
Adaptive Query

Processing

Full text available at: http://dx.doi.org/10.1561/1900000001



Adaptive Query
Processing

Amol Deshpande

University of Maryland
USA

amol@cs.umd.edu

Zachary Ives

University of Pennsylvania
USA

zives@cis.upenn.edu

Vijayshankar Raman

IBM Almaden
USA

ravijay@us.ibm.com

Boston – Delft

Full text available at: http://dx.doi.org/10.1561/1900000001



Foundations and Trends R© in
Databases

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
USA
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is A. Deshpande, Z. Ives and V. Raman,

Adaptive Query Processing, Foundation and Trends R© in Databases, vol 1, no 1,
pp 1–140, 2007

ISBN: 978-1-60198-034-2
c© 2007 A. Deshpande, Z. Ives and V. Raman

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, mechanical, photocopying, recording
or otherwise, without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen-
ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for
internal or personal use, or the internal or personal use of specific clients, is granted by
now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The
‘services’ for users can be found on the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system
of payment has been arranged. Authorization does not extend to other kinds of copy-
ing, such as that for general distribution, for advertising or promotional purposes, for
creating new collective works, or for resale. In the rest of the world: Permission to pho-
tocopy must be obtained from the copyright owner. Please apply to now Publishers Inc.,
PO Box 1024, Hanover, MA 02339, USA; Tel. +1-781-871-0245; www.nowpublishers.com;
sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/1900000001



Foundations and Trends R© in
Databases

Volume 1 Issue 1, 2007

Editorial Board

Editor-in-Chief:
Joseph M. Hellerstein
Computer Science Division
University of California, Berkeley
Berkeley, CA
USA
hellerstein@cs.berkeley.edu

Editors
Surajit Chaudhuri (Microsoft Research)
Ronald Fagin (IBM Research)
Minos Garofalakis (Intel Research)
Johannes Gehrke (Cornell University)
Alon Halevy (Google)
Jeffrey Naughton (University of Wisconsin)
Jignesh Patel (University of Michigan)
Raghu Ramakrishnan (Yahoo! Research)

Full text available at: http://dx.doi.org/10.1561/1900000001



Editorial Scope

Foundations and Trends R© in Databases covers a breadth of top-
ics relating to the management of large volumes of data. The journal
targets the full scope of issues in data management, from theoretical
foundations, to languages and modeling, to algorithms, system archi-
tecture, and applications. The list of topics below illustrates some of
the intended coverage, though it is by no means exhaustive:

• Data Models and Query
Languages

• Query Processing and
Optimization

• Storage, Access Methods, and
Indexing

• Transaction Management,
Concurrency Control and Recovery

• Deductive Databases

• Parallel and Distributed Database
Systems

• Database Design and Tuning

• Metadata Management

• Object Management

• Trigger Processing and Active
Databases

• Data Mining and OLAP

• Approximate and Interactive
Query Processing

• Data Warehousing

• Adaptive Query Processing

• Data Stream Management

• Search and Query Integration

• XML and Semi-Structured Data

• Web Services and Middleware

• Data Integration and Exchange

• Private and Secure Data
Management

• Peer-to-Peer, Sensornet and
Mobile Data Management

• Scientific and Spatial Data
Management

• Data Brokering and
Publish/Subscribe

• Data Cleaning and Information
Extraction

• Probabilistic Data Management

Information for Librarians
Foundations and Trends R© in Databases, 2007, Volume 1, 4 issues. ISSN paper
version 1931-7883. ISSN online version 1931-7891. Also available as a com-
bined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/1900000001



Foundations and TrendsR© in
Databases

Vol. 1, No. 1 (2007) 1–140
c© 2007 A. Deshpande, Z. Ives and V. Raman
DOI: 10.1561/1900000001

Adaptive Query Processing

Amol Deshpande1, Zachary Ives2 and
Vijayshankar Raman3

1 University of Maryland, USA, amol@cs.umd.edu
2 University of Pennsylvania, USA, zives@cis.upenn.edu
3 IBM Almaden, USA, ravijay@us.ibm.com

Abstract

As the data management field has diversified to consider settings in
which queries are increasingly complex, statistics are less available, or
data is stored remotely, there has been an acknowledgment that the
traditional optimize-then-execute paradigm is insufficient. This has led
to a plethora of new techniques, generally placed under the common
banner of adaptive query processing, that focus on using runtime feed-
back to modify query processing in a way that provides better response
time or more efficient CPU utilization.

In this survey paper, we identify many of the common issues, themes,
and approaches that pervade this work, and the settings in which each
piece of work is most appropriate. Our goal with this paper is to be
a “value-add” over the existing papers on the material, providing not
only a brief overview of each technique, but also a basic framework
for understanding the field of adaptive query processing in general.
We focus primarily on intra-query adaptivity of long-running, but not
full-fledged streaming, queries. We conclude with a discussion of open
research problems that are of high importance.

Full text available at: http://dx.doi.org/10.1561/1900000001



Contents

1 Introduction 1

1.1 Query Processing in Relational Database Systems 3
1.2 Motivations for AQP 5
1.3 Road Map 8
1.4 Related Work 8

2 Background: Conventional Optimization
Techniques 9

2.1 Query Optimization 9
2.2 Choosing an Effective Plan 20
2.3 Summary 24

3 Foundations of Adaptive Query Processing 27

3.1 New Operators 28
3.2 Adaptivity Loop 35
3.3 Post-mortem Analysis of Adaptive Techniques 40
3.4 Adaptivity Loop and Post-mortem in Some

Example Systems 42
3.5 Scope of the Remainder of the Survey 45

4 Adaptive Selection Ordering 47

4.1 Adaptive Greedy 48
4.2 Adaptation using Eddies 52
4.3 Parallel and Distributed Scenarios 57
4.4 Summary 58

ix

Full text available at: http://dx.doi.org/10.1561/1900000001



5 Adaptive Join Processing: Overview 61

6 Adaptive Join Processing: History-Independent
Pipelined Execution 65

6.1 Pipelined Plans with a Single Driver Relation 65
6.2 Pipelined Plans with Multiple Drivers 70
6.3 Adaptive Caching (A-Caching) 79
6.4 Summary 82

7 Adaptive Join Processing: History-Dependent
Pipelined Execution 85

7.1 Corrective Query Processing 86
7.2 Eddies with Binary Join Operators 93
7.3 Eddies with STAIRs 101
7.4 Dynamic Plan Migration in CAPE 106
7.5 Summary 107

8 Adaptive Join Processing: Non-pipelined Execution 109

8.1 Plan Staging 110
8.2 Mid-Query Reoptimization 111
8.3 Query Scrambling 120
8.4 Summary and Post-mortem Analysis 121

9 Summary and Open Questions 125

9.1 Trade-Offs and Constraints 125
9.2 Adaptive Mechanisms 129
9.3 Conclusions and Challenge Problems 130

Acknowledgments 135

References 137

Full text available at: http://dx.doi.org/10.1561/1900000001



1

Introduction

One of the fundamental breakthroughs of Codd’s relational data
model [33] was the identification of how to take a declarative, logic-
based formulation of a query and convert it into an algebraic query
evaluation tree. As described in every database textbook, this enabled
physical data independence and promised many benefits: the database
administrator and the DBMS optimizer became free to choose among
many different storage formats and execution plans to answer a declar-
ative query. The challenge, since then, has been how to deliver on these
promises — regardless of where or how the data is laid out, how com-
plex the query is, and how unpredictable the operating environment is.

