
Architecture of a

Database System

Full text available at: http://dx.doi.org/10.1561/1900000002



Full text available at: http://dx.doi.org/10.1561/1900000002



Architecture of a
Database System

Joseph M. Hellerstein

University of California
USA

hellerstein@cs.berkeley.edu

Michael Stonebraker

Massachusetts Institute of Technology
USA

James Hamilton

Microsoft Research
USA

Boston – Delft

Full text available at: http://dx.doi.org/10.1561/1900000002



Foundations and Trends R© in
Databases

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
USA
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is J. M. Hellerstein, M. Stonebraker

and J. Hamilton, Architecture of a Database System, Foundation and Trends R©
in Databases, vol 1, no 2, pp 141–259, 2007

ISBN: 978-1-60198-078-6
c© 2007 J. M. Hellerstein, M. Stonebraker and J. Hamilton

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, mechanical, photocopying, recording
or otherwise, without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen-
ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for
internal or personal use, or the internal or personal use of specific clients, is granted by
now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The
‘services’ for users can be found on the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system
of payment has been arranged. Authorization does not extend to other kinds of copy-
ing, such as that for general distribution, for advertising or promotional purposes, for
creating new collective works, or for resale. In the rest of the world: Permission to pho-
tocopy must be obtained from the copyright owner. Please apply to now Publishers Inc.,
PO Box 1024, Hanover, MA 02339, USA; Tel. +1-781-871-0245; www.nowpublishers.com;
sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/1900000002



Foundations and Trends R© in
Databases

Volume 1 Issue 2, 2007

Editorial Board

Editor-in-Chief:
Joseph M. Hellerstein
Computer Science Division
University of California, Berkeley
Berkeley, CA
USA
hellerstein@cs.berkeley.edu

Editors
Surajit Chaudhuri (Microsoft Research)
Ronald Fagin (IBM Research)
Minos Garofalakis (Intel Research)
Johannes Gehrke (Cornell University)
Alon Halevy (Google)
Jeffrey Naughton (University of Wisconsin)
Jignesh Patel (University of Michigan)
Raghu Ramakrishnan (Yahoo! Research)

Full text available at: http://dx.doi.org/10.1561/1900000002



Editorial Scope

Foundations and Trends R© in Databases covers a breadth of top-
ics relating to the management of large volumes of data. The journal
targets the full scope of issues in data management, from theoretical
foundations, to languages and modeling, to algorithms, system archi-
tecture, and applications. The list of topics below illustrates some of
the intended coverage, though it is by no means exhaustive:

• Data Models and Query
Languages

• Query Processing and
Optimization

• Storage, Access Methods, and
Indexing

• Transaction Management,
Concurrency Control and Recovery

• Deductive Databases

• Parallel and Distributed Database
Systems

• Database Design and Tuning

• Metadata Management

• Object Management

• Trigger Processing and Active
Databases

• Data Mining and OLAP

• Approximate and Interactive
Query Processing

• Data Warehousing

• Adaptive Query Processing

• Data Stream Management

• Search and Query Integration

• XML and Semi-Structured Data

• Web Services and Middleware

• Data Integration and Exchange

• Private and Secure Data
Management

• Peer-to-Peer, Sensornet and
Mobile Data Management

• Scientific and Spatial Data
Management

• Data Brokering and
Publish/Subscribe

• Data Cleaning and Information
Extraction

• Probabilistic Data Management

Information for Librarians
Foundations and Trends R© in Databases, 2007, Volume 1, 4 issues. ISSN paper
version 1931-7883. ISSN online version 1931-7891. Also available as a com-
bined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/1900000002



Foundations and TrendsR© in
Databases

Vol. 1, No. 2 (2007) 141–259
c© 2007 J. M. Hellerstein, M. Stonebraker
and J. Hamilton

DOI: 10.1561/1900000002

Architecture of a Database System

Joseph M. Hellerstein1, Michael Stonebraker2

and James Hamilton3

1 University of California, Berkeley, USA, hellerstein@cs.berkeley.edu
2 Massachusetts Institute of Technology, USA
3 Microsoft Research, USA

Abstract

Database Management Systems (DBMSs) are a ubiquitous and critical
component of modern computing, and the result of decades of research
and development in both academia and industry. Historically, DBMSs
were among the earliest multi-user server systems to be developed, and
thus pioneered many systems design techniques for scalability and relia-
bility now in use in many other contexts. While many of the algorithms
and abstractions used by a DBMS are textbook material, there has been
relatively sparse coverage in the literature of the systems design issues
that make a DBMS work. This paper presents an architectural dis-
cussion of DBMS design principles, including process models, parallel
architecture, storage system design, transaction system implementa-
tion, query processor and optimizer architectures, and typical shared
components and utilities. Successful commercial and open-source sys-
tems are used as points of reference, particularly when multiple alter-
native designs have been adopted by different groups.

