXY W is the source distribution
PXY and |W| ≤ |X ||Y| + 2. Denote the X × W marginal distribution
as PXW and the Y × W marginal distribution as PY W .

Theorem 12.1. The (D1, D2)-achievable rate region for lossy Gray-
Wyner source coding is

R(PXY , D1, D2)

=
⋃

PXY W ∈P(PXY )

{
(R0, R1, R2) : R0 ≥ I(PXY , PXY |W )

R1 ≥ RX|W (PXW , D1), R2 ≥ RY |W (PY W , D2)
}

, (12.11)

where RX|W (PXW , D1) and RY |W (PY W , D2) are conditional rate-dis-
tortion functions [38, pp. 275, Chapter 11], i.e.,

RX|W (PXW , D1) = min
PX̂|XW :E[d1(X,X̂)]≤D1

I(PX|W , PX|W X̂ |PW ), (12.12)

and RY |W (PY W , D2) is defined similarly.

Similar to the rate-distortion and the Kaspi problems, the rate-
distortion region in Theorem 12.1 still hold under the vanishing joint
excess-distortion probability criterion, i.e., when limn→∞ Pe,n(D1, D2) =
0, where

Pe,n(D1, D2) := Pr
{

d1(Xn, X̂n) > D1 or d2(Y n, Ŷ n) > D2
}

. (12.13)

An equivalent form of the first-order coding region for Gray-Wyner
problem was given in [38, Exercise 14.9] and states that

R(PXY , D1, D2) =
⋃

PW |XY ,PX̂1|XW ,PŶ |Y W :
E[d1(X,X̂)]≤D1, E[d2(Y,Ŷ )]≤D2{

(R0, R1, R2) : R0 ≥ I(PXY , PXY |W ),

R1 ≥ I(PX|W , PX|W X̂ |PW ), R2 ≥ I(PY |W , PY |W Ŷ |PW )
}

. (12.14)
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Given any rates (R1, R2), let the minimal common rate be defined
as

R0(R1, R2|PXY , D1, D2)
:= min{R0 : (R0, R1, R2) ∈ R(PXY , D1, D2)} (12.15)
= min

PXY W ∈P(PXY ):
R1≥RX|W (PXW ,D1)
R2≥RY |W (PY W ,D2)

I(PXY , PXY |W ) (12.16)

= min
PW |XW PX̂1|XW PŶ |Y W :

E[d1(X,X̂)]≤D1, E[d2(Y,Ŷ )]≤D2
I(PX|W ,PX|W X̂ |PW )≤R1

I(PY |W ,PY |W Ŷ |PW )≤R2

I(PXY , PXY |W ), (12.17)

where (12.16) follows from Theorem 12.1 and (12.17) follows from
(12.14). Given distortion levels (D1, D2), a rate triple (R∗

0, R∗
1, R∗

2) lies
on the boundary of the rate-distortion region if and only if R∗

0 =
R0(R∗

1, R∗
2, D1, D2), which is of interest in the study of second-order

asymptotics.

12.2 Rates-Distortions-Tilted Information Density

Analogous to the derivation of second-order asymptotics for the rate-
distortion problem, the definition of a tilted information density is
critical and is usually related to the rate-distortion function (region).
For the lossy Gray-Wyner problem, a slight obstacle is encountered on
whether to define the rates-distortions-tilted information density using
the formula of the minimal common rate in (12.16) that follows from
Theorem 12.1 or the formula in (12.17) that follows from the equivalent
form of the rate-distortion region in (12.14). This section shows that
the latter is more amenable since it does not involve optimization in
the conditional rate-distortion function in (12.12).

We now introduce the rates-distortions-tilted information density for
the lossy Gray-Wyner problem. Since R(PXY , D1, D2) is a convex set
[43], the minimization in (12.16) is attained when R1 = RX|W (PXW , D1)
and R2 = RY |W (PY W , D2) for some optimal test channel PW |XY un-
less R0(R1, R2|PXY , D1, D2) = 0 or ∞. To avoid degenerate cases,
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assume that R0(R1, R2|PXY , D1, D2) > 0 is finite and R(PXY , D1, D2)
is smooth at a boundary rate triplet (R∗

0, R∗
1, R∗

2) of our interest, i.e.,

ξ∗
i := −∂R0(R1, R2|PXY , D1, D2)

∂Ri

∣∣∣∣
(R1,R2)=(R∗

1 ,R∗
2)

, (12.18)

λ∗
i := −∂R0(R1, R2|PXY , D′

1, D′
2)

∂D′
i

∣∣∣∣
(D′

1,D′
2)=(D1,D2)

, (12.19)

are well-defined for i ∈ [2]1. Note that ξ∗
i , λ∗

i ≥ 0 since
R0(R1, R2|PXY , D1, D2) is non-increasing in (R1, R2, D1, D2). Assume
that all derivatives (ξ∗

1 , ξ∗
2 , λ∗

1, λ∗
2) are strictly positive, which holds for

all rate triplets (R∗
0, R∗

1, R∗
2) such that R∗

0 = R0(R∗
1, R∗

2|PXY , D1, D2) is
positive and finite.

Let (P ∗
W |XY P ∗

X̂|XW
P ∗

Ŷ |Y W
) be a tuple of optimal test channels2 that

achieves R0(R∗
1, R∗

2|PXY , D1, D2) in (12.17). Let P ∗
X̂|W , P ∗

Ŷ |W , P ∗
W be

the induced (conditional) distributions. Given any (x, y, w) ∈ X × Y ×
W, define the following two conditional distortion-tilted information
densities:

ȷ(x, D1|w) := log 1∑
x̂ P ∗

X̂|W (x̂|w) exp
(

λ∗
1

ξ∗
1

(D1 − d1(x, x̂))
) , (12.20)

ȷ(y, D2|w) := log 1∑
ŷ P ∗

Ŷ |W (ŷ|w) exp
(

λ∗
2

ξ∗
2

(D2 − d2(y, ŷ))
) . (12.21)

The rates-distortions-tilted information density for the lossy Gray-
Wyner problem is defined as follows.