This challenge has spurred 30 years of query processing research.
Cost-based query optimization, pioneered by Selinger et al. [102] in
System R and refined by generations of database researchers and devel-
opers, has been tremendously effective in addressing the needs of rela-
tional DBMS query processing: one can get excellent performance for
queries over data with few correlations, executed in a relatively stable
environment, given sufficient statistical information.

However, when even one of these characteristics is not present, the
System R-style optimize-then-execute model begins to break down: as

1

Full text available at: http://dx.doi.org/10.1561/1900000001



2 Introduction

noted in [69], optimizer error begins to build up at a rate exponential
in the size of the query. As the database field has broadened to con-
sider more general data management, including querying autonomous
remote data sources, supporting continuous queries over data streams,
encoding and retrieving XML data, supporting OLAP and data mining
operations, and combining text search with structured query capabili-
ties, the weaknesses of the traditional optimization model have begun
to show themselves.

In response, there has been a surge of interest in a broad array of
techniques termed adaptive query processing (AQP). AQP addresses
the problems of missing statistics, unexpected correlations, unpre-
dictable costs, and dynamic data by using feedback to tune execution. It
is one of the cornerstones of so-called autonomic database management
systems, although it also generalizes to many other contexts, particu-
larly at the intersection of database query processing and the Web.

The spectrum of adaptive query processing techniques has been
quite broad: they may span multiple query executions or adapt within
the execution of a single query; they may affect the query plan being
executed or the scheduling of operations within the plan; they have been
developed for improving performance of local DBMS queries (e.g., [75,
87, 112]), for processing distributed and streaming data (e.g., [6, 72, 88,
92, 101]), and for performing distributed query execution (e.g., [115]).

This survey is an attempt to cover the fundamental issues, tech-
niques, costs, and benefits of adaptive query processing. We begin
with a broad overview of the field, identifying the dimensions of
adaptive techniques. Then we focus our analysis on the spectrum of
approaches available to adapt query execution at runtime — primarily
in a non-streaming context. Where possible, we focus on simplifying
and abstracting the key concepts of each technique, rather than repro-
ducing the full details available in the papers; we consider generaliza-
tions of the specific published implementations. Our goal is to identify
the strengths and limitations of the different techniques, demonstrate
when they are most useful, and suggest possible avenues of future
research.

In the rest of the section, we present a brief overview of query pro-
cessing in relational database systems (Section 1.1) and elaborate on

Full text available at: http://dx.doi.org/10.1561/1900000001



1.1 Query Processing in Relational Database Systems 3

the reasons behind the push toward adaptivity (Section 1.2); we then
present a road map for the rest of the survey (Section 1.3), and briefly
discuss the related surveys of interest (Section 1.4).

1.1 Query Processing in Relational Database Systems

The conventional method of processing a query in a relational DBMS
is to parse the SQL statement and produce a relational calculus-like
logical representation of the query, and then to invoke the query opti-
mizer, which generates a query plan. The query plan is fed into an
execution engine that directly executes it, typically with little or no
runtime decision-making (Figure 1.1).

The query plan can be thought of as a tree of unary and binary
relational algebra operators, where each operator is annotated with
specific details about the algorithm to use (e.g., nested loops join versus
hash join) and how to allocate resources (e.g., memory). In many cases
the query plan also includes low-level “physical” operations like sorting,
network shipping, etc. that do not affect the logical representation of
the data.

Certain query processors consider only restricted types of queries,
rather than full-blown SQL. A common example of this is select-
project-join or SPJ queries: an SPJ query essentially represents a single
SQL SELECT-FROM-WHERE block with no aggregation or subqueries.

Fig. 1.1 Query processing in database systems.

Full text available at: http://dx.doi.org/10.1561/1900000001



4 Introduction

An even further restriction is conjunctive queries, which are SPJ queries
that only have conjunctive predicates in the WHERE clause; these can be
represented as single rules in the Datalog language.

The model of query processing established with the System R
project [102], which is still followed today, is to divide query processing
into three major stages.

Statistics generation is done offline (typically using the RUNSTATS

or UPDATE STATISTICS command) on the tables in the database. The
system profiles the relation instances, collecting information about car-
dinalities and numbers of unique attribute values, and often generating
histograms over certain fields.

The second stage, which is normally done at runtime,1 is query opti-
mization. The optimization stage is very similar to traditional compi-
lation; in fact, in some systems, it generates directly executable code.
Optimization uses a combination of cost estimation, where the run-
ning times of query subexpressions are estimated (based on known
performance characteristics of algorithm implementations, calibration
parameters for hardware speed, and the statistics generated for the
relations), pruning heuristics (which are necessary to reduce the over-
all search space), and exhaustive enumeration. For relatively simple
queries with good statistics, the plans produced by a query optimizer
can be quite good, although as discussed previously, this is less true in
more complex settings.

The final stage, query execution, is handled by an engine analogous
to a virtual machine or interpreter for the compiled query plan. There
are several important aspects of query execution that are of note. The
first is that in general it is desirable to pipeline computation, such
that each operator processes a tuple at a time from its sub-operators,
and also propagates a single tuple to its parent for processing. This
leads to better response time in terms of initial answers, and often
higher throughput as delays are masked. However, not all operators
are naturally amenable to pipelining (e.g., operators like sorting and
grouping often must process entire table before they can determine

1 Except for certain embedded SQL queries, which may be pre-optimized or optimized once
for multiple possible input bindings.

Full text available at: http://dx.doi.org/10.1561/1900000001



1.2 Motivations for AQP 5

what tuple to output next). Also, complex query plans may require too
many resources to be fully pipelined. In these settings, the optimizer
must break the plan into multiple segments, materializing (storing)
intermediate results at the end of each stage and using that as an
input to the next stage.