Full text available at: http://dx.doi.org/10.1561/1900000002



Contents

1 Introduction 1

1.1 Relational Systems: The Life of a Query 2
1.2 Scope and Overview 7

2 Process Models 9

2.1 Uniprocessors and Lightweight Threads 12
2.2 DBMS Threads 19
2.3 Standard Practice 20
2.4 Admission Control 22
2.5 Discussion and Additional Material 24

3 Parallel Architecture: Processes and Memory
Coordination 25

3.1 Shared Memory 25
3.2 Shared-Nothing 27
3.3 Shared-Disk 30
3.4 NUMA 31
3.5 DBMS Threads and Multi-processors 32
3.6 Standard Practice 33
3.7 Discussion and Additional Material 34

4 Relational Query Processor 37

4.1 Query Parsing and Authorization 38

ix

Full text available at: http://dx.doi.org/10.1561/1900000002



4.2 Query Rewrite 40
4.3 Query Optimizer 43
4.4 Query Executor 49
4.5 Access Methods 54
4.6 Data Warehouses 57
4.7 Database Extensibility 63
4.8 Standard Practice 68
4.9 Discussion and Additional Material 69

5 Storage Management 71

5.1 Spatial Control 71
5.2 Temporal Control: Buffering 73
5.3 Buffer Management 75
5.4 Standard Practice 77
5.5 Discussion and Additional Material 77

6 Transactions: Concurrency Control
and Recovery 79

6.1 A Note on ACID 80
6.2 A Brief Review of Serializability 81
6.3 Locking and Latching 83
6.4 Log Manager 89
6.5 Locking and Logging in Indexes 92
6.6 Interdependencies of Transactional Storage 96
6.7 Standard Practice 98
6.8 Discussion and Additional Material 99

7 Shared Components 101

7.1 Catalog Manager 101
7.2 Memory Allocator 102
7.3 Disk Management Subsystems 105
7.4 Replication Services 107
7.5 Administration, Monitoring, and Utilities 109

Full text available at: http://dx.doi.org/10.1561/1900000002



8 Conclusion 113

Acknowledgments 115

References 117

Full text available at: http://dx.doi.org/10.1561/1900000002



1

Introduction

Database Management Systems (DBMSs) are complex, mission-critical
software systems. Today’s DBMSs embody decades of academic
and industrial research and intense corporate software development.
Database systems were among the earliest widely deployed online server
systems and, as such, have pioneered design solutions spanning not only
data management, but also applications, operating systems, and net-
worked services. The early DBMSs are among the most influential soft-
ware systems in computer science, and the ideas and implementation
issues pioneered for DBMSs are widely copied and reinvented.

For a number of reasons, the lessons of database systems architec-
ture are not as broadly known as they should be. First, the applied
database systems community is fairly small. Since market forces only
support a few competitors at the high end, only a handful of successful
DBMS implementations exist. The community of people involved in
designing and implementing database systems is tight: many attended
the same schools, worked on the same influential research projects, and
collaborated on the same commercial products. Second, academic treat-
ment of database systems often ignores architectural issues. Textbook
presentations of database systems traditionally focus on algorithmic

1

Full text available at: http://dx.doi.org/10.1561/1900000002



2 Introduction

and theoretical issues — which are natural to teach, study, and test —
without a holistic discussion of system architecture in full implementa-
tions. In sum, much conventional wisdom about how to build database
systems is available, but little of it has been written down or commu-
nicated broadly.

In this paper, we attempt to capture the main architectural aspects
of modern database systems, with a discussion of advanced topics. Some
of these appear in the literature, and we provide references where appro-
priate. Other issues are buried in product manuals, and some are simply
part of the oral tradition of the community. Where applicable, we use
commercial and open-source systems as examples of the various archi-
tectural forms discussed. Space prevents, however, the enumeration of
the exceptions and finer nuances that have found their way into these
multi-million line code bases, most of which are well over a decade old.
Our goal here is to focus on overall system design and stress issues
not typically discussed in textbooks, providing useful context for more
widely known algorithms and concepts. We assume that the reader
is familiar with textbook database systems material (e.g., [72] or [83])
and with the basic facilities of modern operating systems such as UNIX,
Linux, or Windows. After introducing the high-level architecture of a
DBMS in the next section, we provide a number of references to back-
ground reading on each of the components in Section 1.2.

1.1 Relational Systems: The Life of a Query

The most mature and widely used database systems in production
today are relational database management systems (RDBMSs). These
systems can be found at the core of much of the world’s application
infrastructure including e-commerce, medical records, billing, human
resources, payroll, customer relationship management and supply chain
management, to name a few. The advent of web-based commerce and
community-oriented sites has only increased the volume and breadth of
their use. Relational systems serve as the repositories of record behind
nearly all online transactions and most online content management sys-
tems (blogs, wikis, social networks, and the like). In addition to being
important software infrastructure, relational database systems serve as

Full text available at: http://dx.doi.org/10.1561/1900000002



1.1 Relational Systems: The Life of a Query 3

Fig. 1.1 Main components of a DBMS.

a well-understood point of reference for new extensions and revolutions
in database systems that may arise in the future. As a result, we focus
on relational database systems throughout this paper.