Definition 12.3. For a boundary rate triplet (R∗
0, R∗

1, R∗
2), given any

(D1, D2), the rates-distortions-tilted information density for lossy Gray-
Wyner source coding is defined as

1Due to these regularity conditions, our result in Section 2 does not hold for
some singular points (e.g., where the derivatives do not exist) of the rate-distortion
region, as in the lossless case by Watanabe in [127].

2The following tilted information density is still well-defined even if the optimal
test channel is not unique due to similar arguments as [127, Lemma 2].
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ȷ(x, y|R∗
1, R∗

2, D1, D2) := − log
(∑

w

P ∗
W (w) exp

(
ξ∗

1(R∗
1 − ȷ(x, D1|w))

+ ξ∗
2(R∗

2 − ȷ(y, D2|w))
))

. (12.22)

Recall that there are two equivalent characterizations of the Gray-
Wyner region, one defined in terms of conditional rate-distortion func-
tions in Theorem 12.1 and the other defined solely in terms of (con-
ditional) mutual information quantities in (12.14). For the lossless
Gray-Wyner problem [127], the two regions are exactly the same. The
tilted information densities derived based on these two regions are subtly
different. We find that the tilted information density derived from the
second region in (12.14) is more amenable to subsequent second-order
analyses on the Pangloss plane (Lemma 12.6). Thus the “correct” non-
asymptotic fundamental quantity for the lossy Gray-Wyner problem is
the rates-distortions-tilted information density in (12.22).

The rates-distortions-tilted information density for lossy Gray-Wyner
source coding has the following properties.

Lemma 12.2. The following properties hold.

1. The minimal common rate function equals the following expecta-
tion of the rate-distortions-tilted information density, i.e.,

R0(R∗
1, R∗

2|PXY , D1, D2)
= EPXY

[ȷ(X, Y |R∗
1, R∗

2, D1, D2, PXY )] , (12.23)

2. For (w, x̂, ŷ) such that P ∗
W (w)P ∗

X̂|W (x̂|w)P ∗
Ŷ |W (ŷ|w) > 0,

ȷ(x, y|R∗
1, R∗

2, D1, D2, PXY )

= log
P ∗

W |XY (w|x, y)
P ∗

W (w) + ξ∗
1 log

P ∗
X̂|XW

(x̂|x, w)
P ∗

X̂|W (x̂|w) − ξ∗
1R∗

1

+ ξ∗
2 log

P ∗
Ŷ |Y W

(ŷ|y, w)
P ∗

Ŷ |W (ŷ|w) − ξ∗
2R∗

2

+ λ∗
1(d1(x, x̂) − D1) + λ∗

2(d2(y, ŷ) − D2). (12.24)
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Lemma 12.2 generalizes [127, Lemma 1] for the lossless Gray-Wyner
problem and [20, Lemma 1.4] for the rate-distortion problem.

In the following lemma, we relate the derivative of the minimum
common rate function with the rates-distortions-tilted information
density. Recall that given a joint probability distribution PXY ∈ P(X ×
Y), m = | supp(PXY )| and Γ(PXY ) be the sorted distribution such that
for each i ∈ [m], Γi(PXY ) = PXY (xi, yi) is the i-th largest value of
{PXY (x, y) : (x, y) ∈ X × Y}. For any QXY , let Q∗

W |XY Q∗
X̂|XW

Q∗
Ŷ |Y W

be the optimal test channel for R0(R∗
1, R∗

2|Γ(QXY ), D1, D2) in (12.17).
Let Q∗

W , Q∗
X̂|W , Q∗

Ŷ |W be the corresponding induced distributions.

Lemma 12.3. Suppose that for all QXY in some neighborhood of PXY ,
supp(Q∗

W ) ⊂ supp(P ∗
W ), supp(Q∗

X̂|W ) ⊂ supp(P ∗
X̂|W ) and supp(Q∗

Ŷ |W )
⊂ supp(P ∗

X̂|W ). Then for i ∈ [1 : m − 1],

∂R0(R∗
1, R∗

2|Γ(QXY ), D1, D2)
∂Γi(QXY )

∣∣∣∣
QXY =PXY

= ȷ(xi, yi|R∗
1, R∗

2, D1, D2, Γ(PXY ))
− ȷ(xm, ym|R∗

1, R∗
2, D1, D2, Γ(PXY )). (12.25)

Lemma 12.3 generalizes [127, Lemma 3] for the lossless Gray-Wyner
problem and [66, Theorem 2.2] for the rate-distortion problem.

12.3 Second-Order Asymptotics

12.3.1 Result

Let (R∗
0, R∗

1, R∗
2) be a boundary rate triplet on the rate-distortion region

of the lossy Gray-Wyner problem.

Definition 12.4. Given any ε ∈ (0, 1), a triplet (L0, L1, L2) is said to be
second-order (R∗

0, R∗
1, R∗

2, D1, D2, ε)-achievable if there exists a sequence
of (n, M0, M1, M2)-codes such that
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lim sup
n→∞

1√
n

(log M0 − nR0) ≤ L0, (12.26)

lim sup
n→∞

1√
n

(log M1 − nR1) ≤ L1, (12.27)

lim sup
n→∞

1√
n

(log M2 − nR2) ≤ L2, (12.28)

and

lim sup
n→∞

Pe,n(D1, D2) ≤ ε. (12.29)

The closure of the set of all second-order (R∗
0, R∗

1, R∗
2, D1, D2, ε)-achiev-

able triplets is called the second-order coding region and denoted as
L(R∗

0, R∗
1, R∗

2, D1, D2, ε).

Note that in Definition 12.2 of the rate-distortion region, the ex-
pected distortion measure is considered, whereas in Definition 12.4,
the excess-distortion probability is considered. This is consistent with
other lossy source coding problems studied in previous sections and
the joint-excess-distortion probability allows us to derive second-order
asymptotics that provides deeper understanding of the tradeoff among
encoders beyond the rate-distortion region.