Second, the issue of scheduling computation in a query plan has
many performance implications. Traditional query processing makes
the assumption that an individual operator implementation (e.g., a
nested loops join) should be able to control how CPU cycles are allo-
cated to its child operators. This is achieved through a so-called itera-
tor [53] architecture: each operator has open, close, and getNextTuple

methods. The query engine first invokes the query plan root node’s
open method, which in turn opens its children, and the process repeats
recursively down the plan. Then getNextTuple is called on the root
node. Depending on the operator implementation, it will make calls to
its children’s getNextTuple methods until it can return a tuple to its
parent. The process completes until no more tuples are available, and
then the engine closes the query plan.

An alternate approach, so called data-driven or dataflow schedul-
ing [121], is used in many parallel database systems. Here, in order to
allow for concurrent computation across many machines, the data pro-
ducers — not the consumers — control the scheduling. Each operator
takes data from an input queue, processes it, and sends it to an output
queue. Scheduling is determined by the rates at which the queues are
filled and emptied. In this survey, we will discuss a number of adaptive
techniques that in essence use a hybrid of the iterator and data-driven
approaches.

1.2 Motivations for AQP

Over the years, many refinements have been made to the basic query
processing technology discussed above. Since CPUs are more powerful
today and query workloads are much more diverse, query optimizers
perform a more comprehensive search of the space of query plans with
joins, relying less on pruning heuristics. Selectivity estimation tech-
niques have become more accurate and consider skewed distributions

Full text available at: http://dx.doi.org/10.1561/1900000001



6 Introduction

(and to a limited extent, attribute correlations). However, the System
R-style approach has begun to run into its fundamental limits in recent
years, primarily due to the emergence of new application domains in
which database query processing is being applied. In particular, triggers
for this breakdown include the following:

• Unreliable cardinality estimates: The cost estimation
process depends critically on estimates of the cardinality
of various query subexpressions. Despite significant work
on building better statistics structures and data collection
schemes, many real-world settings have either inaccurate or
missing statistics. (In some circumstances, as with remote
data sources, statistics may be difficult or impossible to
obtain.) Even when base-table statistics are perfect, cor-
relations between predicates can cause intermediate result
cardinality estimates to be off by several orders of magni-
tude [69, 112].
• Queries with parameter markers: SQL is not a pleasant

language for end users, so most database queries are issued by
a user clicking on a form. The SQL for such queries invariably
contains parameter markers (for form input), and the pre-
computed query plans for such queries can be substantially
worse than optimal for some values of the parameters.
• Dynamically changing data, runtime, and workload

characteristics: In many environments, especially data
streams [23, 88, 92], queries might be long-running, and the
data characteristics and hence the optimal query plans might
change during the execution of the query. The runtime costs
can also change dramatically, especially in wide-area envi-
ronments. Similarly, fluctuating query workloads can result
in variations in the resources available to execute a query
(e.g., memory), making it necessary to adapt.
• Complex queries involving many tables: Query opti-

mizers typically switch to a heuristic approach when queries
become too complex to be optimized using the dynamic pro-
gramming approach. Such queries are naturally more prone

Full text available at: http://dx.doi.org/10.1561/1900000001



1.2 Motivations for AQP 7

to estimation errors [69], and the use of heuristics exacerbates
the problem.
• Interactive querying: The optimize-then-execute model

does not mesh well with an interactive environment where
a user might want to cancel or refine a query after a few
seconds of execution: the metric changes too quickly for opti-
mization to pay off [61]. Also, pipelined execution and early-
result scheduling, even in the presence of slow data sources,
becomes paramount.
• Need for aggressive sharing: Though there has been

much work in multi-query optimization, so far no definitive
solutions have emerged in this area. Traditional databases
make do with almost no inter-query state sharing because
their usage pattern is made up of a small number of
queries against large databases. However, sharing the data
as well as the computation is critical in environments
such as data streams, which feature a very large num-
ber of (typically simple) queries over a small set of data
streams [28, 86].

There have been two responses to the challenges posed above. The
first, a very pragmatic response by application vendors, has been to
build domain-specific optimization capabilities outside the DBMS and
override its local optimizer. Many commercial DBMSs allow users to
specify “hints” on what access methods and join orders to use, via SQL
or catalog tables. Recently, SAP has built an application-level query
processor that runs only a very limited set of plans (essentially, only
table scans), but at very high efficiency [82]. While this achieves SAP’s
target of satisfying its users, it runs counter to the database commu-
nity’s goals of developing high-performance, general-purpose processors
for declarative queries.

Our interest in this survey is on the second development, which
has been the focus of the academic and commercial DBMS research
community: the design and construction of what have come to be known
as adaptive (or autonomic) query processing systems, that use runtime
feedback to adapt query processing.

Full text available at: http://dx.doi.org/10.1561/1900000001



8 Introduction

1.3 Road Map

We begin with a brief introduction to query optimization in relational
database systems (Section 2). We then discuss some of the foundations
of AQP, namely, three new operators, and several unifying concepts
that we use throughout the survey to illustrate the AQP techniques,
to analyze them, and to differentiate between them (Section 3).

We begin our discussion of adaptive query processing by considering
a simple class of queries called selection ordering queries (Section 4).
The discussion of adaptation techniques for join queries is divided into
three parts, roughly based on the space of the query execution plans
they explore. We begin with a discussion of techniques for adapting
pipelined query execution (Sections 6 and 7), and cover non-pipelined
query execution in Section 8. We conclude the survey with a discussion
of some of the most important research challenges in adaptive query
processing (Section 9).

1.4 Related Work

A number of surveys on query processing are related to this paper.
We assume basic familiarity with many of the ideas of Graefe’s survey
on query execution techniques [53]. Kossmann’s survey on distributed
query processing [79] also provides useful context for the discussion, as
do Ioannidis and Chaudhuri’s surveys on query optimization [24, 68].
Babu and Bizarro [8] also present a survey of AQP from a different
means of classification from our own (whether the scheme is plan-based,
routing-based, or continuous query-based).

Full text available at: http://dx.doi.org/10.1561/1900000001



References

[1] A. Aboulnaga and S. Chaudhuri, “Self-tuning histograms: building histograms
without looking at data,” in SIGMOD ’99: Proceedings of the 1999 ACM
SIGMOD international conference on Management of data, (New York, NY,
USA), pp. 181–192, ACM Press, 1999.

[2] L. Amsaleg, M. J. Franklin, A. Tomasic, and T. Urhan, “Scrambling query
plans to cope with unexpected delays,” in Proceedings of the Fourth Inter-
national Conference on Parallel and Distributed Information Systems, Miami
Beach, FL, pp. 208–219, IEEE Computer Society, December 18–20 1996.

[3] G. Antoshenkov and M. Ziauddin, “Query processing and optimization in
Oracle Rdb,” The VLDB Journal, vol. 5, no. 4, pp. 229–237, 1996.

