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Applications to Lossy Compression
and Differential Privacy
Cheuk Ting Li

Department of Information Engineering, The Chinese University of
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ABSTRACT

One-shot channel simulation (or channel synthesis) has seen
increasing applications in lossy compression, differential
privacy and machine learning. In this setting, an encoder
observes a source X, and transmits a description to a de-
coder, so as to allow it to produce an output Y with a
desired conditional distribution PY |X . In other words, the
encoder and the decoder are simulating the noisy channel
PY |X using noiseless communication. This can also be seen
as a lossy compression scheme with a stronger guarantee on
the joint distribution of X and Y . This monograph gives
an overview of the theory and applications of the channel
simulation problem. We will present a unifying review of
various one-shot and asymptotic channel simulation tech-
niques that have been proposed in different areas, namely
dithered quantization, rejection sampling, minimal random
coding, likelihood encoder, soft covering, Poisson functional
representation, and dyadic decomposition.

Cheuk Ting Li (2024), “Channel Simulation: Theory and Applications to Lossy 
Compression and Differential Privacy”, Foundations and Trends® in Communications 
and Information Theory: Vol. 21, No. 6, pp 847–1106. DOI: 10.1561/0100000141. 
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Preface

In this monograph, we give an overview of the theoretical results on
channel simulation and related settings, as well as their applications
in lossy compression, differential privacy and machine learning. We
collect various channel simulation schemes appearing in different fields
of research. Many of them are not referred to as “channel simulation” in
their respective fields. Nevertheless, they fit within the same setting of
simulating a noisy channel through communications, and can therefore
be analyzed and compared under a unified framework. Our goal is
to gather these channel simulation techniques, and present them as a
common toolbox that different lines of research can utilize.

Although this monograph is intended to be accessible to researchers
outside of information theory, familiarity with basic notions such as
entropy, mutual information and channel coding is necessary. Readers
may consult textbooks such as [58, Chapters 1-10]; [176, Chapters 1-11];
[280, Chapters 1-11]; or [61, Chapters 1-7].

In Section 1, we will give an intuitive description of the channel
simulation setting, and present several motivations for this setting.
Readers using this monograph as a reference book may jump directly
to the overview of various channel simulation schemes in Section 2.2,
and the comparison in Table 2.1.

2
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A
Zipf Distribution

The Zipf distribution [215] (also known as zeta distribution) with pa-
rameter s > 1 is a distribution over N+ with probability mass function

Zipf(k; s) := k−s

ζ(s) ,

where ζ(s) =
∑∞
k=1 k

−s is the Riemann zeta function. It is the maximum
entropy distribution for K ∈ N+ when E[log2K] is fixed. We can use
the Zipf distribution to show the following bound (e.g., see [155]).

Proposition 75. For random variable K ∈ N+ following the distribu-
tion PK , its cross entropy with Zipf(s) is bounded by

H(PK ,Zipf(s)) ≤ sE[log2K] + log2
s

s− 1 . (A.1)

Therefore, if E[log2K] ≤ ℓ, letting s = 1 + 1/ℓ, we have

H(K) ≤ H(PK ,Zipf(s)) ≤ ℓ+ log2(ℓ+ 1) + 1.

Proof. We have

H(PK ,Zipf(s)) =
∞∑
k=1

PK(k) log2
ζ(s)
k−s

227
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228 Zipf Distribution

= sE[log2K] + log2 ζ(s),

where
ζ(s) ≤ 1 +

∫ ∞

1
κ−sdκ = s

s− 1 . (A.2)

The result follows.

Proposition 75 suggests that, if we know that E[log2K] ≤ ℓ, then
we can use the Shannon code [228] designed for the distribution Zipf(s)
where s = 1 + 1/ℓ to encode K, to obtain a codeword with expected
length upper-bounded by

H(PK ,Zipf(s)) + 1 ≤ ℓ+ log2(ℓ+ 1) + 2 bits.

