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Abstract

Privacy is an important issue when one wants to make use of data
that involves individuals’ sensitive information. Research on protecting
the privacy of individuals and the confidentiality of data has received
contributions from many fields, including computer science, statistics,
economics, and social science. In this paper, we survey research work
in privacy-preserving data publishing. This is an area that attempts to
answer the problem of how an organization, such as a hospital, gov-
ernment agency, or insurance company, can release data to the public
without violating the confidentiality of personal information. We focus
on privacy criteria that provide formal safety guarantees, present algo-
rithms that sanitize data to make it safe for release while preserving
useful information, and discuss ways of analyzing the sanitized data.
Many challenges still remain. This survey provides a summary of the
current state-of-the-art, based on which we expect to see advances in
years to come.
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1

Introduction

I have as much privacy as a goldfish in a bowl.

— Princess Margaret

Privacy is an important issue when one wants to make use of data that
involve individuals’ sensitive information, especially in a time when
data collection is becoming easier and sophisticated data mining tech-
niques are becoming more efficient. It is no surprise that research on
protecting the privacy of individuals and the confidentiality of data
has received many contributions from many fields such as computer
science, statistics, economics, and social science. With the current rate
of growth in this area it is nearly impossible to organize this entire body
of work into a survey paper or even a book. Thus we have proceeded
with a more modest goal. This survey describes research in the area
of privacy-preserving data publishing. We are mainly concerned with
data custodians such as hospitals, government agencies, insurance com-
panies, and other businesses that have data they would like to release
to analysts, researchers, and anyone else who wants to use the data.
The overall intent is for the data to be used for the public good: in the
evaluation of economic models, in the identification of social trends,
and in the pursuit of the state-of-the-art in various fields. Usually, such

1
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2 Introduction

data contain personal information such as medical records, salaries,
and so on, so that a straightforward release of data is not appropri-
ate. One approach to solving this problem is to require data users to
sign non-disclosure agreements. This solution will need significant legal
resources and enforcement mechanisms and may be a barrier to wide
dissemination of the data. Furthermore, this cannot protect against
data theft even when the victim takes reasonable precautions. Thus,
it is important to explore technological solutions which anonymize the
data prior to its release. This is the focus of this survey.

In Section 1, we begin by describing the information-protection
practices employed by census bureaus (Section 1.1), and we moti-
vate the importance of considering privacy protection in data pub-
lishing through a number of real-world attacks (Section 1.2). We then
use a simple example (Section 1.3) to introduce the problem and its
challenges (Section 1.4). Section 2 is devoted to formal definitions of
privacy, while Section 3 is devoted to ways of measuring the utility of
sanitized data or the information lost due to the sanitization process. In
Section 4, we present algorithms for sanitizing data. These algorithms
seek to output a sanitized version of data that satisfies a privacy def-
inition and has high utility. In Section 5, we discuss how a data user
can make use of sanitized data. Then, in Section 6, we discuss how an
adversary might attack sanitized data. In Section 7, we cover emerging
applications and their associated research problems and discuss difficult
problems that are common to many applications of privacy-preserving
data publishing and need further research.

Having explained what this survey is about, we will now briefly men-
tion what this survey is not about. Areas such as access control, query
auditing, authentication, encryption, interactive query answering, and
secure multiparty computation are considered outside the scope of this
paper. Thus we do not discuss them except in places where we deem
this to be necessary. We also focus more on recent work as many of
the older ideas have already been summarized in book and survey form
[4, 263, 264]. Unfortunately, we cannot cover every technique in detail
and so the choice of presentation will largely reflect the authors’ bias.
We have tried to cover as much ground as possible and regret any
inadvertent omissions of relevant work.