[4] A. Arasu, S. Babu, and J. Widom, “The CQL continuous query language:
Semantic foundations and query execution,” The VLDB Journal, vol. 15, no. 2,
pp. 121–142, 2006.

[5] R. H. Arpaci-Dusseau, E. Anderson, N. Treuhaft, D. E. Culler, J. M. Heller-
stein, D. Patterson, and K. Yelick, “Cluster I/O with River: making the fast
case common,” in IOPADS ’99: Proceedings of the sixth workshop on I/O
in parallel and distributed systems, (New York, NY, USA), pp. 10–22, ACM
Press, 1999.

[6] R. Avnur and J. M. Hellerstein, “Eddies: continuously adaptive query process-
ing,” in SIGMOD ’00: Proceedings of the 2000 ACM SIGMOD international
conference on Management of data, (New York, NY, USA), pp. 261–272, ACM
Press, 2000.

[7] B. Babcock and S. Chaudhuri, “Towards a robust query optimizer: a princi-
pled and practical approach,” in SIGMOD ’05: Proceedings of the 2005 ACM

137

Full text available at: http://dx.doi.org/10.1561/1900000001



138 References

SIGMOD international conference on Management of data, (New York, NY,
USA), pp. 119–130, ACM Press, 2005.

[8] S. Babu and P. Bizarro, “Adaptive query processing in the looking glass,” in
CIDR ’05: Second Biennial Conference on Innovative Data Systems Research,
pp. 238–249, Asilomar, CA, 2005.

[9] S. Babu, P. Bizarro, and D. DeWitt, “Proactive re-optimization,” in SIGMOD
’05: Proceedings of the 2005 ACM SIGMOD international conference on Man-
agement of data, Baltimore, MD, pp. 107–118, New York, NY: ACM Press,
June 14–16 2005.

[10] S. Babu, R. Motwani, K. Munagala, I. Nishizawa, and J. Widom, “Adaptive
ordering of pipelined stream filters,” in SIGMOD ’04: Proceedings of the 2004
ACM SIGMOD international conference on Management of data, (New York,
NY, USA), pp. 407–418, ACM Press, 2004.

[11] S. Babu, K. Munagala, J. Widom, and R. Motwani, “Adaptive caching for con-
tinuous queries,” in ICDE ’05: Proceedings of the 21st International Confer-
ence on Data Engineering (ICDE’05), (Washington, DC, USA), pp. 118–129,
IEEE Computer Society, 2005.

[12] S. Babu and J. Widom, “Continuous queries over data streams,” SIGMOD
Rec., vol. 30, no. 3, pp. 109–120, 2001.

[13] S. Babu and J. Widom, “StreaMon: an adaptive engine for stream query pro-
cessing,” in SIGMOD ’04: Proceedings of the 2004 ACM SIGMOD interna-
tional conference on Management of data, (New York, NY, USA), pp. 931–932,
ACM Press, 2004.

[14] M. Balazinska, H. Balakrishnan, S. Madden, and M. Stonebraker, “Fault-
tolerance in the Borealis distributed stream processing system,” in SIGMOD
’05: Proceedings of the 2005 ACM SIGMOD international conference on Man-
agement of data, (New York, NY, USA), pp. 13–24, ACM Press, 2005.

[15] L. Bellatreche, K. Karlapalem, M. K. Mohania, and M. Schneider, “What can
partitioning do for your data warehouses and data marts?,” in IDEAS ’00:
Proceedings of the 2000 International Symposium on Database Engineering &
Applications, (Washington, DC, USA), pp. 437–446, IEEE Computer Society,
2000.

[16] D. A. Berry and B. Fristedt, Bandit Problems: Sequential Allocation of Exper-
iments. Springer, October 1985.

[17] P. Bizarro, S. Babu, D. DeWitt, and J. Widom, “Content-based routing: dif-
ferent plans for different data,” in VLDB ’05: Proceedings of the 31st interna-
tional conference on Very large data bases, pp. 757–768, VLDB Endowment,
2005.

[18] P. Bizarro and D. DeWitt, “Adaptive and robust query processing with
SHARP,” Tech. Rep. 1562, University of Wisconsin – Madison, CS Dept.,
2006.

[19] P. G. Bizarro, Adaptive Query Processing: Dealing with Incomplete and Uncer-
tain Statistics. PhD thesis, University of Wisconsin – Madison, 2006.

[20] P. D. Bra and J. Paredaens, “Horizontal decompositions and their impact on
query solving,” SIGMOD Rec., vol. 13, no. 1, pp. 46–50, 1982.

Full text available at: http://dx.doi.org/10.1561/1900000001



References 139

[21] N. Bruno and S. Chaudhuri, “Exploiting statistics on query expressions for
optimization,” in SIGMOD ’02: Proceedings of the 2002 ACM SIGMOD inter-
national conference on Management of data, (New York, NY, USA), pp. 263–
274, ACM Press, 2002.

[22] N. Bruno, S. Chaudhuri, and L. Gravano, “STHoles: a multidimensional
workload-aware histogram,” in SIGMOD ’01: Proceedings of the 2001 ACM
SIGMOD international conference on Management of data, (New York, NY,
USA), pp. 211–222, ACM Press, 2001.

[23] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Heller-
stein, W. Hong, S. Krishnamurthy, S. Madden, V. Raman, F. Reiss, and M. A.
Shah, “TelegraphCQ: Continuous dataflow processing for an uncertain world,”
in CIDR ’03: First Biennial Conference on Innovative Data Systems Research,
Asilomar, CA, 2003.

[24] S. Chaudhuri, “An overview of query optimization in relational systems,” in
PODS ’98: Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART
symposium on Principles of database systems, (New York, NY, USA), pp. 34–
43, ACM Press, 1998.

[25] S. Chaudhuri, U. Dayal, and T. W. Yan, “Join queries with external text
sources: Execution and optimization techniques,” in SIGMOD ’95: Proceedings
of the 1995 ACM SIGMOD International Conference on Management of Data,
pp. 410–422, ACM Press, May 26 1995.

[26] S. Chaudhuri and K. Shim, “Including group-by in query optimization,” in
VLDB ’94: Proceedings of the 20th International Conference on Very Large
Data Bases, (San Francisco, CA, USA), pp. 354–366, Morgan Kaufmann Pub-
lishers Inc., 1994.

[27] C. M. Chen and N. Roussopoulos, “Adaptive selectivity estimation using query
feedback,” in SIGMOD ’94: Proceedings of the 1994 ACM SIGMOD interna-
tional conference on Management of data, (New York, NY, USA), pp. 161–172,
ACM Press, 1994.

[28] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang, “NiagaraCQ: a scalable con-
tinuous query system for internet databases,” in SIGMOD ’00: Proceedings
of the 2000 ACM SIGMOD international conference on Management of data,
(New York, NY, USA), pp. 379–390, ACM Press, 2000.