Refer to Section 1.12. The downside is that we need to know ℓ when we
construct the code, and the Shannon code over an infinite alphabet can
be hard to construct.

In contrast, if we do not know the bound E[log2K] ≤ ℓ when we
design the code, we can still use the Elias delta code [75] to encode K,
which will result in a codeword length upper-bounded by

ℓ+ 2 log2(ℓ+ 1) + 1 bits

if E[log2K] ≤ ℓ. While it is possible to improve this bound to ℓ+ (1 +
ϵ) log2(ℓ+ 1) +O(1), for example, by using the Elias omega code [75],
it is impossible to design a prefix-free code over N+ that achieves an
expected length upper-bounded by ℓ+ log2(ℓ+ 1) + O(1) for every ℓ

and random variable K with E[log2K] ≤ ℓ.1 Therefore, although using
a “universal” code such as the Elias delta code has the advantage that
we do not need to know the bound E[log2K] ≤ ℓ beforehand, it comes
with a small penalty on the expected length.

Practically, if we are given the bound E[log2K] ≤ ℓ, then there are
several options for the encoding of K ∈ N+:

• Shannon code [228] for the distribution Zipf(1+1/ℓ), or any prefix-
free code f : N+ → {0, 1}∗ with |f(k)| ≤ ⌈Zipf(k; 1 + 1/ℓ)⌉ for
k ∈ N+. The expected length is upper-bounded by ℓ+log2(ℓ+1)+2.
Nevertheless, it can be hard to construct.

1This is because
∑∞

k=1 2− log2 k−log2(log2 k+1)−c =
∑∞

k=1
1

2ck(log2 k+1) = ∞, vio-
lating Kraft’s inequality [142].
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• A code over positive integers with efficient encoding and decoding
algorithms such as the Elias delta code [75], with a slight penalty
on the expected length. The advantage is that the code does not
depend on ℓ.

• Use a “hybrid” approach: first construct the Shannon code fS :
[k0 + 1] → {0, 1}∗ for the distribution of K̃ := min{K, k0 + 1}
where K ∼ Zipf(1 + 1/ℓ) and k0 is a large fixed integer (but not
too large so it is viable to construct the Shannon code), and then
encode k ∈ N+ into fS(k) if k ≤ k0, or fS(k0 + 1)∥fδ(k − k0) if
k > k0, where fδ : N+ → {0, 1}∗ is the Elias delta code, and “∥”
stands for concatenation.

• A suitable comma code such as the Fibonacci code [88] (which is
optimal for a Zipf distribution with a certain parameter).
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B
Turning Approximate Markov Chains into Exact

Markov Chains

The following lemma shows that if the Markov chain “X ↔ U ↔ Y ”
almost holds, that is, there exists random variables X̃, Ỹ with X̃ ↔ U ↔
Ỹ and P((X,Y ) ̸= (X̃, Ỹ )) ≈ 0, then there exists a random variable V
with small entropy such that X ↔ (U, V )↔ Y holds exactly.

Lemma 76. For finite discrete random variables X,Y, X̃, Ỹ , U (X, X̃ ∈
X and Y, Ỹ ∈ Y) with X̃ ↔ U ↔ Ỹ , there exists a random variable
V ∈ V with X ↔ (U, V )↔ Y , |V| ≤ min{|X |, |Y|}+ 1, and

H(V ) ≤ Hb(min{η, 1/2}) + η log2 min{|X |, |Y|},

where Hb is the binary entropy function, and

η := 2(|X ||Y|)1/4
√
P
(
(X,Y ) ̸= (X̃, Ỹ )

)
.

Proof. We first prove the following claim, which basically states that if
two random variables has a small TV distance from being independent,
then they are conditionally independent given a random variable that
is close to being degenerate:

230
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231

For finite discrete random variables X,Y, X̃, Ỹ with X̃ independent
of Ỹ , there exists a random variable V ∈ [0..min{|X |, |Y|}] with X ↔
V ↔ Y and

PV (0) ≥ 1− 2(|X ||Y|)1/4
√
δTV((X,Y ), (X̃, Ỹ )).