Let the rates-distortions-dispersion function be

V(R∗
1, R∗

2|PXY , D1, D2)
:= Var [ȷ(X, Y |R∗

1, R∗
2, D1, D2, PXY )] . (12.30)

For any boundary rate triplet (R∗
0, R∗

1, R∗
2) ∈ R(PXY , D1, D2), we im-

pose the following conditions:

1. R∗
0 = R0(R∗

1, R∗
2|PXY , D1, D2) is positive and finite;

2. For i ∈ [2], the derivatives ξi in (12.18) and λ∗
i in (12.19) are

well-defined and positive;

3. (R1, R2, QXY ) 7→ R0(R1, R2|QXY , D1, D2) is twice differentiable
in the neighborhood of (R∗

1, R∗
2, PXY ) and the derivatives are

bounded;

4. The dispersion function V(R∗
1, R∗

2|PXY , D1, D2) is finite.
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Theorem 12.4. Under conditions (1) to (3), given any ε ∈ (0, 1), the
second-order coding region satisfies

L(R∗
0, R∗

1, R∗
2, D1, D2, ε)

=
{

(L0, L1, L2) : L0 + ξ∗
1L1 + ξ∗

2L2

≥
√

V(R∗
1, R∗

2|PXY , D1, D2)Q−1(ε)
}

. (12.31)

Theorem 12.4 is proved in Section 12.4. In the achievability proofs,
we derive a type covering lemma (cf. Lemma 12.7) designed specifically
for the lossy Gray-Wyner source coding problem. While the proof of this
type covering lemma itself hinges on various other works, e.g., [79], [82],
[127], piecing the ingredients together and ensuring that the resultant
asymptotic results are tight is non-trivial. One of the main challenges
here in proving the type covering lemma is the requirement to establish
the uniform continuity of the conditional rate-distortion function in both
the source distribution and distortion level. The converse proof is done
similarly to the successive refinement or the Fu-Yeung problem where
we first derive a type-based strong converse, then use Taylor expansions
of the minimal common rate function of empirical distributions and
finally apply the Berry-Esseen theorem (cf. Theorem 1.3).

12.3.2 Specialization to the Pangloss Plane

In general, it is not easy to calculate L(R∗
0, R∗

1, R∗
2, D1, D2, ε). Here we

consider calculating L(R∗
0, R∗

1, R∗
2, D1, D2, ε) for a rate triplet (R∗

0, R∗
1,

R∗
2) on the Pangloss plane [43]. It is shown in Theorem 6 in [43] that

(R0, R1, R2) is (D1, D2)-achievable if

R0 + R1 + R2 ≥ R(PXY , D1, D2), (12.32)
R0 + R1 ≥ R(PX , D1), (12.33)
R0 + R2 ≥ R(PY , D2), (12.34)

where R(PX , D1), R(PY , D2) are rate-distortion functions (cf. (3.7))
and R(PXY , D1, D2) is the following joint rate-distortion function

R(PXY , D1, D2)
:= min

PX̂Ŷ |XY :E[d1(X,X̂)]≤D1, E[d2(Y,Ŷ )]≤D2
I(PXY , PXY |X̂Ŷ ). (12.35)
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The set of (D1, D2)-achievable rate triplets (R0, R1, R2) satisfying R0 +
R1 + R2 = R(PXY , D1, D2) is called the Pangloss plane, denoted as
Rpgp(PXY , D1, D2), i.e.,

Rpgp(PXY , D1, D2)

:=
{

(R0, R1, R2) : (R0, R1, R2) ∈ R(PXY , D1, D2),

R0 + R1 + R2 = R(PXY , D1, D2)
}

. (12.36)

Let P ∗
X̂Ŷ |XY

be an optimal conditional distribution that achieves
R(PXY , D1, D2). Let P ∗

X̂Ŷ
be induced by P ∗

X̂Ŷ |XY
and PXY . Define the

following distortions-tilted information density:

ıXY (x, y|PXY , D1, D2)

:= − logEP ∗
X̂Ŷ

[
exp

(
ν∗

1(D1 − d1(x, X̂)) + ν∗
2(D2 − d2(y, Ŷ ))

)]
,

(12.37)

where

ν∗
1 : = −∂R(PXY , D, D2)

∂D

∣∣∣∣
D=D1

, (12.38)

ν∗
2 : = −∂R(PXY , D1, D)

∂D

∣∣∣∣
D=D2

. (12.39)

Lemma 12.5. The properties of ıXY (·|PXY , D1, D2) include

• The joint rate-distortion function is the expectation of the joint
tilted information density, i.e.,

R(PXY , D1, D2) = EPXY
[ıXY (X, Y |PXY , D1, D2)] . (12.40)

• For each (x̂, ŷ) ∈ supp(PX̂Ŷ )∗,

ıXY (x, y|PXY , D1, D2) = log
P ∗

X̂Ŷ |XY
(x̂, ŷ|x, y)

P ∗
X̂Ŷ

(x̂, ŷ)

+ ν∗
1(d1(x, x̂) − D1) + ν∗

2(d2(y, ŷ) − D2). (12.41)

Lemma 12.5 can be proved similarly to [127, Lemma 1] for the
lossless Gray-Wyner problem and [20, Lemma 1.4] for the rate-distortion

Full text available at: http://dx.doi.org/10.1561/0100000134



12.3. Second-Order Asymptotics 203

problem. By considering a fixed rate triplet on the Pangloss plane, we
can relate ȷ(x, y|R∗

1, R∗
2, D1, D2, PXY ) to ıXY (x, y|PXY , D1, D2).