Full text available at: http://dx.doi.org/10.1561/1900000008



1.1 Information Protection in Censuses, Official Statistics 3

1.1 Information Protection in Censuses, Official Statistics

The problem of privacy-preserving data publishing is perhaps most
strongly associated with censuses, official processes through which
governments systematically collect information about their popula-
tions. While emerging applications such as electronic medical records,
Web search, online social networks, and GPS devices have heightened
concerns with respect to collection and distribution of personal infor-
mation, censuses have taken place for centuries, and considerable effort
has focused on developing privacy-protection mechanisms in this set-
ting. Thus, we find it appropriate to begin this survey by describing
some of the diverse privacy-protection practices currently in place at
national census bureaus and affiliated statistical agencies around the
world.

1.1.1 Public-Use Data

Most related to the topic of this survey is the problem of releasing
public-use data sets. Worldwide, many (though not all) governmental
statistical agencies distribute data to the public [54, 58, 133, 234] to
be used, for example, in demographic research. However, it is also a
common belief that these public-use data sets should not reveal infor-
mation about individuals in the population. For example, in the United
States, Title 13 of the US Code requires that census information only
be collected to produce statistics, and that census employees be sworn
to protect confidentiality.

Thus, over the years, government statistical agencies have devel-
oped a variety of mechanisms intended to protect individual privacy
in public-use data. (This research area is commonly known as statis-
tical disclosure limitation or confidentiality, and it is a subset of the
broader field of official statistics.) Historically, this work has focused
on two main classes of data that are commonly released by governmen-
tal agencies:

• Aggregate count data (contingency tables) Contingency tables
contain frequency count information, tabulated on the basis of one

Full text available at: http://dx.doi.org/10.1561/1900000008



4 Introduction

of more variables.1 For example, a contingency table might contain
a population count based on Zip Code, Age Range, and Smoking
Status; i.e., in each zip code and each age range, how many people
smoke?
• Non-aggregate data (Microdata) Microdata are simply conven-

tional (non-aggregate) data, where each row refers to a person in the
population.

In order to limit the possibility that an individual could be iden-
tified from the public-use data, statistical agencies commonly use a
combination of techniques [54, 58, 59, 95, 133, 234, 257]; however, sta-
tistical disclosure limitation experts at statistical agencies do not typ-
ically provide details of the mechanisms used for confidentiality, only
generic descriptions. A recent report [95] outlines, in general terms, the
practices of the various federal agencies in the United States. (We will
describe some of these techniques in more detail in Section 4.)

• Cell suppression and noise addition (for contingency tables)
In contingency tables, it is common to suppress cells with small
counts (primary suppression), as well as additional cells that can
be inferred using marginal totals (complementary suppression). Sim-
ilarly, it is common to make small perturbations to the counts.
• Data swapping (for microdata and contingency tables) Data

swapping is a method of making controlled changes to microdata;
modified contingency tables can also be re-computed from the results.
This technique was used in the United States during the 1990 and
2000 censuses [101].
• Sampling, geographic coarsening, and top/bottom-coding

(for microdata) For microdata, it is common to only release a
subset of respondents’ data (e.g., a 1% sample). In addition, it is
common to restrict geographic identifiers to regions containing at
least a certain population. (In the United States, this is typically
100,000 [257].) It is also common to “top-code” and “bottom-code”
certain values. For example, if there are sufficiently few respondents

1 In SQL, this is analogous to releasing the answer to a COUNT(*) query with one or more
attributes in the GROUP BY clause.
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1.1 Information Protection in Censuses, Official Statistics 5

over age 90, then a top-coding approach would replace all ages ≥ 90
with the value 90.
• Synthetic data (for microdata) Finally, sometimes synthetic data

are generated. The idea is to produce data with similar distributional
characteristics to the original microdata. The US Census Bureau is
considering using a synthetic data approach to release microdata
following the 2010 census [272].

Many of the above-mentioned mechanisms for microdata and con-
tingency table sanitization, respectively, have been implemented in the
µ- and τ - Argus software packages [127, 128]; these packages have also
been used extensively by Statistics Netherlands.

The US Census Bureau also provides an online (real-time) system
called the American FactFinder Advanced Query System [122], which
provides custom tabulations (count queries) from the census data. Dis-
closure control in this system is done primarily by applying queries
to the sanitized (e.g., swapped) microdata, and also by imposing cell
suppression and top-coding rules to the results.