At heart, a typical RDBMS has five main components, as illustrated
in Figure 1.1. As an introduction to each of these components and the
way they fit together, we step through the life of a query in a database
system. This also serves as an overview of the remaining sections of the
paper.

Consider a simple but typical database interaction at an airport, in
which a gate agent clicks on a form to request the passenger list for a
flight. This button click results in a single-query transaction that works
roughly as follows:

1. The personal computer at the airport gate (the “client”) calls
an API that in turn communicates over a network to estab-
lish a connection with the Client Communications Manager
of a DBMS (top of Figure 1.1). In some cases, this connection

Full text available at: http://dx.doi.org/10.1561/1900000002



4 Introduction

is established between the client and the database server
directly, e.g., via the ODBC or JDBC connectivity protocol.
This arrangement is termed a “two-tier” or “client-server”
system. In other cases, the client may communicate with
a “middle-tier server” (a web server, transaction process-
ing monitor, or the like), which in turn uses a protocol to
proxy the communication between the client and the DBMS.
This is usually called a “three-tier” system. In many web-
based scenarios there is yet another “application server” tier
between the web server and the DBMS, resulting in four
tiers. Given these various options, a typical DBMS needs
to be compatible with many different connectivity protocols
used by various client drivers and middleware systems. At
base, however, the responsibility of the DBMS’ client com-
munications manager in all these protocols is roughly the
same: to establish and remember the connection state for
the caller (be it a client or a middleware server), to respond
to SQL commands from the caller, and to return both data
and control messages (result codes, errors, etc.) as appro-
priate. In our simple example, the communications manager
would establish the security credentials of the client, set up
state to remember the details of the new connection and the
current SQL command across calls, and forward the client’s
first request deeper into the DBMS to be processed.

2. Upon receiving the client’s first SQL command, the DBMS
must assign a “thread of computation” to the command. It
must also make sure that the thread’s data and control out-
puts are connected via the communications manager to the
client. These tasks are the job of the DBMS Process Man-
ager (left side of Figure 1.1). The most important decision
that the DBMS needs to make at this stage in the query
regards admission control : whether the system should begin
processing the query immediately, or defer execution until a
time when enough system resources are available to devote
to this query. We discuss Process Management in detail in
Section 2.

Full text available at: http://dx.doi.org/10.1561/1900000002



1.1 Relational Systems: The Life of a Query 5

3. Once admitted and allocated as a thread of control, the gate
agent’s query can begin to execute. It does so by invoking the
code in the Relational Query Processor (center, Figure 1.1).
This set of modules checks that the user is authorized to run
the query, and compiles the user’s SQL query text into an
internal query plan. Once compiled, the resulting query plan
is handled via the plan executor. The plan executor consists
of a suite of “operators” (relational algorithm implementa-
tions) for executing any query. Typical operators implement
relational query processing tasks including joins, selection,
projection, aggregation, sorting and so on, as well as calls
to request data records from lower layers of the system. In
our example query, a small subset of these operators — as
assembled by the query optimization process — is invoked to
satisfy the gate agent’s query. We discuss the query processor
in Section 4.

4. At the base of the gate agent’s query plan, one or more
operators exist to request data from the database. These
operators make calls to fetch data from the DBMS’ Trans-
actional Storage Manager (Figure 1.1, bottom), which man-
ages all data access (read) and manipulation (create, update,
delete) calls. The storage system includes algorithms and
data structures for organizing and accessing data on disk
(“access methods”), including basic structures like tables
and indexes. It also includes a buffer management mod-
ule that decides when and what data to transfer between
disk and memory buffers. Returning to our example, in the
course of accessing data in the access methods, the gate
agent’s query must invoke the transaction management code
to ensure the well-known “ACID” properties of transactions
[30] (discussed in more detail in Section 5.1). Before access-
ing data, locks are acquired from a lock manager to ensure
correct execution in the face of other concurrent queries. If
the gate agent’s query involved updates to the database, it
would interact with the log manager to ensure that the trans-
action was durable if committed, and fully undone if aborted.

Full text available at: http://dx.doi.org/10.1561/1900000002



6 Introduction

In Section 5, we discuss storage and buffer management in
more detail; Section 6 covers the transactional consistency
architecture.