[29] H.-T. Chou and D. J. DeWitt, “An evaluation of buffer management strategies
for relational database systems,” in VLDB ’85: Proceedings of 11th Interna-
tional Conference on Very Large Data Bases, pp. 127–141, Stockholm, Sweden:
Morgan Kaufmann, August 21–23 1985.

[30] F. Chu, J. Halpern, and J. Gehrke, “Least expected cost query optimization:
what can we expect?,” in PODS ’02: Proceedings of the twenty-first ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems,
(New York, NY, USA), pp. 293–302, ACM Press, 2002.

[31] F. Chu, J. Y. Halpern, and P. Seshadri, “Least expected cost query optimiza-
tion: an exercise in utility,” in PODS ’99: Proceedings of the eighteenth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems,
(New York, NY, USA), pp. 138–147, ACM Press, 1999.

Full text available at: http://dx.doi.org/10.1561/1900000001



140 References

[32] J. Claussen, A. Kemper, G. Moerkotte, K. Peithner, and M. Steinbrunn,
“Optimization and evaluation of disjunctive queries,” IEEE Transactions on
Knowledge and Data Engineering, vol. 12, no. 2, pp. 238–260, 2000.

[33] E. F. Codd, “A relational model of data for large shared data banks,” Com-
mun. ACM, vol. 26, no. 1, pp. 64–69, 1983.

[34] R. L. Cole and G. Graefe, “Optimization of dynamic query evaluation plans,”
in SIGMOD ’94: Proceedings of the 1994 ACM SIGMOD International Con-
ference on Management of Data, pp. 150–160, Minneapolis, MN: ACM Press,
May 24–27 1994.

[35] A. Condon, A. Deshpande, L. Hellerstein, and N. Wu, “Flow algorithms for
two pipelined filter ordering problems,” in PODS ’06: Proceedings of the
twenty-fifth ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, (New York, NY, USA), pp. 193–202, ACM Press, 2006.

[36] D. Daniels, “Query compilation in a distributed database system,” Tech. Rep.,
IBM, 1982. Research Report RJ 3423.

[37] A. Deshpande, “An initial study of overheads of eddies,” SIGMOD Rec.,
vol. 33, no. 1, pp. 44–49, 2004.

[38] A. Deshpande, M. Garofalakis, and R. Rastogi, “Independence is good:
dependency-based histogram synopses for high-dimensional data,” in SIG-
MOD ’01: Proceedings of the 2001 ACM SIGMOD international conference
on Management of data, (New York, NY, USA), pp. 199–210, ACM Press,
2001.

[39] A. Deshpande, C. Guestrin, W. Hong, and S. Madden, “Exploiting correlated
attributes in acquisitional query processing,” in ICDE ’05: Proceedings of the
21st International Conference on Data Engineering (ICDE’05), (Washington,
DC, USA), pp. 143–154, IEEE Computer Society, 2005.

[40] A. Deshpande and J. M. Hellerstein, “Lifting the burden of history from
adaptive query processing,” in VLDB ’04: Proceedings of the 30th Interna-
tional Conference on Very Large Data Bases, Toronto, Canada, August 29–
September 3 2004.

[41] A. Deshpande and L. Hellerstein, “Flow algorithms for parallel query opti-
mization,” Tech. Rep. CS-TR-4873, University of Maryland at College Park,
2007.

[42] L. Ding and E. A. Rundensteiner, “Evaluating window joins over punctuated
streams,” in CIKM ’04: Proceedings of the thirteenth ACM international con-
ference on Information and knowledge management, (New York, NY, USA),
pp. 98–107, ACM Press, 2004.

[43] O. Etzioni, S. Hanks, T. Jiang, R. M. Karp, O. Madani, and O. Waarts,
“Efficient information gathering on the internet,” in FOCS ’96: Proceedings
of the 37th Annual Symposium on Foundations of Computer Science, pp. 234–
243, IEEE Computer Society, 1996.

[44] S. Ewen, H. Kache, V. Markl, and V. Raman, “Progressive query optimization
for federated queries,” in EDBT ’06: Proceedings of the 10th International
Conference on Extending Database Technology, pp. 847–864, 2006.

[45] U. Feige, L. Lovász, and P. Tetali, “Approximating min-sum set cover,” Algo-
rithmica, vol. 40, no. 4, pp. 219–234, 2004.

Full text available at: http://dx.doi.org/10.1561/1900000001



References 141

[46] S. Ganguly, “Design and analysis of parametric query optimization algo-
rithms,” in VLDB ’98: Proceedings of the 24th International Conference on
Very Large Data Bases, pp. 228–238, Morgan Kaufmann, August 24–27 1998.

[47] S. Ganguly, W. Hasan, and R. Krishnamurthy, “Query optimization for paral-
lel execution,” in SIGMOD ’92: Proceedings of the 1992 ACM SIGMOD inter-
national conference on Management of data, (New York, NY, USA), pp. 9–18,
ACM Press, 1992.

[48] K. Gao, S. Harizopoulos, I. Pandis, V. Shkapenyuk, and A. Ailamaki, “Simul-
taneous pipelining in QPipe: Exploiting work sharing opportunities across
queries,” in ICDE ’06: Proceedings of the 22nd International Conference on
Data Engineering (ICDE’06), (Washington, DC, USA), p. 162, IEEE Com-
puter Society, 2006.

[49] L. Getoor, B. Taskar, and D. Koller, “Selectivity estimation using probabilistic
models,” in SIGMOD ’01: Proceedings of the 2001 ACM SIGMOD interna-
tional conference on Management of data, (New York, NY, USA), pp. 461–472,
ACM Press, 2001.

[50] R. Goldman and J. Widom, “DataGuides: Enabling query formulation and
optimization in semistructured databases,” in VLDB ’97: Proceedings of 23rd
International Conference on Very Large Data Bases, pp. 436–445, Athens,
Greece: Morgan Kaufman, August 25–29 1997.

[51] R. Goldman and J. Widom, “WSQ/DSQ: a practical approach for combined
querying of databases and the web,” in SIGMOD ’00: Proceedings of the 2000
ACM SIGMOD international conference on Management of data, (New York,
NY, USA), pp. 285–296, ACM Press, 2000.

[52] G. Graefe and K. Ward, “Dynamic query evaluation plans,” in SIGMOD ’89:
Proceedings of the 1989 ACM SIGMOD international conference on Manage-
ment of data, (New York, NY, USA), pp. 358–366, ACM Press, 1989.

[53] G. Graefe, “Query evaluation techniques for large databases,” ACM Comput.
Surv., vol. 25, no. 2, pp. 73–169, 1993.