We now show this claim. Assume X = [|X |] and |X | ≤ |Y|.
Applying the coupling lemma (Proposition 34), we can assume
δTV((X,Y ), (X̃, Ỹ )) = P(E), where E is the event (X,Y ) ̸= (X̃, Ỹ ).
Define V ∈ [0..|X |] with

PV,X,Y (0, x, y)

:=
[

PX̃(x) −
( |Y|

|X |

) 1
4√

P(E, X̃ = x)
]

+

[
PỸ (y) −

( |X |
|Y|

) 1
4√

P(E, Ỹ = y)
]

+
,

where [t]+ := max{t, 0}, PV,X,Y (x, x, y) := PX,Y (x, y)− PV,X,Y (0, x, y),
and PV,X,Y (v, x, y) := 0 for v ̸= x. To check that this is a valid distribu-
tion,

PV,X,Y (0, x, y)

=
[

PX̃(x) −
( |Y|

|X |

) 1
4√

P(E, X̃ = x)
]

+

[
PỸ (y) −

( |X |
|Y|

) 1
4√

P(E, Ỹ = y)
]

+

≤
[

PX̃(x) −
( |Y|

|X |

) 1
4√

P(E, (X̃, Ỹ ) = (x, y))
]

+

·
[

PỸ (y) −
( |X |

|Y|

) 1
4√

P(E, (X̃, Ỹ ) = (x, y))
]

+
(a)
≤ PX̃(x)PỸ (y) − P(E, (X̃, Ỹ ) = (x, y))
= P((X̃, Ỹ ) = (x, y)) − P((X, Y ) ̸= (x, y), (X̃, Ỹ ) = (x, y))
≤ PX,Y (x, y),

where (a) is due to the inequality [a − s]+[b − t]+ ≤ [ab − st]+ for
a, b, s, t ≥ 0.1 We have the Markov chain X ↔ V ↔ Y . We also have

∑
x

( |Y|
|X |

)1/4√
P(E, X̃ = x) ≤

( |Y|
|X |

)1/4
|X |
√

1
|X |

∑
x

P(E, X̃ = x)

= (|X ||Y|)1/4
√
P(E).

1Assume a > s, b > t (otherwise the inequality is trivial). We have [a − s]+[b −
t]+ = ab − at − bs + st < ab − st ≤ [ab − st]+.

Full text available at: http://dx.doi.org/10.1561/0100000141



232 Turning Approximate Markov Chains into Exact Markov Chains

Hence,

PV (0) =
(∑

x

[
PX̃(x)−

( |Y|
|X |

)1/4√
P(E, X̃ = x)

]
+

)
·
(∑

y

[
PỸ (y)−

( |X |
|Y|

)1/4√
P(E, Ỹ = y)

]
+

)

≥
[
1− (|X ||Y|)1/4

√
P(E)

]2

+

≥ 1− 2(|X ||Y|)1/4
√
P(E),

which is the desired claim.
We now prove Lemma 76. Applying the claim on PX,Y,X̃,Ỹ |U (·|u)

for each u, there exists V ∈ [0..min{|X |, |Y|}] with X ↔ V ↔ Y

conditional on U = u (and hence X ↔ (U, V )↔ Y ) and

PV |U (0|u) ≥ 1− 2(|X ||Y|)1/4
√
P
(
(X,Y ) ̸= (X̃, Ỹ )

∣∣U = u
)
.

We have

PV (0) ≥ 1− EU
[
2(|X ||Y|)1/4

√
P
(
(X,Y ) ̸= (X̃, Ỹ )

∣∣U)]
≥ 1− 2(|X ||Y|)1/4

√
P((X,Y ) ̸= (X̃, Ỹ )).

Hence PV (0) ≥ 1− η, and

H(V ) = Hb(PV (0)) + (1− PV (0))H(V |V ̸= 0)
≤ Hb(min{η, 1/2}) + η log2 min{|X |, |Y|}.
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