5. At this point in the example query’s life, it has begun to
access data records, and is ready to use them to compute
results for the client. This is done by “unwinding the stack”
of activities we described up to this point. The access meth-
ods return control to the query executor’s operators, which
orchestrate the computation of result tuples from database
data; as result tuples are generated, they are placed in a
buffer for the client communications manager, which ships
the results back to the caller. For large result sets, the
client typically will make additional calls to fetch more data
incrementally from the query, resulting in multiple itera-
tions through the communications manager, query execu-
tor, and storage manager. In our simple example, at the end
of the query the transaction is completed and the connec-
tion closed; this results in the transaction manager cleaning
up state for the transaction, the process manager freeing
any control structures for the query, and the communi-
cations manager cleaning up communication state for the
connection.

Our discussion of this example query touches on many of the key
components in an RDBMS, but not all of them. The right-hand side
of Figure 1.1 depicts a number of shared components and utilities
that are vital to the operation of a full-function DBMS. The catalog
and memory managers are invoked as utilities during any transaction,
including our example query. The catalog is used by the query proces-
sor during authentication, parsing, and query optimization. The mem-
ory manager is used throughout the DBMS whenever memory needs
to be dynamically allocated or deallocated. The remaining modules
listed in the rightmost box of Figure 1.1 are utilities that run indepen-
dently of any particular query, keeping the database as a whole well-
tuned and reliable. We discuss these shared components and utilities in
Section 7.

Full text available at: http://dx.doi.org/10.1561/1900000002



1.2 Scope and Overview 7

1.2 Scope and Overview

In most of this paper, our focus is on architectural fundamentals sup-
porting core database functionality. We do not attempt to provide a
comprehensive review of database algorithmics that have been exten-
sively documented in the literature. We also provide only minimal dis-
cussion of many extensions present in modern DBMSs, most of which
provide features beyond core data management but do not significantly
alter the system architecture. However, within the various sections of
this paper we note topics of interest that are beyond the scope of the
paper, and where possible we provide pointers to additional reading.

We begin our discussion with an investigation of the overall archi-
tecture of database systems. The first topic in any server system archi-
tecture is its overall process structure, and we explore a variety of viable
alternatives on this front, first for uniprocessor machines and then for
the variety of parallel architectures available today. This discussion of
core server system architecture is applicable to a variety of systems,
but was to a large degree pioneered in DBMS design. Following this,
we begin on the more domain-specific components of a DBMS. We start
with a single query’s view of the system, focusing on the relational query
processor. Following that, we move into the storage architecture and
transactional storage management design. Finally, we present some of
the shared components and utilities that exist in most DBMSs, but are
rarely discussed in textbooks.

Full text available at: http://dx.doi.org/10.1561/1900000002



References

[1] A. Adya, B. Liskov, and P. O’Neil, “Generalized isolation level definitions,” in
16th International Conference on Data Engineering (ICDE), San Diego, CA,
February 2000.

[2] R. Agrawal, M. J. Carey, and M. Livny, “Concurrency control performance
modelling: Alternatives and implications,” ACM Transactions on Database Sys-
tems (TODS), vol. 12, pp. 609–654, 1987.

[3] M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P. Eswaran, J. Gray,
P. P. Griffiths, W. F. Frank King III, R. A. Lorie, P. R. McJones, J. W. Mehl,
G. R. Putzolu, I. L. Traiger, B. W. Wade, and V. Watson, “System R: Relational
approach to database management,” ACM Transactions on Database Systems
(TODS), vol. 1, pp. 97–137, 1976.

[4] R. Bayer and M. Schkolnick, “Concurrency of operations on B-trees,” Acta
Informatica, vol. 9, pp. 1–21, 1977.

[5] K. P. Bennett, M. C. Ferris, and Y. E. Ioannidis, “A genetic algorithm for
database query optimization,” in Proceedings of the 4th International Confer-
ence on Genetic Algorithms, pp. 400–407, San Diego, CA, July 1991.

[6] H. Berenson, P. A. Bernstein, J. Gray, J. Melton, E. J. O’Neil, and P. E. O’Neil,
“A critique of ANSI SQL isolation levels,” in Proceedings of ACM SIGMOD
International Conference on Management of Data, pp. 1–10, San Jose, CA,
May 1995.

[7] P. A. Bernstein and N. Goodman, “Concurrency control in distributed database
systems,” ACM Computing Surveys, vol. 13, 1981.

[8] W. Bridge, A. Joshi, M. Keihl, T. Lahiri, J. Loaiza, and N. MacNaughton, “The
oracle universal server buffer,” in Proceedings of 23rd International Conference
on Very Large Data Bases (VLDB), pp. 590–594, Athens, Greece, August 1997.

117

Full text available at: http://dx.doi.org/10.1561/1900000002



118 References

[9] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed storage
system for structured data,” in Symposium on Operating System Design and
Implementation (OSDI), 2006.

[10] S. Chaudhuri, “An overview of query optimization in relational systems,” in
Proceedings of ACM Principles of Database Systems (PODS), 1998.