[54] G. Graefe, “The Cascades framework for query optimization,” IEEE Data
Engineering Bulletin, vol. 18, no. 3, pp. 19–29, 1995.

[55] G. Graefe, R. Bunker, and S. Cooper, “Hash joins and hash teams in Microsoft
SQL Server,” in VLDB ’98: Proceedings of 24th International Conference on
Very Large Data Bases, pp. 86–97, Morgan Kaufman, August 24–27 1998.

[56] G. Graefe and W. J. McKenna, “The Volcano optimizer generator: Extensibil-
ity and efficient search,” in ICDE ’93: Proceedings of the Ninth International
Conference on Data Engineering, Vienna, Austria, pp. 209–218, IEEE Com-
puter Society, April 19–23 1993.

[57] H. Guo, P.-Å. Larson, R. Ramakrishnan, and J. Goldstein, “Relaxed currency
and consistency: how to say ”good enough” in SQL,” in SIGMOD ’04: Pro-
ceedings of the 2004 ACM SIGMOD international conference on Management
of data, (New York, NY, USA), pp. 815–826, ACM Press, 2004.

[58] L. M. Haas, J. C. Freytag, G. M. Lohman, and H. Pirahesh, “Extensible
query processing in starburst,” in SIGMOD ’89: Proceedings of the 1989 ACM
SIGMOD international conference on Management of data, (New York, NY,
USA), pp. 377–388, ACM Press, 1989.

Full text available at: http://dx.doi.org/10.1561/1900000001



142 References

[59] P. J. Haas and J. M. Hellerstein, “Ripple joins for online aggregation,” in SIG-
MOD ’99: Proceedings of the 1999 ACM SIGMOD international conference
on Management of data, (New York, NY, USA), pp. 287–298, ACM Press,
1999.

[60] J. M. Hellerstein, “Optimization techniques for queries with expensive meth-
ods,” ACM Transactions on Database Systems, vol. 23, no. 2, pp. 113–157,
1998.

[61] J. M. Hellerstein, R. Avnur, A. Chou, C. Hidber, C. Olston, V. Raman,
T. Roth, and P. J. Haas, “Interactive data analysis: The Control project,”
Computer, vol. 32, no. 8, pp. 51–59, 1999.

[62] M. Herbster and M. K. Warmuth, “Tracking the best expert,” Machine Learn-
ing, vol. 32, pp. 151–178, August 1998.

[63] D. A. Huffman, “A method for the construction of minimum redundancy
codes,” in Proc. Inst. Radio Eng., pp. 1098–1101, 1952.

[64] A. Hulgeri and S. Sudarshan, “Parametric query optimization for linear and
piecewise linear cost functions.,” in VLDB ’02: Proceedings of 28th Interna-
tional Conference on Very Large Data Bases, August 20-23, 2002, Hong Kong,
China, pp. 167–178, 2002.

[65] A. Hulgeri and S. Sudarshan, “AniPQO: Almost non-intrusive parametric
query optimization for nonlinear cost functions.,” in VLDB ’03: Proceedings
of 29th International Conference on Very Large Data Bases, September 9-12,
2003, Berlin, Germany, pp. 766–777, 2003.

[66] J.-H. Hwang, M. Balazinska, A. Rasin, U. Cetintemel, M. Stonebraker, and
S. Zdonik, “High-availability algorithms for distributed stream processing,”
in ICDE ’05: Proceedings of the 21st International Conference on Data Engi-
neering (ICDE’05), (Washington, DC, USA), pp. 779–790, IEEE Computer
Society, 2005.

[67] T. Ibaraki and T. Kameda, “On the optimal nesting order for computing
N-relational joins,” ACM Transactions on Database Systems, vol. 9, no. 3,
pp. 482–502, 1984.

[68] Y. E. Ioannidis, “Query optimization,” ACM Computing Surveys, vol. 28,
no. 1, pp. 121–123, 1996.

[69] Y. E. Ioannidis and S. Christodoulakis, “On the propagation of errors in the
size of join results,” in SIGMOD ’91: Proceedings of the 1991 ACM SIGMOD
international conference on Management of data, (New York, NY, USA),
pp. 268–277, ACM Press, 1991.

[70] Y. E. Ioannidis, R. T. Ng, K. Shim, and T. K. Sellis, “Parametric query
optimization,” The VLDB Journal, vol. 6, no. 2, pp. 132–151, 1997.

[71] Z. G. Ives, Efficient Query Processing for Data Integration. PhD thesis, Uni-
versity of Washington, August 2002.

[72] Z. G. Ives, D. Florescu, M. Friedman, A. Levy, and D. S. Weld, “An adaptive
query execution system for data integration,” in SIGMOD ’99: Proceedings
of the 1999 ACM SIGMOD international conference on Management of data,
(New York, NY, USA), pp. 299–310, ACM Press, 1999.

[73] Z. G. Ives, A. Y. Halevy, and D. S. Weld, “Adapting to source properties in
processing data integration queries,” in SIGMOD ’04: Proceedings of the 2004

Full text available at: http://dx.doi.org/10.1561/1900000001



References 143

ACM SIGMOD international conference on Management of data, (New York,
NY, USA), pp. 395–406, ACM Press, 2004.

[74] Z. G. Ives and N. E. Taylor, “Sideways information passing for push-style
query processing,” Tech. Rep. MS-CIS-07-14, University of Pennsylvania,
2007.

[75] N. Kabra and D. J. DeWitt, “Efficient mid-query re-optimization of sub-
optimal query execution plans,” in SIGMOD ’98: Proceedings of the 1998
ACM SIGMOD international conference on Management of data, (New York,
NY, USA), pp. 106–117, ACM Press, 1998.

[76] H. Kaplan, E. Kushilevitz, and Y. Mansour, “Learning with attribute costs,”
in STOC ’05: Proceedings of the thirty-seventh annual ACM symposium on
Theory of computing, (New York, NY, USA), pp. 356–365, ACM Press, 2005.

[77] M. Kearns and S. Singh, “Near-optimal reinforcement learning in polynomial
time,” Machine Learning, vol. 49, pp. 260–268, November 2002.

[78] W. Kim, “On optimizing an SQL-like nested query,” ACM Transactions on
Database Systems, vol. 7, no. 3, pp. 443–469, 1982.

[79] D. Kossmann, “The state of the art in distributed query processing,” ACM
Comput. Surv., vol. 32, no. 4, pp. 422–469, 2000.

[80] R. Krishnamurthy, H. Boral, and C. Zaniolo, “Optimization of nonrecursive
queries,” in VLDB ’86: Proceedings of the 12th International Conference on
Very Large Data Bases, (San Francisco, CA, USA), pp. 128–137, Morgan Kauf-
mann Publishers Inc., 1986.

