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Abstract

As the data management field has diversified to consider settings in
which queries are increasingly complex, statistics are less available, or
data is stored remotely, there has been an acknowledgment that the
traditional optimize-then-execute paradigm is insufficient. This has led
to a plethora of new techniques, generally placed under the common
banner of adaptive query processing, that focus on using runtime feed-
back to modify query processing in a way that provides better response
time or more efficient CPU utilization.

In this survey paper, we identify many of the common issues, themes,
and approaches that pervade this work, and the settings in which each
piece of work is most appropriate. Our goal with this paper is to be
a “value-add” over the existing papers on the material, providing not
only a brief overview of each technique, but also a basic framework
for understanding the field of adaptive query processing in general.
We focus primarily on intra-query adaptivity of long-running, but not
full-fledged streaming, queries. We conclude with a discussion of open
research problems that are of high importance.
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1

Introduction

One of the fundamental breakthroughs of Codd’s relational data
model [33] was the identification of how to take a declarative, logic-
based formulation of a query and convert it into an algebraic query
evaluation tree. As described in every database textbook, this enabled
physical data independence and promised many benefits: the database
administrator and the DBMS optimizer became free to choose among
many different storage formats and execution plans to answer a declar-
ative query. The challenge, since then, has been how to deliver on these
promises — regardless of where or how the data is laid out, how com-
plex the query is, and how unpredictable the operating environment is.

This challenge has spurred 30 years of query processing research.
Cost-based query optimization, pioneered by Selinger et al. [102] in
System R and refined by generations of database researchers and devel-
opers, has been tremendously effective in addressing the needs of rela-
tional DBMS query processing: one can get excellent performance for
queries over data with few correlations, executed in a relatively stable
environment, given sufficient statistical information.

However, when even one of these characteristics is not present, the
System R-style optimize-then-execute model begins to break down: as

1
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2 Introduction

noted in [69], optimizer error begins to build up at a rate exponential
in the size of the query. As the database field has broadened to con-
sider more general data management, including querying autonomous
remote data sources, supporting continuous queries over data streams,
encoding and retrieving XML data, supporting OLAP and data mining
operations, and combining text search with structured query capabili-
ties, the weaknesses of the traditional optimization model have begun
to show themselves.

In response, there has been a surge of interest in a broad array of
techniques termed adaptive query processing (AQP). AQP addresses
the problems of missing statistics, unexpected correlations, unpre-
dictable costs, and dynamic data by using feedback to tune execution. It
is one of the cornerstones of so-called autonomic database management
systems, although it also generalizes to many other contexts, particu-
larly at the intersection of database query processing and the Web.

The spectrum of adaptive query processing techniques has been
quite broad: they may span multiple query executions or adapt within
the execution of a single query; they may affect the query plan being
executed or the scheduling of operations within the plan; they have been
developed for improving performance of local DBMS queries (e.g., [75,
87, 112]), for processing distributed and streaming data (e.g., [6, 72, 88,
92, 101]), and for performing distributed query execution (e.g., [115]).

This survey is an attempt to cover the fundamental issues, tech-
niques, costs, and benefits of adaptive query processing. We begin
with a broad overview of the field, identifying the dimensions of
adaptive techniques. Then we focus our analysis on the spectrum of
approaches available to adapt query execution at runtime — primarily
in a non-streaming context. Where possible, we focus on simplifying
and abstracting the key concepts of each technique, rather than repro-
ducing the full details available in the papers; we consider generaliza-
tions of the specific published implementations. Our goal is to identify
the strengths and limitations of the different techniques, demonstrate
when they are most useful, and suggest possible avenues of future
research.

In the rest of the section, we present a brief overview of query pro-
cessing in relational database systems (Section 1.1) and elaborate on
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1.1 Query Processing in Relational Database Systems 3

the reasons behind the push toward adaptivity (Section 1.2); we then
present a road map for the rest of the survey (Section 1.3), and briefly
discuss the related surveys of interest (Section 1.4).

1.1 Query Processing in Relational Database Systems

The conventional method of processing a query in a relational DBMS
is to parse the SQL statement and produce a relational calculus-like
logical representation of the query, and then to invoke the query opti-
mizer, which generates a query plan. The query plan is fed into an
execution engine that directly executes it, typically with little or no
runtime decision-making (Figure 1.1).