[11] S. Chaudhuri and U. Dayal, “An overview of data warehousing and olap tech-
nology,” ACM SIGMOD Record, March 1997.

[12] S. Chaudhuri and V. R. Narasayya, “Autoadmin ‘what-if’ index analysis util-
ity,” in Proceedings of ACM SIGMOD International Conference on Manage-
ment of Data, pp. 367–378, Seattle, WA, June 1998.

[13] S. Chaudhuri and K. Shim, “Optimization of queries with user-defined predi-
cates,” ACM Transactions on Database Systems (TODS), vol. 24, pp. 177–228,
1999.

[14] M.-S. Chen, J. Hun, and P. S. Yu, “Data mining: An overview from a database
perspective,” IEEE Transactions on Knowledge and Data Engineering, vol. 8,
1996.

[15] H.-T. Chou and D. J. DeWitt, “An evaluation of buffer management strategies
for relational database systems,” in Proceedings of 11th International Confer-
ence on Very Large Data Bases (VLDB), pp. 127–141, Stockholm, Sweden,
August 1985.

[16] A. Desphande, M. Garofalakis, and R. Rastogi, “Independence is good:
Dependency-based histogram synopses for high-dimensional data,” in Proceed-
ings of the 18th International Conference on Data Engineering, San Jose, CA,
February 2001.

[17] P. Flajolet and G. Nigel Martin, “Probabilistic counting algorithms for data
base applications,” Journal of Computing System Science, vol. 31, pp. 182–209,
1985.

[18] C. A. Galindo-Legaria, A. Pellenkoft, and M. L. Kersten, “Fast, randomized
join-order selection — why use transformations?,” VLDB, pp. 85–95, 1994.

[19] S. Ganguly, W. Hasan, and R. Krishnamurthy, “Query optimization for parallel
execution,” in Proceedings of the ACM SIGMOD International Conference on
Management of Data, pp. 9–18, San Diego, CA, June 1992.

[20] M. Garofalakis and P. B. Gibbons, “Approximate query processing: Taming
the terabytes, a tutorial,” in International Conferenence on Very Large Data
Bases, 2001. www.vldb.org/conf/2001/tut4.pdf.

[21] M. N. Garofalakis and Y. E. Ioannidis, “Parallel query scheduling and opti-
mization with time- and space-shared resources,” in Proceedings of 23rd Inter-
national Conference on Very Large Data Bases (VLDB), pp. 296–305, Athens,
Greece, August 1997.

[22] R. Goldman and J. Widom, “Wsq/dsq: A practical approach for combined
querying of databases and the web,” in Proceedings of ACM-SIGMOD Inter-
national Conference on Management of Data, 2000.

[23] G. Graefe, “Encapsulation of parallelism in the volcano query processing sys-
tem,” in Proceedings of ACM-SIGMOD International Conference on Manage-
ment of Data, pp. 102–111, Atlantic City, May 1990.

Full text available at: http://dx.doi.org/10.1561/1900000002



References 119

[24] G. Graefe, “Query evaluation techniques for large databases,” Computing Sur-
veys, vol. 25, pp. 73–170, 1993.

[25] G. Graefe, “The cascades framework for query optimization,” IEEE Data Engi-
neering Bulletin, vol. 18, pp. 19–29, 1995.

[26] C. Graham, “Market share: Relational database management systems by oper-
ating system, worldwide, 2005,” Gartner Report No: G00141017, May 2006.

[27] J. Gray, “Greetings from a filesystem user,” in Proceedings of the FAST ’05
Conference on File and Storage Technologies, (San Francisco), December 2005.

[28] J. Gray and B. Fitzgerald, FLASH Disk Opportunity for Server-Applications.
http://research.microsoft.com/∼Gray/papers/FlashDiskPublic.doc.

[29] J. Gray, R. A. Lorie, G. R. Putzolu, and I. L. Traiger, “Granularity of locks
and degrees of consistency in a shared data base,” in IFIP Working Conference
on Modelling in Data Base Management Systems, pp. 365–394, 1976.

[30] J. Gray and A. Reuter, Transaction Processing: Concepts and Techniques. Mor-
gan Kaufmann, 1993.

[31] S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and D. Culler, “Scalable, dis-
tributed data structures for internet service construction,” in Proceedings of the
Fourth Symposium on Operating Systems Design and Implementation (OSDI),
2000.

[32] A. Guttman, “R-trees: A dynamic index structure for spatial searching,” in Pro-
ceedings of ACM-SIGMOD International Conference on Management of Data,
pp. 47–57, Boston, June 1984.

[33] L. Haas, D. Kossmann, E. L. Wimmers, and J. Yang, “Optimizing queries across
diverse data sources,” in International Conference on Very Large Databases
(VLDB), 1997.