Lemma 12.6. When a boundary rate-triple lies in the Pangloss plane,
i.e., (R∗

0, R∗
1, R∗

2) ∈ Rpgp(PXY , D1, D2) and the common rate R∗
0 > 0,

ȷ(x, y|R∗
1, R∗

2, D1, D2, PXY )
= ı(x, y|D1, D2, PXY ) − R∗

1 − R∗
2. (12.42)

The proof of Lemma 12.6 invokes Lemma 12.2. Besides, we use an
idea from [125] in which it was shown that the following Markov chains
hold for the optimal test channels P ∗

W |XY achieving R(R∗
1, R∗

2|PXY , D1,

D2) and P ∗
X̂|XW

as well as P ∗
Ŷ |Y W

achieving conditional rate-distortion
functions RX|W (P ∗

XW , D1) and RY |W (P ∗
Y W , D2):

X̂ → W → Ŷ , (12.43)
(X, Y ) → (X̂, Ŷ ) → W, (12.44)

X̂ → (X, Y, W ) → Ŷ , (12.45)
X̂ → (X, W ) → Y, (12.46)
Ŷ → (Y, W ) → X. (12.47)

Invoking Lemma 12.6, for a rate triplet (R∗
0, R∗

1, R∗
2) on the Pangloss

plane, the expression of the second-order coding region is simplified as
follows.

Proposition 12.1. When (R∗
0, R∗

1, R∗
2) ∈ Rpgp(PXY , D1, D2) and the

conditions in Theorem 12.4 are satisfied, we have

L(R∗
0, R∗

1, R∗
2, D1, D2, ε)

=
{

(L0, L1, L2) : L0 + L1 + L2

≥
√

V(R∗
1, R∗

2|PXY , D1, D2)Q−1(ε)
}

, (12.48)

where the rate-dispersion function [70] is

V(R∗
1, R∗

2|PXY , D1, D2)
= Var[ȷ(X, Y |R∗

1, R∗
2, D1, D2, PXY )] (12.49)

= Var[ı(X, Y |D1, D2, PXY )]. (12.50)
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12.3.3 A Numerical Example for the Pangloss Plane

Consider a doubly symmetric binary source (DSBS), where X = Y =
{0, 1}, PXY (0, 0) = PXY (1, 1) = 1−p

2 and PXY (0, 1) = PXY (1, 0) = p
2

for p ∈ [0, 1
2 ]. We consider X̂ = Ŷ = {0, 1} and Hamming distortion

for both sources, i.e., d1(x, x̂) = 1(x = x̂) and d2(y, ŷ) = 1(y = ŷ).
Furthermore, let R1 = R2 = R and D1 = D2 = D. Recall that Hb(δ) =
−δ log(δ) − (1 − δ) log(1 − δ) is the binary entropy function. Define
f(x) := −x log x. Let p1 := 1

2 − 1
2
√

1 − 2p. It follows from [9, Exercise
2.7.2] that

R(PXY , D, D)

=
{

1 + Hb(p) − 2Hb(D) 0 ≤ D ≤ p1,

f(1 − p) − 1
2 (f(2D − p) + f(2(1 − D) − p)) p1 ≤ D ≤ 1

2 .

(12.51)

It was shown in [43, Example 2.5(A)] that for 0 ≤ D ≤ ∆ ≤ p1, if
R0 = R(PXY , ∆, ∆), R1 = R2 = Hb(∆) − Hb(D), then (R0, R1, R2) ∈
Rpgp(PXY , D, D). When D ≤ p1, the joint (D, D)-tilted information
density satisfies

ıXY (0, 0|PXY , D, D)
= ıXY (1, 1|PXY , D, D) (12.52)

= log 1
(2p − 1)D − (2p − 1)D2 + 1

2(1 − p)
− 2Hb(D), (12.53)

ıXY (0, 1|PXY , D, D)
= ıXY (1, 0|PXY , D, D) (12.54)

= log 1
(2p − 1)D2 − (2p − 1)D + 1

2p
− 2Hb(D). (12.55)
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Hence, the joint dispersion function satisfies

Var[ıXY (X, Y |PXY , D, D)]

=
∑
x,y

PXY (x, y) (ıXY (x, y|PXY , D, D) − R(PXY , D, D))2 (12.56)

= (1 − p)
(

log 1
(2p − 1)D − (2p − 1)D2 + 1

2(1 − p)
− 1 − Hb(p)

)2

+ p

(
log 1

(2p − 1)D2 − (2p − 1)D + 1
2p

− 1 − Hb(p)
)2

. (12.57)

12.4 Proof of Second-Order Asymptotics

12.4.1 Achievability

We first prove that for any given joint type QXY ∈ Pn(X × Y), there
exists an (n, M0, M1, M2)-code such that the excess-distortion proba-
bility is mainly due to the incorrect decoding of side information W .
To do so, we present a novel type covering lemma for the lossy Gray-
Wyner problem. Using this result, we then prove an upper bound of the
excess-distortion probability for the (n, M0, M1, M2)-code. Finally, we
establish the achievable second-order coding region by estimating this
probability.

Define four constants

c0 = (3|X ||Y||W| + 4) , (12.58)
c′

0 = c0 + |X ||Y|, (12.59)

c1 =
(

11d1
d1

|X ||Y||W| + 3|X ||W||X̂ | + 5
)

, (12.60)

c2 =
(

11d2
d2

|X ||Y||W| + 3|Y||W||Ŷ| + 5
)

. (12.61)

The following type covering lemma is critical for second-order analysis
for the lossy Gray-Wyner problem.

Lemma 12.7. Let n satisfy (n + 1)4 > n log |X ||Y|, log n ≥
|X ||W||X̂ | log |X |d1

D1
, log n ≥ |Y||W||Ŷ| log |Y|d2

D2
, and log n ≥ log |X̂ |

|Y| . Given
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a joint type QXY ∈ Pn(X × Y), for any rate pair (R1, R2) ∈ R2
+ such

that R0(R1, R2|QXY , D1, D2) is achievable by some test channel, there
exists a conditional type QW |XY ∈ Vn(W, QXY ) such that the following
holds:

• There exists a set Cn ⊂ TQW
(QW is induced by QXY and QW |XY )

such that

– For any (xn, yn) ∈ TQXY
, there exists a wn ∈ Cn whose joint

type with (xn, yn) is QXY W , i.e., (xn, yn, wn) ∈ TQXY W
.