1.1.2 Restricted-Use Data, Research Data Centers, and
Remote Servers

While many statistical agencies release sanitized public-use data sets,
there is also a commonly held belief that certain data (e.g., high-
precision geographical units) cannot be sanitized enough to release,
or that the process would yield the data useless for certain kinds
of research. For these reasons, federal agencies in the United States
[256, 225], Canada [46], and Germany [219] have also set up secure
research data centers to allow outside researchers to access more pre-
cise and detailed data. The idea is to provide a secure physical facility,
staffed by census personnel, in which vetted researchers can carry out
approved studies using computers with limited external access. In the
United States, there are approximately a dozen such locations. Before
conducting a study, a researcher must undergo a background check and
provide a sworn statement. Before removing results or data from the
center, the results must undergo a strict disclosure review, which is con-
ducted by Census Bureau personnel. Similarly, a variety of countries
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6 Introduction

provide “virtual” secure research data centers (also known as remote
access servers) that serve a similar purpose [214].

While secure facilities and data centers are not the topic of this
survey, this example highlights the multifaceted nature of the privacy-
protection problem. Technical tools for privacy-preserving data publish-
ing are one weapon in a larger arsenal consisting also of legal regulation,
more conventional security mechanisms, and the like. In addition,
this example highlights a (perceived and sometimes formal) tradeoff
between privacy and utility, a theme that has been repeated through-
out the literature and that will be repeated throughout this survey.

1.2 Real-World Attacks and Attack Demonstrations

A number of real-world attacks and demonstrations indicate the impor-
tance of taking privacy into consideration when publishing personal
data. In this section, our goal is to briefly recap some notable recent
events and attacks, which serve to illustrate the challenges in develop-
ing privacy-preserving publishing tools.

One published attack on (purportedly) de-identified data was
described by Sweeney [241]. The dataset in consideration was collected
by the Group Insurance Commission (GIC) and contained medical
records of Massachusetts state employees. Since the data did not con-
tain identifiers such as names, social security numbers, addresses, or
phone numbers, it was considered safe to give the data to researchers.
The data did contain demographic information such as birth date, gen-
der, and zip code. Unfortunately, it is not common for two individuals
to have the same birth date, less common for them to also live in the
same zip code, and less common still for them to also have the same
gender. In fact, according to the Massachusetts voter registration list
(available at the time for $20), no one else had the same combination
of birth date, gender, and zip code as William Weld, who was then the
governor. Thus, his medical records were easy to identify in the data
provided by GIC. This sort of attack, where external data are combined
with an anonymized data set, is called a linking attack.

Not all linking attacks are as simple as performing a join between the
GIC data and the voter registration list. This is especially true for text.

Full text available at: http://dx.doi.org/10.1561/1900000008



1.2 Real-World Attacks and Attack Demonstrations 7

As an example, consider the case of AOL. On Sunday, August 6, 2006,
AOL released a 2 GB file containing approximately 20 million search
queries from 650,000 of its users, which were collected over a period
of three months [24]. In addition to the queries themselves, the data
set contained information such as which URL from the search results
was clicked and what was its ranking. Although the data set was with-
drawn within a few hours, it had already been widely downloaded. The
anonymization scheme used to protect the data consisted of assigning a
random number (pseudonym) to each AOL user and replacing the user
id with this number. Three days later, two New York Times reporters
[28] found and interviewed user number 4417749 from the data set.
They tracked down this user based on the semantic information con-
tained in her search queries: the name of a town, several searches with a
particular last name, age-related information, etc. In the case of AOL,
there was no single authoritative table (such as a voter list) to link
against; instead, there were many scattered sources of information that
were used. The privacy breach occurred since AOL failed to reason
about these sources and about the semantic content of search queries.
We will return to a more detailed discussion of state-of-the-art privacy
protection tools for search logs in Section 7.2.