The query plan can be thought of as a tree of unary and binary
relational algebra operators, where each operator is annotated with
specific details about the algorithm to use (e.g., nested loops join versus
hash join) and how to allocate resources (e.g., memory). In many cases
the query plan also includes low-level “physical” operations like sorting,
network shipping, etc. that do not affect the logical representation of
the data.

Certain query processors consider only restricted types of queries,
rather than full-blown SQL. A common example of this is select-
project-join or SPJ queries: an SPJ query essentially represents a single
SQL SELECT-FROM-WHERE block with no aggregation or subqueries.

Fig. 1.1 Query processing in database systems.
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4 Introduction

An even further restriction is conjunctive queries, which are SPJ queries
that only have conjunctive predicates in the WHERE clause; these can be
represented as single rules in the Datalog language.

The model of query processing established with the System R
project [102], which is still followed today, is to divide query processing
into three major stages.

Statistics generation is done offline (typically using the RUNSTATS

or UPDATE STATISTICS command) on the tables in the database. The
system profiles the relation instances, collecting information about car-
dinalities and numbers of unique attribute values, and often generating
histograms over certain fields.

The second stage, which is normally done at runtime,1 is query opti-
mization. The optimization stage is very similar to traditional compi-
lation; in fact, in some systems, it generates directly executable code.
Optimization uses a combination of cost estimation, where the run-
ning times of query subexpressions are estimated (based on known
performance characteristics of algorithm implementations, calibration
parameters for hardware speed, and the statistics generated for the
relations), pruning heuristics (which are necessary to reduce the over-
all search space), and exhaustive enumeration. For relatively simple
queries with good statistics, the plans produced by a query optimizer
can be quite good, although as discussed previously, this is less true in
more complex settings.

The final stage, query execution, is handled by an engine analogous
to a virtual machine or interpreter for the compiled query plan. There
are several important aspects of query execution that are of note. The
first is that in general it is desirable to pipeline computation, such
that each operator processes a tuple at a time from its sub-operators,
and also propagates a single tuple to its parent for processing. This
leads to better response time in terms of initial answers, and often
higher throughput as delays are masked. However, not all operators
are naturally amenable to pipelining (e.g., operators like sorting and
grouping often must process entire table before they can determine

1 Except for certain embedded SQL queries, which may be pre-optimized or optimized once
for multiple possible input bindings.
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1.2 Motivations for AQP 5

what tuple to output next). Also, complex query plans may require too
many resources to be fully pipelined. In these settings, the optimizer
must break the plan into multiple segments, materializing (storing)
intermediate results at the end of each stage and using that as an
input to the next stage.

Second, the issue of scheduling computation in a query plan has
many performance implications. Traditional query processing makes
the assumption that an individual operator implementation (e.g., a
nested loops join) should be able to control how CPU cycles are allo-
cated to its child operators. This is achieved through a so-called itera-
tor [53] architecture: each operator has open, close, and getNextTuple

methods. The query engine first invokes the query plan root node’s
open method, which in turn opens its children, and the process repeats
recursively down the plan. Then getNextTuple is called on the root
node. Depending on the operator implementation, it will make calls to
its children’s getNextTuple methods until it can return a tuple to its
parent. The process completes until no more tuples are available, and
then the engine closes the query plan.

An alternate approach, so called data-driven or dataflow schedul-
ing [121], is used in many parallel database systems. Here, in order to
allow for concurrent computation across many machines, the data pro-
ducers — not the consumers — control the scheduling. Each operator
takes data from an input queue, processes it, and sends it to an output
queue. Scheduling is determined by the rates at which the queues are
filled and emptied. In this survey, we will discuss a number of adaptive
techniques that in essence use a hybrid of the iterator and data-driven
approaches.