– The size of Cn is upper bounded by

1
n

log |Cn| ≤ R0(R1, R2|QXY , D1, D2) + c0
log(n + 1)

n
.

(12.62)

• For each wn ∈ TQW |XY
(xn, yn), there exist sets BX̂(wn) ∈ X̂ n and

BŶ (wn) ∈ Ŷn satisfying

– For each (xn, yn) ∈ TQXY |W (wn), there exists x̂n ∈ BX̂(wn)
and ŷn ∈ BŶ (wn) such that d1(xn, x̂n) ≤ D1 and
d2(yn, ŷn) ≤ D2,

– The sizes of BX̂(wn) and BŶ (wn) are upper bounded as

1
n

log |BX̂(wn)| ≤ R1 + c1
log n

n
, (12.63)

1
n

log |BŶ (wn)| ≤ R2 + c2
log n

n
. (12.64)

Lemma 12.7 is proved by combining a few ideas from the literature:
a type covering lemma for the conditional rate-distortion problem
(modified from Lemma 4.1 in [22] for the standard rate-distortion
problem and Lemma 8 in [82] for the successive refinement problem),
a type covering lemma for the common side information for the Gray-
Wyner problem (Lemma 4 in [127]) and finally, a uniform continuity
lemma for the conditional rate-distortion function (modified from [82],
[88]). The proof of Lemma 12.7 adopts similar ideas as the proof of the
first-order coding region [43] and is available in [150, Appendix F]. The
main idea is that we first send the common information via the common
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link carrying S0 and then we consider two conditional rate-distortion
problems on the two private links carrying S1, S2 using the common
information as the side information.

Invoking Lemma 12.7, we show that there exists an (n, M0, M1, M2)-
code whose excess-distortion probability can be upper bounded as
follows. Recall the definitions of c′

0 in (12.59), c1 in (12.60) and c2 in
(12.61). Define three rates

R0,n = 1
n

log M0 − c′
0
log(n + 1)

n
, (12.65)

R1,n = 1
n

log M1 − c1
log n

n
, (12.66)

R2,n = 1
n

log M2 − c2
log n

n
. (12.67)

Lemma 12.8. There exists an (n, M0, M1, M2)-code such that

Pe,n(D1, D2) ≤ Pr
{

R0,n < R0(R1,n, R2,n|T̂XnY n , D1, D2)
}

. (12.68)

The proof of Lemma 12.8 is similar to [127, Lemma 5] and available
in [150, Appendix J].

Recall the definition of the typical set An(PXY ) in (9.77) and the
result in (9.78) that

Pr
{

T̂XnY n /∈ An(PXY )
}

≤ 2|X ||Y|
n2 . (12.69)

For a rate triplet (R∗
0, R∗

1, R∗
2) satisfying conditions in Theorem 12.4, let

1
n

log M0 = R0(R∗
1, R∗

2|PXY , D1, D2) + L0√
n

+ c′
0
log(n + 1)

n
, (12.70)

1
n

log M1 = R∗
1 + L1√

n
+ c1

log n

n
, (12.71)

1
n

log M2 = R∗
2 + L2√

n
+ c2

log n

n
. (12.72)

It follows that

Ri,n = R∗
i + Li√

n
, i = 0, 1, 2. (12.73)

In subsequent analyses, for ease of notation, we use ȷ(Xi, Yi) to
denote ȷ(Xi, Yi|R∗

1, R∗
2, D1, D2, PXY ). From the conditions in Theo-

rem 12.4, the second derivatives of the minimal sum rate function
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R0(R1, R2|PXY , D1, D2) with respect to (R1, R2, PXY ) are bounded
around a neighborhood of (R∗

1, R∗
2, PXY ). Hence, for any T̂xnyn ∈

An(PXY ), for large n, invoking Lemma 12.3 and applying Taylor’s
expansion for R0(R1,n, R2,n|T̂xnyn , D1, D2), we obtain:

R0(R1,n, R2,n|T̂xnyn , D1, D2)

= R0(R∗
1, R∗

2|PXY , D1, D2) − ξ∗
1

L1√
n

− ξ∗
2

L2√
n

+
m∑

i=1

(
λi(T̂xnyn) − λi(PXY )

) (
ȷ(xi, yi) − ȷ(xm, ym)

)
+ O

(
∥λ(T̂xnyn) − Γ(PXY )∥2

)
+ O

(
(R1,n − R∗

1)2 + (R2,n − R∗
2)2
)

(12.74)

= R0(R∗
1, R∗

2|PXY , D1, D2) − ξ∗
1

L1√
n

− ξ∗
2

L2√
n

+ O

( log n

n

)
+
∑
x,y

(
T̂xnyn(x, y) − PXY (x, y)

)
ȷ(x, y) (12.75)

≤
∑
x,y

QXY (x, y)ȷ(x, y) − ξ∗
1

L1√
n

− ξ∗
2

L2√
n

+ O

( log n

n

)
(12.76)

= 1
n

n∑
i=1

ȷ(xi, yi) − ξ∗
1

L1√
n

− ξ∗
2

L2√
n

+ O

( log n

n

)
, (12.77)

where (12.76) follows from Lemma 12.2 and the definition of the typical
set An(PXY ) in (9.77).