A few months later, Netflix, a movie rental service, announced the
Netflix Prize for the development of an accurate movie recommenda-
tion algorithm. To aid participants in their research efforts, Netflix also
released a data set of 100 million ratings for 18,000 movie titles collected
from 480,000 randomly chosen users. Personal information had been
removed, and user ids were replaced with pseudonyms, as in the AOL
data. This data set contained movie ratings and the dates when the rat-
ings were created [191]. The high-dimensionality of the data set proved
to be a tempting target and an attack on such a data set was anticipated
by Frankowski et al. [105], who showed that movie ratings can be linked
to posts in an online forum. The Netflix data were attacked shortly after
it came out by Narayanan and Shmatikov [186], who showed that exter-
nal information (such as IMDB reviews) can indeed be linked to the
Netflix data set using techniques that are commonly known as record
linkage. Record linkage was first formalized in the 1960s by Fellegi
and Sunter [96]; for a survey, see [270]. Record linkage techniques are

Full text available at: http://dx.doi.org/10.1561/1900000008



8 Introduction

frequently used to estimate re-identification probabilities: the probabil-
ities that users in a data set can be re-identified through auxiliary data
[268]. These techniques can often handle varying amounts of noise in
the auxiliary data, and are also commonly used for the purpose of data
cleaning.

Finally, even further illustrating the vulnerability of public personal
data sets, several recent attacks have been demonstrated on (purport-
edly) de-identified social network graphs. Social networks describe a
set of people (nodes) and the relationships between them (edges). As
in the cases of search logs and movies, a graph can be considered naively
anonymized if all identifying characteristics of the people (e.g., names,
etc.) have been removed and replaced with pseudonyms. Interestingly,
though by this point perhaps unsurprising, a series of attacks have
illustrated the fallacy of this approach. Using data from LiveJournal
(a blogging site), Backstrom et al. [26] demonstrated that it is often
possible for a particular user to re-identify himself in a social network
graph, and with minimal collusion, he can frequently re-identify a large
fraction of users. Hay et al. [123] and Narayanan and Shmatikov [187]
both took this observation a step further, observing that users can
often be re-identified using various forms of structural auxiliary infor-
mation; these results were demonstrated using a real e-mail graph from
Enron Corporation [123] and social network graphs from LiveJournal,
Twitter, and Flickr [187]. We will return to an in-depth discussion of
the state-of-the-art in privacy protection for social network graphs in
Section 7.1. In addition to these examples, attacks on purportedly de-
identified data sets have been illustrated in domains as diverse as GPS
traces [120, 145] and genomic records [125, 170, 171, 172].

Note that not all attacks need to involve linking. Some involve recon-
structing the original data to uncover pieces of information that are
considered confidential. One such example was discussed by Meyer and
Kadane [177] in relation to the 1990 decennial census. Two important
uses of census data are distribution of federal funds and reapportion-
ment (the assignment of seats in the House of Representatives to differ-
ent states). Thus, undercounting different segments of the population
(including minorities) is a serious political issue, and there is a debate
about whether to adjust the census data to control for undercounting.

Full text available at: http://dx.doi.org/10.1561/1900000008



1.2 Real-World Attacks and Attack Demonstrations 9

In 1991, the Commerce Department decided not to use the adjusted
census data. It also refused to release the adjusted data. Following a
congressional subpoena, a compromise was reached and the Commerce
Department released adjusted population counts for every other census
block and for all blocks whose adjusted population was at least 1,000
[177]. The leaders of the Florida House of Representatives asked Meyer
and Kadane to reconstruct these missing values based on the actual cen-
sus counts and on the released adjusted counts. Later, due to a lawsuit,
the rest of the adjusted data was released and Meyer and Kadane were
able to evaluate the accuracy of their reconstruction. Using relatively
simple techniques based on comparisons of unadjusted counts for vari-
ous blocks (see [177] for more details), they were able to obtain remark-
ably accurate results. For the 23 congressional districts of Florida that
existed at the time, their estimate of the adjusted population differed
from the official adjusted counts by at most 79 people. Meanwhile,
the difference between the adjusted and unadjusted counts was on the
order of several thousand people. Thus the Commerce Department’s
naive use of suppression ended up concealing less information than
they intended.