[34] T. Haerder and A. Reuter, “Principles of transaction-oriented database recov-
ery,” ACM Computing Surveys, vol. 15, pp. 287–317, 1983.

[35] S. Harizopoulos and N. Ailamaki, “StagedDB: Designing database servers for
modern hardware,” IEEE Data Engineering Bulletin, vol. 28, pp. 11–16, June
2005.

[36] S. Harizopoulos, V. Liang, D. Abadi, and S. Madden, “Performance tradeoffs
in read-optimized databases,” in Proceedings of the 32nd Very Large Databases
Conference (VLDB), 2006.

[37] J. M. Hellerstein, “Optimization techniques for queries with expensive meth-
ods,” ACM Transactions on Database Systems (TODS), vol. 23, pp. 113–157,
1998.

[38] J. M. Hellerstein, P. J. Haas, and H. J. Wang, “Online aggregation,” in Pro-
ceedings of ACM-SIGMOD International Conference on Management of Data,
1997.

[39] J. M. Hellerstein, J. Naughton, and A. Pfeffer, “Generalized search trees
for database system,” in Proceedings of Very Large Data Bases Conference
(VLDB), 1995.

[40] J. M. Hellerstein and A. Pfeffer, “The russian-doll tree, an index structure for
sets,” University of Wisconsin Technical Report TR1252, 1994.

[41] C. Hoare, “Monitors: An operating system structuring concept,” Communica-
tions of the ACM (CACM), vol. 17, pp. 549–557, 1974.

Full text available at: http://dx.doi.org/10.1561/1900000002



120 References

[42] W. Hong and M. Stonebraker, “Optimization of parallel query execution plans
in xprs,” in Proceedings of the First International Conference on Parallel
and Distributed Information Systems (PDIS), pp. 218–225, Miami Beach, FL,
December 1991.

[43] H.-I. Hsiao and D. J. DeWitt, “Chained declustering: A new availability strat-
egy for multiprocessor database machines,” in Proceedings of Sixth Interna-
tional Conference on Data Engineering (ICDE), pp. 456–465, Los Angeles, CA,
November 1990.

[44] Y. E. Ioannidis and Y. Cha Kang, “Randomized algorithms for optimizing
large join queries,” in Proceedings of ACM-SIGMOD International Conference
on Management of Data, pp. 312–321, Atlantic City, May 1990.

[45] Y. E. Ioannidis and S. Christodoulakis, “On the propagation of errors in the size
of join results,” in Proceedings of the ACM SIGMOD International Conference
on Management of Data, pp. 268–277, Denver, CO, May 1991.

[46] M. Kornacker, C. Mohan, and J. M. Hellerstein, “Concurrency and recovery
in generalized search trees,” in Proceedings of ACM SIGMOD International
Conference on Management of Data, pp. 62–72, Tucson, AZ, May 1997.

[47] H. T. Kung and J. T. Robinson, “On optimistic methods for concurrency con-
trol,” ACM Tranactions on Database Systems (TODS), vol. 6, pp. 213–226,
1981.

[48] J. R. Larus and M. Parkes, “Using cohort scheduling to enhance server perfor-
mance,” in USENIX Annual Conference, 2002.

[49] H. C. Lauer and R. M. Needham, “On the duality of operating system struc-
tures,” ACM SIGOPS Operating Systems Review, vol. 13, pp. 3–19, April 1979.

[50] P. L. Lehman and S. Bing Yao, “Efficient locking for concurrent operations on
b-trees,” ACM Transactions on Database Systems (TODS), vol. 6, pp. 650–670,
December 1981.

[51] A. Y. Levy, “Answering queries using views,” VLDB Journal, vol. 10, pp. 270–
294, 2001.

[52] A. Y. Levy, I. Singh Mumick, and Y. Sagiv, “Query optimization by predicate
move-around,” in Proceedings of 20th International Conference on Very Large
Data Bases, pp. 96–107, Santiago, September 1994.

[53] W. Litwin, “Linear hashing: A new tool for file and table addressing,” in Sixth
International Conference on Very Large Data Bases (VLDB), pp. 212–223,
Montreal, Quebec, Canada, October 1980.

[54] G. M. Lohman, “Grammar-like functional rules for representing query optimiza-
tion alternatives,” in Proceedings of ACM SIGMOD International Conference
on Management of Data, pp. 18–27, Chicago, IL, June 1988.

[55] Q. Luo, S. Krishnamurthy, C. Mohan, H. Pirahesh, H. Woo, B. G. Lindsay, and
J. F. Naughton, “Middle-tier database caching for e-business,” in Proceedings
of ACM SIGMOD International Conference on Management of Data, 2002.

[56] S. R. Madden and M. J. Franklin, “Fjording the stream: An architecture for
queries over streaming sensor data,” in Proceedings of 12th IEEE International
Conference on Data Engineering (ICDE), San Jose, February 2002.