Define ηn = log n
n . Invoking Lemma 12.8, we can upper bound the

excess-distortion probability as follows:

Pe,n(D1, D2)

≤ Pr
{

R0,n < R0(R1,n, R2,n|T̂XnY n , D1, D2)
}

(12.78)

≤ Pr
{

T̂XnY n ∈ An(PXY ), R0,n < R0(R1,n, R2,n|T̂XnY n , D1, D2)
}

+ Pr
{

T̂XnY n /∈ An(PXY )
}

(12.79)

≤ Pr
{

R0,n <
1
n

n∑
i=1

ȷ(Xi, Yi) − ξ∗
1

L1√
n

− ξ∗
2

L2√
n

+ O(ηn)
}

+ 2|X ||Y|
n2 (12.80)
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= Pr
{

L0√
n

+ ξ∗
1

L1√
n

+ ξ∗
2

L2√
n

+ O(ηn) <
1
n

n∑
i=1

(
ȷ(Xi, Yi)

− R0(R∗
1, R∗

2|PXY , D1, D2)
)}

+ 2|X ||Y|
n2 (12.81)

≤ Q

L0 + ξ∗
1L1 + ξ∗

2L2 + O (
√

nηn)√
V(R∗

1, R∗
2|PXY , D1, D2)

+ 6T(R∗
1, R∗

2, D1, D2)√
nV3/2(R∗

1, R∗
2, D1, D2)

+ 2|X ||Y|
n2 , (12.82)

where (12.82) follows from the Berry-Esseen Theorem and T(R∗
1, R∗

2, D1,

D2) is third absolute moment of the rates-distortions-tilted information
density ȷ(X, Y ), which is finite for DMS from the conditions in Theorem
12.4. Therefore, if (L0, L1, L2) satisfies

L0 + ξ∗
1L1 + ξ∗

2L2 ≥
√

V(R∗
1, R∗

2|PXY , D1, D2)Q−1(ε), (12.83)

then lim supn→∞ Pe,n(D1, D2) ≤ ε.

12.4.2 Converse

We follow the method of types, similar to the proof of the lossless case
in [127] and to the converse proof of the successive refinement and
Fu-Yeung problem in previous sections. We first establish a type-based
strong converse and use it to derive a lower bound on excess-distortion
probability Pe,n(D1, D2). Subsequently, we use a Taylor expansion and
apply the Berry-Esseen Theorem to obtain an outer region expressed
essentially using V(R∗

1, R∗
2|PXY , D1, D2).

We now consider an (n, M0, M1, M2)-code for the correlated source
(Xn, Y n) with joint distribution UTQXY

(xn, yn) = |TQXY
|−1, the uniform

distribution over the type class TQXY
.

Lemma 12.9. If the non-excess-distortion probability satisfies

Pr
{

d1(Xn, X̂n) ≤ D1, d2(Y n, Ŷ n) ≤ D2|(Xn, Y n) ∈ TQXY

}
≥ exp(−nα) (12.84)
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for some positive number α, then for n large enough such that log n ≥
max{d1, d2} log |X |, there exists a conditional distribution QW |XY with
|W| ≤ |X ||Y| + 2 such that

1
n

log M0 ≥ I(X, Y ; W ) −

(
|X ||Y| + 1

)
log(n + 1)

n
− α, (12.85)

1
n

log M1 ≥ RX|W (QXW , D1) − log n

n
, (12.86)

1
n

log M2 ≥ RY |W (QY W , D2) − log n

n
. (12.87)

where (X, Y, W ) ∼ QXY × QW |XY .

The proof of Lemma 12.9 is similar to the lossless Gray-Wyner
problem [127, Lemma 6] but we need to also combine this with the
(weak) converse proof for lossy Gray-Wyner problem under the expected
distortion criterion in [43]. Readers could refer to [150, Appendix K]
for details.

We then prove a lower bound on the excess-distortion probability
Pe,n(D1, D2) in (12.13). Define the constant c = |X ||Y|+2

n and the three
quantities

R0,n := 1
n

log M0 + c
log(n + 1)

n
, (12.88)

R1,n := 1
n

log M1 + log n

n
, (12.89)

R2,n := 1
n

log M2 + log n

n
. (12.90)

Lemma 12.10. Consider any n ∈ N such that log n ≥ max{d1, d2}
log |X |. Any (n, M0, M1, M2)-code satisfies

Pe,n(D1, D2)

≥ Pr
{

R0,n < R0(R1,n, R2,n|T̂XnY n , D1, D2)
}

− 1
n

. (12.91)

The proof of Lemma 12.10 is similar to [127, Lemma 7] and available
in [150, Appendix L].
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Choose (M0, M1, M2) such that

1
n

log M0 = R∗
0 + L0√

n
− c

log(n + 1)
n

, (12.92)

1
n

log M1 = R∗
1 + L1√

n
− log n

n
, (12.93)

1
n

log M2 = R∗
2 + L2√

n
− log n

n
. (12.94)

Hence, according to (12.88) to (12.90) in Lemma 12.10, for i ∈ [0 : 2],

Ri,n = R∗
i + Li√

n
. (12.95)

Recall that we use ȷ(Xi, Yi) to denote ȷ(Xi, Yi|R∗
1, R∗

2, D1, D2, PXY ).
Invoking Lemma 12.10, similar to the achievability proof,

Pe,n(D1, D2)

≥ Pr
{

R0,n < R0(R1,n, R2,n|T̂XnY n , D1, D2)
}

− 1
n

(12.96)

≥ Pr
{

R0,n < R0(R1,n, R2,n|T̂XnY n , D1, D2), T̂XnY n ∈ An(PXY )
}

− 1
n

(12.97)

≥ Pr
{

R∗
0 + L0√

n
<

1
n

n∑
i=1

ȷ(Xi, Yi) − ξ∗
1

L1√
n

− ξ∗
2

L2√
n

+ O(ηn)

and T̂XnY n ∈ An(PXY )
}

− 1
n

(12.98)

≥ Pr
{

R∗
0 + L0√

n
<

1
n

n∑
i=1

ȷ(Xi, Yi) − ξ∗
1

L1√
n

− ξ∗
2

L2√
n

+ O(ηn)
}

− Pr
{

T̂XnY n /∈ An(PXY )
}

− 1
n

(12.99)

= Pr
{

L0√
n

+ ξ∗
1

L1√
n

+ ξ∗
2

L2√
n

+ O(ηn) <
1
n

n∑
i=1

ȷ(Xi, Yi)

− R0(R∗
1, R∗

2|PXY , D1, D2)
}

− 2|X ||Y|
n2 − 1

n
(12.100)
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≥ Q

L0 + ξ∗
1L1 + ξ∗

2L2 + O (
√

nηn)√
V(R∗

1, R∗
2|PXY , D1, D2)