[81] M. Kutsch, P. J. Haas, V. Markl, N. Megiddo, and T. M. Tran, “Integrat-
ing a maximum-entropy cardinality estimator into DB2 UDB,” in EDBT ’06:
Proceedings of the 10th International Conference on Extending Database Tech-
nology, 2006.

[82] T. Legler, W. Lehner, and A. Ross, “Data mining with the SAP NetWeaver BI
accelerator,” in VLDB ’06: Proceedings of the 32nd international conference
on Very large data bases, pp. 1059–1068, VLDB Endowment, 2006.

[83] H.-G. Li, S. Chen, J. Tatemura, D. Agrawal, K. S. Candan, and W.-P. Hsiung,
“Safety guarantee of continuous join queries over punctuated data streams,”
in VLDB ’06: Proceedings of the 32nd international conference on Very large
data bases, pp. 19–30, VLDB Endowment, 2006.

[84] W.-S. Li, V. S. Batra, V. Raman, W. Han, and I. Narang, “QoS-based data
access and placement for federated systems,” in VLDB ’05: Proceedings of the
31st international conference on Very large data bases, pp. 1358–1362, VLDB
Endowment, 2005.

[85] L. F. Mackert and G. M. Lohman, “R* optimizer validation and perfor-
mance evaluation for distributed queries,” in VLDB ’86: Proceedings of the
12th International Conference on Very Large Data Bases, (San Francisco, CA,
USA), pp. 149–159, Morgan Kaufmann Publishers Inc., 1986.

[86] S. Madden, M. Shah, J. M. Hellerstein, and V. Raman, “Continuously adaptive
continuous queries over streams,” in SIGMOD ’02: Proceedings of the 2002
ACM SIGMOD International Conference on Management of Data, pp. 49–60,
ACM Press, 2002.

Full text available at: http://dx.doi.org/10.1561/1900000001



144 References

[87] V. Markl, V. Raman, D. Simmen, G. Lohman, H. Pirahesh, and M. Cilimdzic,
“Robust query processing through progressive optimization,” in SIGMOD ’04:
Proceedings of the 2004 ACM SIGMOD international conference on Manage-
ment of data, (New York, NY, USA), pp. 659–670, ACM Press, 2004.

[88] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G. Manku,
C. Olston, J. Rosenstein, and R. Varma, “Query processing, resource manage-
ment, and approximation in a data stream management system,” in CIDR ’03:
First Biennial Conference on Innovative Data Systems Research, Asilomar,
CA, 2003.

[89] I. S. Mumick, S. J. Finkelstein, H. Pirahesh, and R. Ramakrishnan, “Magic is
relevant,” in SIGMOD ’90: Proceedings of the 1990 ACM SIGMOD interna-
tional conference on Management of data, (New York, NY, USA), pp. 247–258,
ACM Press, 1990.

[90] K. Munagala, S. Babu, R. Motwani, and J. Widom, “The pipelined set cover
problem.,” in ICDT ’05: Proceedings of the 10th International Conference,
Edinburgh, UK, pp. 83–98, 2005.

[91] K. Munagala, U. Srivastava, and J. Widom, “Optimization of continuous
queries with shared expensive filters,” in PODS ’07: Proceedings of the twenty-
sixth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems, (New York, NY, USA), pp. 215–224, ACM Press, 2007.

[92] J. Naughton, D. DeWitt, D. Maier, A. Aboulnaga, J. Chen, L. Galanis,
J. Kang, R. Krishnamurthy, Q. Luo, N. Prakash, R. Ramamurthy, J. Shan-
mugasundaram, F. Tian, K. Tufte, S. Viglas, Y. Wang, C. Zhang, B. Jackson,
A. Gupta, and R. Chen, “The niagara internet query system,” IEEE Data
Engineering Bulletin, June 2001.

[93] N. Polyzotis, “Selectivity-based partitioning: A divide-and-union paradigm
for effective query optimization,” in CIKM ’05: Proceedings of the 14th
ACM International Conference on Information and knowledge management,
pp. 720–727, New York, NY: ACM Press, 2005.

[94] V. G. V. Prasad, Parametric Query Optimization: A Geometric Approach.
Master’s thesis, IIT Kanpur, 1999.

[95] V. Raman, A. Deshpande, and J. M. Hellerstein, “Using state modules for
adaptive query processing.,” in ICDE ’03: Proceedings of the 19th Interna-
tional Conference on Data Engineering, Bangalore, India, pp. 353–364, 2003.

[96] V. Raman and J. M. Hellerstein, “Partial results for online query process-
ing,” in SIGMOD ’02: Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data, pp. 275–286, ACM Press, 2002.

[97] V. Raman, B. Raman, and J. M. Hellerstein, “Online dynamic reordering for
interactive data processing,” in VLDB ’99: Proceedings of the 25th Interna-
tional Conference on Very Large Data Bases, pp. 709–720, Edinburgh, Scot-
land: Morgan Kaufmann, 1999.

[98] S. V. U. M. Rao, Parametric Query Optimization: A Non-Geometric
Approach. Master’s thesis, IIT Kanpur, 1999.

[99] L. Raschid and S. Y. W. Su, “A parallel processing strategy for evaluating
recursive queries,” in VLDB ’86: Proceedings of the 12th International Con-

Full text available at: http://dx.doi.org/10.1561/1900000001



References 145

ference on Very Large Data Bases, pp. 412–419, Morgan Kaufmann Publishers
Inc., 1986.

[100] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe, “Efficient and extensible
algorithms for multi query optimization,” in SIGMOD ’00: Proceedings of the
2000 ACM SIGMOD international conference on Management of data, (New
York, NY, USA), pp. 249–260, ACM Press, 2000.

[101] E. A. Rundensteiner, L. Ding, T. M. Sutherland, Y. Zhu, B. Pielech, and
N. Mehta, “CAPE: Continuous query engine with heterogeneous-grained
adaptivity,” in VLDB ’04: Proceedings of the Thirtieth International Con-
ference on Very Large Data Bases, Toronto, Canada, pp. 1353–1356, 2004.

[102] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G.
Price, “Access path selection in a relational database management system,”
in SIGMOD ’79: Proceedings of the 1979 ACM SIGMOD International Con-
ference on Management of Data, 1979.

[103] T. K. Sellis, “Multiple-query optimization,” ACM Trans. Database Syst.,
vol. 13, no. 1, pp. 23–52, 1988.

[104] P. Seshadri, J. M. Hellerstein, H. Pirahesh, T. Y. C. Leung, R. Ramakrishnan,
D. Srivastava, P. J. Stuckey, and S. Sudarshan, “Cost-based optimization for
magic: Algebra and implementation,” in SIGMOD ’96: Proceedings of the 1996
ACM SIGMOD International Conference on Management of Data, pp. 435–
446, ACM Press, 1996.