Algranati and Kadane [19] discuss another example of data recon-
struction. This time it involves the U.S. Department of Justice. In 2000,
the U.S. Department of Justice released a report [248] about death
penalty statistics for federal crimes. When a federal crime has been
committed, the U.S. Attorney in charge of the case must make a rec-
ommendation on whether or not to seek the death penalty. The case
is also reviewed by the Department of Justice, which also submits a
recommendation. Finally, the Attorney General reviews the case and
makes the final decision about this process (for more details about
the circumstance of the report and the nature of the decisions, see
[19, 248]). The Attorney General’s decision is made public but the
recommendations made by the U.S. Attorney and the Department of
Justice are confidential. Algranati and Kadane focused on the 682 cases
from 1995 to 2000 that are contained in this report. This report con-
tains eight measured variables: the federal district, defendant’s race,
victim’s race, the crime, whether or not there were multiple victims,
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10 Introduction

and the recommendations made by the U.S. Attorney, the Department
of Justice, and the Attorney General. The data were released as a set
of lower-dimensional tables of counts. Using some simple combinato-
rial techniques, Algranati and Kadane were able to fully recover 386
out of 682 records. They were also able to recover the combination of
defendant race, federal district and all three recommendations for all
of the 682 cases. Again, a naive release of data allowed for the recovery
of most of the information that was considered confidential.

All of these examples serve to illustrate the challenges and impor-
tance of developing appropriate anonymization measures for published
data.

1.3 Running Example

To prevent privacy breaches, organizations that want to publish data
must resolve possible privacy issues before releasing data. We introduce
privacy issues in data publishing by the following example scenario.
A centralized trusted data collection agency, say Gotham City Hospi-
tal, collects information from a set of patients. The information col-
lected from each patient consists of identifying information like name;
demographic information like age, gender, zip code, and nationality;
and the patient’s medical condition. The data are put into a table
like Table 1.1. Researchers in Gotham City University, who study how

Table 1.1. Medical record table.

Name Age Gender Zip Code Nationality Condition

1 Ann 28 F 13053 Russian Heart disease

2 Bruce 29 M 13068 Chinese Heart disease
3 Cary 21 F 13068 Japanese Viral infection

4 Dick 23 M 13053 American Viral infection
5 Eshwar 50 M 14853 Indian Cancer
6 Fox 55 M 14750 Japanese Flu
7 Gary 47 M 14562 Chinese Heart disease

8 Helen 49 F 14821 Korean Flu
9 Igor 31 M 13222 American Cancer

10 Jean 37 F 13227 American Cancer
11 Ken 36 M 13228 American Cancer

12 Lewis 35 M 13221 American Cancer

Full text available at: http://dx.doi.org/10.1561/1900000008



1.3 Running Example 11

diseases correlate with patients’ demographic attributes, can benefit
substantially from analyzing these data and have made a request to the
hospital for releasing the table. Now, the question is whether releasing
Table 1.1 is safe. In fact, the hospital has a privacy policy that prevents
it from releasing patients’ identifying information. Obviously, releasing
Table 1.1, which contains names, would violate this policy. However,
does removal of names from Table 1.1 make the table safe for release?
Consider a researcher, say Mark, who is a friend of Eshwar and knows
that Eshwar is a 50-year-old Indian male having zip code 14853. He
also knows that Eshwar visited Gotham City Hospital several times.
If Mark saw this table with names removed, he would be almost sure
that his friend Eshwar got cancer, because the fifth record is the only
record that matches Mark’s knowledge about Eshwar. Age, gender, zip
code, and nationality are called quasi-identifier attributes, because by
looking at these attributes an adversary may potentially identify an
individual in the data set.