1.2 Motivations for AQP

Over the years, many refinements have been made to the basic query
processing technology discussed above. Since CPUs are more powerful
today and query workloads are much more diverse, query optimizers
perform a more comprehensive search of the space of query plans with
joins, relying less on pruning heuristics. Selectivity estimation tech-
niques have become more accurate and consider skewed distributions
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6 Introduction

(and to a limited extent, attribute correlations). However, the System
R-style approach has begun to run into its fundamental limits in recent
years, primarily due to the emergence of new application domains in
which database query processing is being applied. In particular, triggers
for this breakdown include the following:

• Unreliable cardinality estimates: The cost estimation
process depends critically on estimates of the cardinality
of various query subexpressions. Despite significant work
on building better statistics structures and data collection
schemes, many real-world settings have either inaccurate or
missing statistics. (In some circumstances, as with remote
data sources, statistics may be difficult or impossible to
obtain.) Even when base-table statistics are perfect, cor-
relations between predicates can cause intermediate result
cardinality estimates to be off by several orders of magni-
tude [69, 112].
• Queries with parameter markers: SQL is not a pleasant

language for end users, so most database queries are issued by
a user clicking on a form. The SQL for such queries invariably
contains parameter markers (for form input), and the pre-
computed query plans for such queries can be substantially
worse than optimal for some values of the parameters.
• Dynamically changing data, runtime, and workload

characteristics: In many environments, especially data
streams [23, 88, 92], queries might be long-running, and the
data characteristics and hence the optimal query plans might
change during the execution of the query. The runtime costs
can also change dramatically, especially in wide-area envi-
ronments. Similarly, fluctuating query workloads can result
in variations in the resources available to execute a query
(e.g., memory), making it necessary to adapt.
• Complex queries involving many tables: Query opti-

mizers typically switch to a heuristic approach when queries
become too complex to be optimized using the dynamic pro-
gramming approach. Such queries are naturally more prone
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1.2 Motivations for AQP 7

to estimation errors [69], and the use of heuristics exacerbates
the problem.
• Interactive querying: The optimize-then-execute model

does not mesh well with an interactive environment where
a user might want to cancel or refine a query after a few
seconds of execution: the metric changes too quickly for opti-
mization to pay off [61]. Also, pipelined execution and early-
result scheduling, even in the presence of slow data sources,
becomes paramount.
• Need for aggressive sharing: Though there has been

much work in multi-query optimization, so far no definitive
solutions have emerged in this area. Traditional databases
make do with almost no inter-query state sharing because
their usage pattern is made up of a small number of
queries against large databases. However, sharing the data
as well as the computation is critical in environments
such as data streams, which feature a very large num-
ber of (typically simple) queries over a small set of data
streams [28, 86].

There have been two responses to the challenges posed above. The
first, a very pragmatic response by application vendors, has been to
build domain-specific optimization capabilities outside the DBMS and
override its local optimizer. Many commercial DBMSs allow users to
specify “hints” on what access methods and join orders to use, via SQL
or catalog tables. Recently, SAP has built an application-level query
processor that runs only a very limited set of plans (essentially, only
table scans), but at very high efficiency [82]. While this achieves SAP’s
target of satisfying its users, it runs counter to the database commu-
nity’s goals of developing high-performance, general-purpose processors
for declarative queries.

Our interest in this survey is on the second development, which
has been the focus of the academic and commercial DBMS research
community: the design and construction of what have come to be known
as adaptive (or autonomic) query processing systems, that use runtime
feedback to adapt query processing.

Full text available at: http://dx.doi.org/10.1561/1900000001



8 Introduction

1.3 Road Map

We begin with a brief introduction to query optimization in relational
database systems (Section 2). We then discuss some of the foundations
of AQP, namely, three new operators, and several unifying concepts
that we use throughout the survey to illustrate the AQP techniques,
to analyze them, and to differentiate between them (Section 3).

We begin our discussion of adaptive query processing by considering
a simple class of queries called selection ordering queries (Section 4).
The discussion of adaptation techniques for join queries is divided into
three parts, roughly based on the space of the query execution plans
they explore. We begin with a discussion of techniques for adapting
pipelined query execution (Sections 6 and 7), and cover non-pipelined
query execution in Section 8. We conclude the survey with a discussion
of some of the most important research challenges in adaptive query
processing (Section 9).

1.4 Related Work

A number of surveys on query processing are related to this paper.
We assume basic familiarity with many of the ideas of Graefe’s survey
on query execution techniques [53]. Kossmann’s survey on distributed
query processing [79] also provides useful context for the discussion, as
do Ioannidis and Chaudhuri’s surveys on query optimization [24, 68].
Babu and Bizarro [8] also present a survey of AQP from a different
means of classification from our own (whether the scheme is plan-based,
routing-based, or continuous query-based).
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