[105] P. Seshadri, H. Pirahesh, and T. Y. C. Leung, “Complex query decorrelation,”
in ICDE ’96: Proceedings of the Twelfth International Conference on Data
Engineering, New Orleans, LA, pp. 450–458, February 26–March 1 1996.

[106] M. A. Shah, J. M. Hellerstein, and E. Brewer, “Highly available, fault-tolerant,
parallel dataflows,” in SIGMOD ’04: Proceedings of the 2004 ACM SIGMOD
international conference on Management of data, (New York, NY, USA),
pp. 827–838, ACM Press, 2004.

[107] J. Shanmugasundaram, K. Tufte, D. J. DeWitt, J. F. Naughton, and D. Maier,
“Architecting a network query engine for producing partial results,” in ACM
SIGMOD Workshop on the Web (WebDB) 2000, Dallas, TX, pp. 17–22, 2000.

[108] M. A. Shayman and E. Fernandez-Gaucherand, “Risk-sensitive decision-
theoretic diagnosis,” IEEE Transactions on Automatic Control, vol. 46,
pp. 1166–1171, 2001.

[109] H. Simon and J. Kadane, “Optimal problem-solving search: All-or-none solu-
tions,” Artificial Intelligence, vol. 6, pp. 235–247, 1975.

[110] U. Srivastava, K. Munagala, and J. Widom, “Operator placement for
in-network stream query processing,” in PODS ’05: Proceedings of the
Twenty-Fourth ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, pp. 250–258, 2005.

[111] U. Srivastava, K. Munagala, J. Widom, and R. Motwani, “Query optimiza-
tion over web services,” in VLDB ’06: Proceedings of the 32nd international
conference on Very large data bases, pp. 355–366, VLDB Endowment, 2006.

[112] M. Stillger, G. Lohman, V. Markl, and M. Kandil, “LEO – DB2’s LEarning
Optimizer,” in VLDB ’01: Proceedings of 27th International Conference on
Very Large Data Bases, Morgan Kaufmann, September 11–14 2001.

Full text available at: http://dx.doi.org/10.1561/1900000001



146 References

[113] M. Stonebraker, E. Wong, P. Kreps, and G. Held, “The design and imple-
mentation of Ingres,” ACM Transactions on Database Systems, vol. 1, no. 3,
pp. 189–222, 1976.

[114] M. Templeton, H. Henley, E. Maros, and D. J. V. Buer, “InterViso: Dealing
with the complexity of federated database access,” The VLDB Journal, vol. 4,
no. 2, 1995.

[115] F. Tian and D. J. DeWitt, “Tuple routing strategies for distributed eddies,” in
VLDB ’03: Proceedings of 29th International Conference on Very Large Data
Bases, pp. 333–344, Berlin, Germany: Morgan Kaufmann, September 9–12
2003.

[116] P. A. Tucker and D. Maier, “Exploiting punctuation semantics in data
streams,” in ICDE ’02: Proceedings of the 18th International Conference on
Data Engineering, (Washington, DC, USA), p. 279, IEEE Computer Society,
2002.

[117] T. Urhan and M. J. Franklin, “XJoin: a reactively-scheduled pipelined join
operator,” IEEE Data Engineering Bulletin, vol. 23, no. 2, pp. 27–33, 2000.

[118] T. Urhan, M. J. Franklin, and L. Amsaleg, “Cost based query scrambling
for initial delays,” in SIGMOD ’98: Proceedings of the 1998 ACM SIGMOD
International Conference on Management of Data, pp. 130–141, Seattle, WA:
ACM Press, June 2–4 1998.

[119] E. Viglas and S.-J. F. Naughton, Novel Query Optimization and Evaluation
Techniques. PhD thesis, University of Wisconsin at Madison, 2003.

[120] S. Viglas, J. F. Naughton, and J. Burger, “Maximizing the output rate of
multi-way join queries over streaming information sources,” in VLDB ’03:
Proceedings of the 29th International Conference on Very Large Data Bases,
Berlin, Germany: Morgan Kaufmann, September 9–12 2003.

[121] A. N. Wilschut and P. M. G. Apers, “Dataflow query execution in a par-
allel main-memory environment,” in PDIS ’91: Proceedings of the First
International Conference on Parallel and Distributed Information Systems,
Fontainebleu Hilton Resort, Miami Beach, FL, pp. 68–77, IEEE Computer
Society, 1991.

[122] E. Wong and K. Youssefi, “Decomposition — strategy for query processing,”
ACM Transactions on Database Systems, vol. 1, no. 3, pp. 223–241, 1976.

[123] D. Zhang, J. Li, K. Kimeli, and W. Wang, “Sliding window based multi-join
algorithms over distributed data streams,” in ICDE ’06: Proceedings of the
22nd International Conference on Data Engineering (ICDE’06), (Washington,
DC, USA), p. 139, IEEE Computer Society, 2006.

[124] Y. Zhu, E. A. Rundensteiner, and G. T. Heineman, “Dynamic plan migration
for continuous queries over data streams,” in SIGMOD ’04: Proceedings of the
2004 ACM SIGMOD international conference on Management of data, (New
York, NY, USA), pp. 431–442, ACM Press, 2004.

Full text available at: http://dx.doi.org/10.1561/1900000001


	Introduction
	Query Processing in Relational Database Systems
	Motivations for AQP
	Road Map
	Related Work

	Background: Conventional Optimization Techniques
	Query Optimization
	Choosing an Effective Plan
	Summary

	Foundations of Adaptive Query Processing
	New Operators
	Adaptivity Loop
	Post-mortem Analysis of Adaptive Techniques
	Adaptivity Loop and Post-mortem in Some Example Systems
	Scope of the Remainder of the Survey

	Adaptive Selection Ordering
	Adaptive Greedy
	Adaptation using Eddies
	Parallel and Distributed Scenarios
	Summary

	Adaptive Join Processing: Overview
	Adaptive Join Processing: History-Independent Pipelined Execution 
	Pipelined Plans with a Single Driver Relation
	Pipelined Plans with Multiple Drivers
	Adaptive Caching (A-Caching)
	Summary

	Adaptive Join Processing: History-Dependent Pipelined Execution
	Corrective Query Processing
	Eddies with Binary Join Operators
	Eddies with STAIRs
	Dynamic Plan Migration in CAPE
	Summary

	Adaptive Join Processing: Non-pipelined Execution
	Plan Staging
	Mid-Query Reoptimization
	Query Scrambling
	Summary and Post-mortem Analysis

	Summary and Open Questions
	Trade-Offs and Constraints
	Adaptive Mechanisms
	Conclusions and Challenge Problems

	Acknowledgments
	References



