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Abstract

Database Management Systems (DBMSs) are a ubiquitous and critical
component of modern computing, and the result of decades of research
and development in both academia and industry. Historically, DBMSs
were among the earliest multi-user server systems to be developed, and
thus pioneered many systems design techniques for scalability and relia-
bility now in use in many other contexts. While many of the algorithms
and abstractions used by a DBMS are textbook material, there has been
relatively sparse coverage in the literature of the systems design issues
that make a DBMS work. This paper presents an architectural dis-
cussion of DBMS design principles, including process models, parallel
architecture, storage system design, transaction system implementa-
tion, query processor and optimizer architectures, and typical shared
components and utilities. Successful commercial and open-source sys-
tems are used as points of reference, particularly when multiple alter-
native designs have been adopted by different groups.
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1

Introduction

Database Management Systems (DBMSs) are complex, mission-critical
software systems. Today’s DBMSs embody decades of academic
and industrial research and intense corporate software development.
Database systems were among the earliest widely deployed online server
systems and, as such, have pioneered design solutions spanning not only
data management, but also applications, operating systems, and net-
worked services. The early DBMSs are among the most influential soft-
ware systems in computer science, and the ideas and implementation
issues pioneered for DBMSs are widely copied and reinvented.

For a number of reasons, the lessons of database systems architec-
ture are not as broadly known as they should be. First, the applied
database systems community is fairly small. Since market forces only
support a few competitors at the high end, only a handful of successful
DBMS implementations exist. The community of people involved in
designing and implementing database systems is tight: many attended
the same schools, worked on the same influential research projects, and
collaborated on the same commercial products. Second, academic treat-
ment of database systems often ignores architectural issues. Textbook
presentations of database systems traditionally focus on algorithmic

1
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2 Introduction

and theoretical issues — which are natural to teach, study, and test —
without a holistic discussion of system architecture in full implementa-
tions. In sum, much conventional wisdom about how to build database
systems is available, but little of it has been written down or commu-
nicated broadly.

In this paper, we attempt to capture the main architectural aspects
of modern database systems, with a discussion of advanced topics. Some
of these appear in the literature, and we provide references where appro-
priate. Other issues are buried in product manuals, and some are simply
part of the oral tradition of the community. Where applicable, we use
commercial and open-source systems as examples of the various archi-
tectural forms discussed. Space prevents, however, the enumeration of
the exceptions and finer nuances that have found their way into these
multi-million line code bases, most of which are well over a decade old.
Our goal here is to focus on overall system design and stress issues
not typically discussed in textbooks, providing useful context for more
widely known algorithms and concepts. We assume that the reader
is familiar with textbook database systems material (e.g., [72] or [83])
and with the basic facilities of modern operating systems such as UNIX,
Linux, or Windows. After introducing the high-level architecture of a
DBMS in the next section, we provide a number of references to back-
ground reading on each of the components in Section 1.2.

1.1 Relational Systems: The Life of a Query

The most mature and widely used database systems in production
today are relational database management systems (RDBMSs). These
systems can be found at the core of much of the world’s application
infrastructure including e-commerce, medical records, billing, human
resources, payroll, customer relationship management and supply chain
management, to name a few. The advent of web-based commerce and
community-oriented sites has only increased the volume and breadth of
their use. Relational systems serve as the repositories of record behind
nearly all online transactions and most online content management sys-
tems (blogs, wikis, social networks, and the like). In addition to being
important software infrastructure, relational database systems serve as
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1.1 Relational Systems: The Life of a Query 3

Fig. 1.1 Main components of a DBMS.

a well-understood point of reference for new extensions and revolutions
in database systems that may arise in the future. As a result, we focus
on relational database systems throughout this paper.

At heart, a typical RDBMS has five main components, as illustrated
in Figure 1.1. As an introduction to each of these components and the
way they fit together, we step through the life of a query in a database
system. This also serves as an overview of the remaining sections of the
paper.

Consider a simple but typical database interaction at an airport, in
which a gate agent clicks on a form to request the passenger list for a
flight. This button click results in a single-query transaction that works
roughly as follows:

1. The personal computer at the airport gate (the “client”) calls
an API that in turn communicates over a network to estab-
lish a connection with the Client Communications Manager
of a DBMS (top of Figure 1.1). In some cases, this connection

Full text available at: http://dx.doi.org/10.1561/1900000002



4 Introduction

is established between the client and the database server
directly, e.g., via the ODBC or JDBC connectivity protocol.
This arrangement is termed a “two-tier” or “client-server”
system. In other cases, the client may communicate with
a “middle-tier server” (a web server, transaction process-
ing monitor, or the like), which in turn uses a protocol to
proxy the communication between the client and the DBMS.
This is usually called a “three-tier” system. In many web-
based scenarios there is yet another “application server” tier
between the web server and the DBMS, resulting in four
tiers. Given these various options, a typical DBMS needs
to be compatible with many different connectivity protocols
used by various client drivers and middleware systems. At
base, however, the responsibility of the DBMS’ client com-
munications manager in all these protocols is roughly the
same: to establish and remember the connection state for
the caller (be it a client or a middleware server), to respond
to SQL commands from the caller, and to return both data
and control messages (result codes, errors, etc.) as appro-
priate. In our simple example, the communications manager
would establish the security credentials of the client, set up
state to remember the details of the new connection and the
current SQL command across calls, and forward the client’s
first request deeper into the DBMS to be processed.