− 6T(R∗
1, R∗

2, D1, D2)√
nV3/2(R∗

1, R∗
2, D1, D2)

− 2|X ||Y|
n2 − 1

n
, (12.101)

where (12.99) follows from the fact that Pr{E ∩ F} ≥ Pr{E} − Pr{Fc}.
Hence, if (L0, L1, L2) satisfies

L0 + ξ∗
1L1 + ξ∗

2L2 <
√

V(R∗
1, R∗

2|PXY , D1, D2)Q−1(ε), (12.102)

then lim infn→∞ Pe,n(D1, D2) > ε. Therefore, for sufficiently large n,
any second-order (R∗

0, R∗
1, R∗

2, D1, D2, ε)-achievable triplet (L0, L1, L2)
must satisfy

L0 + ξ∗
1L1 + ξ∗

2L2 ≥
√

V(R∗
1, R∗

2|PXY , D1, D2)Q−1(ε). (12.103)
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Reflections, Other Results and Future Directions

13.1 Reflections

In this monograph, we reviewed recent advances in the second-order
asymptotics for lossy source coding, which provides approximation to the
finite blocklength performance of optimal codes. Specifically, in Section
1, we introduced the notation and critical mathematical background. In
Section 2, we illustrated non-asymptotic and second-order asymptotic
analyses via lossless source coding. Subsequently, in Section 3 of Part
II, we presented the generalization of the results from lossless source
coding to the rate-distortion problem of lossy source coding, highlighted
the role of the distortion-tilted information density and introduced two
proof sketches. One proof method to yield second-order asymptotics is
applying the Berry-Esseen theorem to carefully derive non-asymptotic
achievability and converse bounds, where the achievability part uses
random coding and minimal distortion encoding while the converse
part relies on the properties of the distortion-tilted information density.
Although this method is simple and elegant, it is not always possible to
derive the desired non-asymptotic bounds for multiterminal lossy source
coding problems. Thus, we also introduced another proof technique using
the method of types, where the achievability part uses the type covering
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lemma tailored to the rate-distortion problem and the converse part
depends on a type-based strong converse analysis. The first proof sketch
using the non-asymptotic bounds usually applies to any memoryless
source while the method of types is valid only for DMS. In the rest
of Part II, the results and proofs for the rate-distortion problem are
generalized to account for noisy sources, noisy channels, mismatched
compression, sources with memory and variable length compression in
Sections 4 to 8.

In Part III, the two proof methods for the rate-distortion problem are
generalized in combination to derive non-asymptotic and second-order
asymptotic bounds for four multiterminal lossy source coding problems
in the increasingly complicated order: the Kaspi problem in Section 9;
the successive refinement problem in Section 10; the Fu-Yeung problem
in Section 11; and the Gray-Wyner problem in Section 12. For the
Kaspi problem, we introduced the distortions-tilted information density,
illustrated the role of side information and showed that the conditional
rate-distortion problem is a special case of the Kaspi problem. For
the successive refinement problem, we defined a rate-distortions-tilted
information density, showed its connection to the minimal sum rate
subject to the rate of one encoder, demonstrated the tradeoff between
second-order coding rates of two encoders, and validated the joint
excess-distortion probability as the “correct” performance criterion. For
the Fu-Yeung problem, we presented a non-asymptotic converse bound
which yielded tight second-order converse result when specializing to
the successive refinement problem and presented tight second-order
asymptotics for simultaneous lossless and lossy compression. Finally,
for the Gray-Wyner problem in which an auxiliary random variable
is required in the characterization of the rate-distortion region, we
presented a second-order asymptotic result, where the achievability part
follows by deriving a type covering lemma tailored to the problem which
uses the continuity of conditional rate-distortion function with respect
to the distortion level and the distribution.
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13.2 Other Results

This monograph mainly focused on fixed-length compression of DMS
under bounded distortion measures with the excess-distortion probabil-
ity as the performance criterion. For GMS under quadratic distortion
measures, the second-order asymptotics for the rate-distortion problem
was derived by Ingber and Kochman [54, Theorem 2] and by Kostina and
Verdú [70, Theorem 40], and the second-order asymptotics for the suc-
cessive refinement problem was derived by No, et al. [82, Theorem 7] and
by Zhou et al. [151, Theorem 20], and the second-order asymptotics for
a Laplacian source under the magnitude-error distortion measure could
be derived using the type-covering lemma in [146] for the achievability
result and using the non-asymptotic converse bound in [68, Corollary 2].
When the distortion measure is the logarithm loss, the non-asymptotic
analysis for the rate-distortion and the multiple descriptions problem
was derived by Shkel and Verdú [106] and the successive refinement
problem was studied by No [81]. When the excess-distortion probability
is replaced by the average distortion, a non-asymptotic analysis of the
rate-distortion problem was done by Moulin [80] and by Elkayam and
Feder [30].

Besides second-order asymptotics, the large and moderate deviations
asymptotic analyses also provide deeper understanding beyond Shannon
theory analyses, as illustrated in Figure 2.2 for lossless source coding.
For simplicity, we call the rate-distortion function or the rate-distortion
region the Shannon limit. Large deviations, also known as the error
exponent analysis, focuses on deriving the exponential decay rate of
excess-distortion probabilities for rates beyond the Shannon limit in lossy
source coding problems. For the rate-distortion problem, the error expo-
nent was derived by Marton for DMS [79], by Ihara and Kubo [53] for
GMS under the quadratic distortion measure and by Zhong et al. [146]
for a Laplacian memoryless source under the magnitude-error distortion
measure. For the successive refinement problem with DMS, the error
exponent region was derived by Tuncel and Rose [121] under the sepa-
rate excess-distortion probabilities criterion and by Kanlis and Narayan
under the joint excess-distortion probability criterion [55]. For DMS,
the error exponent (region) for the Kaspi problem was derived in [147,
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Theorem 7], for the Fu-Yeung problem was derived in [147, Theorem
16] and for the Gray-Wyner problem was derived in [150, Theorem 12].