[57] V. Markl, G. Lohman, and V. Raman, “Leo: An autonomic query optimizer
for db2,” IBM Systems Journal, vol. 42, pp. 98–106, 2003.

Full text available at: http://dx.doi.org/10.1561/1900000002



References 121

[58] C. Mohan, “Aries/kvl: A key-value locking method for concurrency control
of multiaction transactions operating on b-tree indexes,” in 16th International
Conference on Very Large Data Bases (VLDB), pp. 392–405, Brisbane, Queens-
land, Australia, August 1990.

[59] C. Mohan, D. J. Haderle, B. G. Lindsay, H. Pirahesh, and P. M. Schwarz,
“Aries: A transaction recovery method supporting fine-granularity locking and
partial rollbacks using write-ahead logging,” ACM Transactions on Database
Systems (TODS), vol. 17, pp. 94–162, 1992.

[60] C. Mohan and F. Levine, “Aries/im: An efficient and high concurrency index
management method using write-ahead logging,” in Proceedings of ACM SIG-
MOD International Conference on Management of Data, (M. Stonebraker, ed.),
pp. 371–380, San Diego, CA, June 1992.

[61] C. Mohan, B. G. Lindsay, and R. Obermarck, “Transaction management in the
r* distributed database management system,” ACM Transactions on Database
Systems (TODS), vol. 11, pp. 378–396, 1986.

[62] E. Nightingale, K. Veerarghavan, P. M. Chen, and J. Flinn, “Rethink the sync,”
in Symposium on Operating Systems Design and Implementation (OSDI),
November 2006.

[63] OLAP Market Report. Online manuscript. http://www.olapreport.com/mar-
ket.htm.

[64] E. J. O’Neil, P. E. O’Neil, and G. Weikum, “The lru-k page replacement
algorithm for database disk buffering,” in Proceedings of ACM SIGMOD
International Conference on Management of Data, pp. 297–306, Washington,
DC, May 1993.

[65] P. E. O’Neil and D. Quass, “Improved query performance with variant indexes,”
in Proceedings of ACM-SIGMOD International Conference on Management of
Data, pp. 38–49, Tucson, May 1997.

[66] S. Padmanabhan, B. Bhattacharjee, T. Malkemus, L. Cranston, and M. Huras,
“Multi-dimensional clustering: A new data layout scheme in db2,” in ACM
SIGMOD International Management of Data (San Diego, California, June 09–
12, 2003) SIGMOD ’03, pp. 637–641, New York, NY: ACM Press, 2003.

[67] D. Patterson, “Latency lags bandwidth,” CACM, vol. 47, pp. 71–75, October
2004.

[68] H. Pirahesh, J. M. Hellerstein, and W. Hasan, “Extensible/rule- based query
rewrite optimization in starburst,” in Proceedings of ACM-SIGMOD Interna-
tional Conference on Management of Data, pp. 39–48, San Diego, June 1992.

[69] V. Poosala and Y. E. Ioannidis, “Selectivity estimation without the attribute
value independence assumption,” in Proceedings of 23rd International Confer-
ence on Very Large Data Bases (VLDB), pp. 486–495, Athens, Greece, August
1997.

[70] M. Pöss, B. Smith, L. Kollár, and P.-Å. Larson, “Tpc-ds, taking decision sup-
port benchmarking to the next level,” in SIGMOD 2002, pp. 582–587.

[71] V. Prabakharan, A. C. Arpaci-Dusseau, and R. Arpaci-Dusseau, “Analysis and
evolution of journaling file systems,” in Proceedings of USENIX Annual Tech-
nical Conference, April 2005.

Full text available at: http://dx.doi.org/10.1561/1900000002



122 References

[72] R. Ramakrishnan and J. Gehrke, “Database management systems,” McGraw-
Hill, Boston, MA, Third ed., 2003.

[73] V. Raman and G. Swart, “How to wring a table dry: Entropy compression of
relations and querying of compressed relations,” in Proceedings of International
Conference on Very Large Data Bases (VLDB), 2006.

[74] D. P. Reed, Naming and Synchronization in a Decentralized Computer System.
PhD thesis, MIT, Dept. of Electrical Engineering, 1978.

[75] A. Reiter, “A study of buffer management policies for data management sys-
tems,” Technical Summary Report 1619, Mathematics Research Center, Uni-
versity of Wisconsin, Madison, 1976.

[76] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis, “System level concurrency
control for distributed database systems,” ACM Transactions on Database Sys-
tems (TODS), vol. 3, pp. 178–198, June 1978.

[77] S. Sarawagi, S. Thomas, and R. Agrawal, “Integrating mining with relational
database systems: Alternatives and implications,” in Proceedings of ACM-
SIGMOD International Conference on Management of Data, 1998.

[78] R. Sears and E. Brewer, “Statis: Flexible transactional storage,” in Proceedings
of Symposium on Operating Systems Design and Implementation (OSDI), 2006.