2. Upon receiving the client’s first SQL command, the DBMS
must assign a “thread of computation” to the command. It
must also make sure that the thread’s data and control out-
puts are connected via the communications manager to the
client. These tasks are the job of the DBMS Process Man-
ager (left side of Figure 1.1). The most important decision
that the DBMS needs to make at this stage in the query
regards admission control : whether the system should begin
processing the query immediately, or defer execution until a
time when enough system resources are available to devote
to this query. We discuss Process Management in detail in
Section 2.
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1.1 Relational Systems: The Life of a Query 5

3. Once admitted and allocated as a thread of control, the gate
agent’s query can begin to execute. It does so by invoking the
code in the Relational Query Processor (center, Figure 1.1).
This set of modules checks that the user is authorized to run
the query, and compiles the user’s SQL query text into an
internal query plan. Once compiled, the resulting query plan
is handled via the plan executor. The plan executor consists
of a suite of “operators” (relational algorithm implementa-
tions) for executing any query. Typical operators implement
relational query processing tasks including joins, selection,
projection, aggregation, sorting and so on, as well as calls
to request data records from lower layers of the system. In
our example query, a small subset of these operators — as
assembled by the query optimization process — is invoked to
satisfy the gate agent’s query. We discuss the query processor
in Section 4.

4. At the base of the gate agent’s query plan, one or more
operators exist to request data from the database. These
operators make calls to fetch data from the DBMS’ Trans-
actional Storage Manager (Figure 1.1, bottom), which man-
ages all data access (read) and manipulation (create, update,
delete) calls. The storage system includes algorithms and
data structures for organizing and accessing data on disk
(“access methods”), including basic structures like tables
and indexes. It also includes a buffer management mod-
ule that decides when and what data to transfer between
disk and memory buffers. Returning to our example, in the
course of accessing data in the access methods, the gate
agent’s query must invoke the transaction management code
to ensure the well-known “ACID” properties of transactions
[30] (discussed in more detail in Section 5.1). Before access-
ing data, locks are acquired from a lock manager to ensure
correct execution in the face of other concurrent queries. If
the gate agent’s query involved updates to the database, it
would interact with the log manager to ensure that the trans-
action was durable if committed, and fully undone if aborted.
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6 Introduction

In Section 5, we discuss storage and buffer management in
more detail; Section 6 covers the transactional consistency
architecture.

5. At this point in the example query’s life, it has begun to
access data records, and is ready to use them to compute
results for the client. This is done by “unwinding the stack”
of activities we described up to this point. The access meth-
ods return control to the query executor’s operators, which
orchestrate the computation of result tuples from database
data; as result tuples are generated, they are placed in a
buffer for the client communications manager, which ships
the results back to the caller. For large result sets, the
client typically will make additional calls to fetch more data
incrementally from the query, resulting in multiple itera-
tions through the communications manager, query execu-
tor, and storage manager. In our simple example, at the end
of the query the transaction is completed and the connec-
tion closed; this results in the transaction manager cleaning
up state for the transaction, the process manager freeing
any control structures for the query, and the communi-
cations manager cleaning up communication state for the
connection.

Our discussion of this example query touches on many of the key
components in an RDBMS, but not all of them. The right-hand side
of Figure 1.1 depicts a number of shared components and utilities
that are vital to the operation of a full-function DBMS. The catalog
and memory managers are invoked as utilities during any transaction,
including our example query. The catalog is used by the query proces-
sor during authentication, parsing, and query optimization. The mem-
ory manager is used throughout the DBMS whenever memory needs
to be dynamically allocated or deallocated. The remaining modules
listed in the rightmost box of Figure 1.1 are utilities that run indepen-
dently of any particular query, keeping the database as a whole well-
tuned and reliable. We discuss these shared components and utilities in
Section 7.
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1.2 Scope and Overview 7

1.2 Scope and Overview

In most of this paper, our focus is on architectural fundamentals sup-
porting core database functionality. We do not attempt to provide a
comprehensive review of database algorithmics that have been exten-
sively documented in the literature. We also provide only minimal dis-
cussion of many extensions present in modern DBMSs, most of which
provide features beyond core data management but do not significantly
alter the system architecture. However, within the various sections of
this paper we note topics of interest that are beyond the scope of the
paper, and where possible we provide pointers to additional reading.

We begin our discussion with an investigation of the overall archi-
tecture of database systems. The first topic in any server system archi-
tecture is its overall process structure, and we explore a variety of viable
alternatives on this front, first for uniprocessor machines and then for
the variety of parallel architectures available today. This discussion of
core server system architecture is applicable to a variety of systems,
but was to a large degree pioneered in DBMS design. Following this,
we begin on the more domain-specific components of a DBMS. We start
with a single query’s view of the system, focusing on the relational query
processor. Following that, we move into the storage architecture and
transactional storage management design. Finally, we present some of
the shared components and utilities that exist in most DBMSs, but are
rarely discussed in textbooks.
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