Moderate deviations asymptotics [3], [15], [51] compromise between
large deviations and second-order asymptotics by deriving the subexpo-
nential decay rates, also known as the moderate deviations constants,
of excess-distortion probabilities while allowing rates to approach the
Shannon limit. The moderate deviations constant for the rate-distortion
problem was derived by Tan [111] for DMS. For the successive refine-
ment problem, the moderate deviations constants were derived by Zhou,
Tan and Motaini for both DMS and GMS [151, Theorems 6 and 15]. For
DMS, the moderate deviations asymptotics was derived for the Kaspi
problem in [147, Theorem 8], for the Fu-Yeung problem was derived
in [147, Theorem 17] and for the Gray-Wyner problem was derived
in [150, Theorem 13].

13.3 Future Directions

We briefly discuss possible future research directions for lossy source
coding beyond the results covered in this monograph.

13.3.1 Higher-Order Asymptotics

For the rate-distortion problem and its five generalizations in Part II
of this monograph, we present a second-order asymptotic approxima-
tion to the finite blocklength performance. It was recently shown by
Yavas et al. [140] that for channel coding, the third-order asymptotic
approximation in the moderate deviations regime could provide a rather
accurate approximation to the performance of an optimal code for
blocklengths as small as n = 100 with error probabilities as small as
10−10. This high-order approximation is of great interest for beyond 5G
communication networks where enhanced ultra-reliable and low-latency
communication is required. However, to the best of our knowledge, in
general, no tight third-order asymptotic results have been established
for the rate-distortion problem. It would be worthwhile to derive higher-
order asymptotic results to complement the second-order asymptotics
for the problems presented in this monograph.
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13.3.2 Multiterminal Compression of GMS

Although the second-order asymptotics results of the rate-distortion
and the successive refinement problems have been established for GMS
under quadratic distortion measures, the second-order asymptotics of
many other multiterminal lossy source coding for GMS is generally
unknown. For the Kaspi problem, the non-asymptotic converse bound
in Section 3 is valid for GMS, but the achievability analysis is non-trivial
despite the rate-distortion function was derived by Perron et al. [89].
For the multiple descriptions problem [132], the rate-distortion region
for GMS was derived by Ozarow [87]. Both achievability and converse
analyses of non-asymptotic and second-order asymptotic bounds require
novel ideas. For the Gray-Wyner problem, although the rate-distortion
region is known [43] and the exact formula for GMS is recently derived
by Yu [141], the second-order asymptotics are challenging.

13.3.3 Mismatched Multiterminal Compression

Most contents in this monograph concerned matched compression, where
the distribution of the source sequence is assumed perfectly known. Such
an assumption is invalid in practice because one is not able to know the
exact distribution of a source to be compressed. Thus, it is important
to use mismatched coding schemes ignorant of the exact source distri-
bution to compress any memoryless sources. In Section 6, we presented
the second-order asymptotics by Zhou, et al. [152], who analyzed the
mismatched compression scheme proposed by Lapidoth [76, Theorem 3],
where the minimum Euclidean distance encoding with the i.i.d. Gaus-
sian codebook is used to compress an arbitrary memoryless source.
However, the non-asymptotic and second-order asymptotic analyses
for more complicated multiterminal lossy source coding remain largely
unexplored. Some attempts have been made very recently by Bai et al.
[5], Bai et al. [6], and Wu et al. [133] in the achievability analysis of the
mismatched successive refinement problem.
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13.3.4 Variable-Length Multiterminal Compression

This monograph focused on fixed-length lossy source coding. Motivated
by the need to reduce the codeword length of frequently appeared
symbols, fixed-to-variable length (FVL) source coding has also been
widely studied for the point-to-point case [47], [57], [67], [96], [97], [99].
In particular, Kostina and Verdú derived the second-order asymptotics
for average codeword length of the FVL rate-distortion problem subject
to a non-vanishing excess-distortion probability, which was presented in
Section 8. Saito et al. [96], [97] studied the FVL rate-distortion problem
under constraints on both the excess-distortion probability and the
excess-length probability. However, no results have been established for
FVL multiterminal lossy source coding. It would be worthwhile to derive
non-asymptotic and second-order asymptotic bounds on the average
codeword length for a multiterminal lossy source coding problem such
as the successive refinement problem.

13.3.5 Decoder Side Information Problems

Although we have presented results for several multiterminal lossy
source coding problems, many more remain open, such as the Wyner-
Ziv problem [136], the Kaspi-Heegard-Berger problem [56, Theorem
2], [52], and the Berger-Tung problem [10]. A common feature of these
problems is that in the asymptotic rate-distortion function (region),
there exists an auxiliary random variable that forms a Markov chain with
the source sequences and/or the side information. For the Wyner-Ziv
problem, some attempts in characterizing the second-order asymptotics
have been made in the achievability part by Watanabe et al. [128] and
by Yassaee et al. [139] and the converse part by Oohama [85]. However,
the achievability and converse bounds do not match even in the sign of
the second-order term. Novel ideas and mathematical tools are required
to establish second-order asymptotics.

13.3.6 Rate-Distortion-Perception Tradeoff

As evidenced in many applications of image compression, optimal
schemes achieving the rate-distortion function lead to low performance
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due to the ignorance of the distribution of the reproduced sequences.
The perceptual quality of an image is shown to be determined by the
distribution of the reproduced sequences. However, this information is
omitted in the design of codes described in this monograph. To solve this
problem, recent studies on rate-distortion-perception tradeoff [13], [116]
revisit the rate-distortion problem by constraining that the distribution
of the output of the decoder is either identical or approximately identical
to the distribution of the source sequence. All these results are asymp-
totic Shannon theoretical analysis on the rate-distortion function for the
point-to-point case. It would be of interest to conduct a non-asymptotic
and second-order asymptotic analysis of the rate-distortion-perception
problem and also generalize it to multiterminal lossy source coding
problems.
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