[79] P. G. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and T. Price, “Access
path selection in a relational database management system,” in Proceedings of
ACM-SIGMOD International Conference on Management of Data, pp. 22–34,
Boston, June 1979.

[80] P. Seshadri, H. Pirahesh, and T. Y. C. Leung, “Complex query decorrelation,”
in Proceedings of 12th IEEE International Conference on Data Engineering
(ICDE), New Orleans, February 1996.

[81] M. A. Shah, S. Madden, M. J. Franklin, and J. M. Hellerstein, “Java support for
data-intensive systems: Experiences building the telegraph dataflow system,”
ACM SIGMOD Record, vol. 30, pp. 103–114, 2001.

[82] L. D. Shapiro, “Exploiting upper and lower bounds in top-down query opti-
mization,” International Database Engineering and Application Symposium
(IDEAS), 2001.

[83] A. Silberschatz, H. F. Korth, and S. Sudarshan, Database System Concepts.
McGraw-Hill, Boston, MA, Fourth ed., 2001.

[84] M. Steinbrunn, G. Moerkotte, and A. Kemper, “Heuristic and randomized opti-
mization for the join ordering problem,” VLDB Journal, vol. 6, pp. 191–208,
1997.

[85] M. Stonebraker, “Retrospection on a database system,” ACM Transactions on
Database Systems (TODS), vol. 5, pp. 225–240, 1980.

[86] M. Stonebraker, “Operating system support for database management,” Com-
munications of the ACM (CACM), vol. 24, pp. 412–418, 1981.

[87] M. Stonebraker, “The case for shared nothing,” IEEE Database Engineering
Bulletin, vol. 9, pp. 4–9, 1986.

[88] M. Stonebraker, “Inclusion of new types in relational data base systems,” ICDE,
pp. 262–269, 1986.

[89] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Fer-
reira, E. Lau, A. Lin, S. Madden, E. O’Neil, P. O’Neil, A. Rasin, N. Tran,

Full text available at: http://dx.doi.org/10.1561/1900000002



References 123

and S. Zdonik, “C-store: A column oriented dbms,” in Proceedings of the Con-
ference on Very Large Databases (VLDB), 2005.

[90] M. Stonebraker and U. Cetintemel, “One size fits all: An idea whose time
has come and gone,” in Proceedings of the International Conference on Data
Engineering (ICDE), 2005.

[91] Transaction Processing Performance Council 2006. TPC Benchmark C Stan-
dard Specification Revision 5.7, http://www.tpc.org/tpcc/spec/tpcc current.
pdf, April.

[92] T. Urhan, M. J. Franklin, and L. Amsaleg, “Cost based query scrambling for
initial delays,” ACM-SIGMOD International Conference on Management of
Data, 1998.

[93] R. von Behren, J. Condit, F. Zhou, G. C. Necula, and E. Brewer, “Capriccio:
Scalable threads for internet services,” in Proceedings of the Ninteenth Sym-
posium on Operating System Principles (SOSP-19), Lake George, New York,
October 2003.

[94] M. Welsh, D. Culler, and E. Brewer, “Seda: An architecture for well- condi-
tioned, scalable internet services,” in Proceedings of the 18th Symposium on
Operating Systems Principles (SOSP-18), Banff, Canada, October 2001.

[95] C. Zou and B. Salzberg, “On-line reorganization of sparsely-populated
b+trees,” pp. 115–124, 1996.

Full text available at: http://dx.doi.org/10.1561/1900000002


	Introduction
	Relational Systems: The Life of a Query
	Scope and Overview

	Process Models
	Uniprocessors and Lightweight Threads
	DBMS Threads
	Standard Practice
	Admission Control
	Discussion and Additional Material

	Parallel Architecture: Processes and Memory Coordination
	Shared Memory
	Shared-Nothing
	Shared-Disk
	NUMA
	DBMS Threads and Multi-processors
	Standard Practice
	Discussion and Additional Material

	Relational Query Processor
	Query Parsing and Authorization
	Query Rewrite
	Query Optimizer
	Query Executor
	Access Methods
	Data Warehouses
	Database Extensibility
	Standard Practice
	Discussion and Additional Material

	Storage Management
	Spatial Control
	Temporal Control: Buffering
	Buffer Management
	Standard Practice
	Discussion and Additional Material

	Transactions: Concurrency Control and Recovery
	A Note on ACID
	A Brief Review of Serializability
	Locking and Latching
	Log Manager
	Locking and Logging in Indexes
	Interdependencies of Transactional Storage
	Standard Practice
	Discussion and Additional Material

	Shared Components
	Catalog Manager
	Memory Allocator
	Disk Management Subsystems
	Replication Services
	Administration, Monitoring, and Utilities

	Conclusion
	Acknowledgments
	References