One way to prevent Mark from being able to infer Eshwar’s med-
ical condition is to make sure that, in the released data, no patient
can be distinguished from a group of k patients by using age, gender,
zip code, and nationality. We call a table that satisfies this criterion
a k-anonymous table. Table 1.2 is a modified version of the medical
record table that is 4-anonymous, where names have been removed, age
values have been generalized to age groups, gender values have been
generalized to Any, zip codes have been generalized to first few digits
and nationality values have been generalized to different geographical
granularities. Now, when Mark sees this generalized table, he only
knows that Eshwar’s record is in the second group and is not sure
whether Eshwar had flu or cancer. However, as will be seen later, this
table is still not safe for release.

For now, let us assume that Gotham City Hospital somehow decides
to consider 4-anonymous tables to be safe for release; but in addition
to Table 1.2, there are many 4-anonymous tables which can be derived
from the medical record table. Table 1.3 is another 4-anonymous table
derived from the original medical record table. Which one should
Gotham City Hospital choose to release? Intuitively, the hospital should
choose the one that is the most useful for the researchers who request

Full text available at: http://dx.doi.org/10.1561/1900000008



12 Introduction

Table 1.2. Generalized medical record table.

Age Gender Zip Code Nationality Condition

(Ann) 1 20–29 Any 130∗∗ Any Heart disease
(Bruce) 2 20–29 Any 130∗∗ Any Heart disease

(Cary) 3 20–29 Any 130∗∗ Any Viral infection

(Dick) 4 20–29 Any 130∗∗ Any Viral Infection

(Eshwar) 5 40–59 Any 14∗∗∗ Asian Cancer

(Fox) 6 40–59 Any 14∗∗∗ Asian Flu
(Gary) 7 40–59 Any 14∗∗∗ Asian Heart disease

(Helen) 8 40–59 Any 14∗∗∗ Asian Flu

(Igor) 9 30–39 Any 1322∗ American Cancer

(Jean) 10 30–39 Any 1322∗ American Cancer

(Ken) 11 30–39 Any 1322∗ American Cancer
(Lewis) 12 30–39 Any 1322∗ American Cancer

aNo record can be distinguished from a group of four based on Age, Gender,

Zip Code, and nationality.
bNames are removed. Age values are generalized to age groups. Gender values

are generalized to Any. Zip codes are generalized to first few digits. Nationality

values are generalized to different geographical granularities.

Table 1.3. Another generalized medical record table.

Age Gender Zip Code Nationality Condition

(Ann) 1 20–59 F 1∗∗∗∗ Any Heart disease
(Helen) 8 20–59 F 1∗∗∗∗ Any Flu

(Cary) 3 20–59 F 1∗∗∗∗ Any Viral infection

(Jean) 10 20–59 F 1∗∗∗∗ Any Cancer

(Eshwar) 5 20–59 M 1∗∗∗∗ Asian Cancer

(Fox) 6 20–59 M 1∗∗∗∗ Asian Flu
(Gary) 7 20–59 M 1∗∗∗∗ Asian Heart disease

(Bruce) 2 20–59 M 1∗∗∗∗ Asian Heart Disease

(Igor) 9 20–39 M 13∗∗∗ American Cancer

(Dick) 4 20–39 M 13∗∗∗ American Viral infection

(Ken) 11 20–39 M 13∗∗∗ American Cancer
(Lewis) 12 20–39 M 13∗∗∗ American Cancer

aThe second record has been swapped with the eighth record, and the fourth

record has been swapped with the tenth record.

for the data. Assume that the primary objective of the researchers is to
understand how diseases correlated with genders. Thus, the researchers
want as little replacement of a gender value by Any as possible. It
should be easy to see that Table 1.3 is a better choice than Table 1.2
in terms of the number of replacements of gender values by Any.
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1.4 Overview

Given a data set, privacy-preserving data publishing can be intuitively
thought of as a game among four parties:

• Data user, like the researchers in Gotham City University,
who wants to utilize the data.
• Adversary, like Mark in the running example, who wants

to derive private information from the data.
• Data publisher, like Gotham City Hospital, who collects

the data and wants to release the data in a way that satisfies
the data user’s need but also prevents the adversary from
obtaining private information about the individuals in the
data.
• Individuals, like Eshwar, whose data are collected by the

data publisher. In some cases, the individuals agree with
the data publisher’s privacy policy, trust the data publisher
and give the data publisher all the requested information. In
these cases, it is the data publisher’s responsibility to ensure
privacy preservation. In other cases, the individuals do not
trust the data publisher and want to make sure that the
data publisher cannot precisely identify their sensitive infor-
mation (e.g., by adding noise to their data records so that
the data publisher can only have accurate aggregate statis-
tics, but noisy individual data values). Although the primary
focus of this paper is on trusted data publishers, we will also
discuss untrusted data publishers in Section 4.2.

There is a fundamental tradeoff between privacy and utility. At
one extreme, the data publisher may release nothing so that privacy
is perfectly preserved; however, no one is able to use the data. At the
other extreme, the data publisher may release the data set without
any modification so that data utility can be maximized; however, no
privacy protection is provided. For the data publisher to release useful
data in a way that preserves privacy, the following three components
need to be defined.
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• Sanitization mechanism: Given an original data set, e.g.,
Table 1.1, a sanitization mechanism sanitizes the data set
by making the data less precise. This mechanism defines the
space of possible “snapshots” of the original data set that are
considered as candidates for release. We call such a snapshot
a release candidate. Generalization is an example sanitization
mechanism. Tables 1.2 and 1.3 are two release candidates of
such a mechanism when applied to Table 1.1. We will first
introduce some common sanitization mechanisms in Section
1.5 and have an in-depth discussion in Section 4.
• Privacy criterion: Given a release candidate, the privacy

criterion defines whether the release candidate is safe for
release or not. k-Anonymity is an example privacy criterion.
Privacy criteria are the focus of Section 2.
• Utility metric: Given a release candidate, the utility metric

quantifies the utility of the release candidate (equivalently,
the information loss due to the sanitization process). For
example, the researchers in Gotham City University use the
number of replacements of gender values by Any as their
utility measure. We survey utility metrics in Section 3.

Given the above three components, one approach to privacy-
preserving data publishing is to publish the most useful release can-
didate that satisfies the privacy criterion. An algorithm that takes an
original data set and generates a release candidate that satisfies a given
privacy criterion while providing high utility2 is called an anonymiza-
tion (or sanitization) algorithm. The terms “anonymization” and “san-
itization” will be used interchangeably. A selected list of interesting
anonymization algorithms is presented in Section 4.

After the data publisher finds a good release candidate and makes
it public, the data user will use it for good and the adversary will
attack it. Because the sanitization mechanism has perturbed the data
to make it less precise and less sensitive, the data user may not be able

2 Note that providing the maximum utility among all release candidates may not be algo-

rithmically feasible and may also be undesirable because it gives an adversary an additional
avenue of attack (see Section 6).
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to use the data in a straightforward manner. For example, suppose that
Table 1.3 is released, and the data user wants to know the fraction of
patients with ages between 20 and 30 who have heart disease. This
query cannot be answered precisely based on Table 1.3, but may be
answered probabilistically. A methodology is needed to answer such
queries in a meaningful and consistent manner. In addition to database
queries, the data user may also want to build machine-learning models
(for a prediction task) or conduct statistical analysis (to test whether
a finding from a sanitized data set is statistically significant). We will
discuss how to do so in Section 5 and point the readers to related
literature.

From the adversary’s point of view, although the released data
satisfy a privacy criterion (or a few criteria), it is still possible to
uncover some individuals’ sensitive information. This is because each
privacy criterion has its own assumption and sometimes only protects
data against a few types of attacks. For example, Table 1.2 satisfies
the k-anonymity criterion. However, it is vulnerable to a homogeneity
attack : although no one cannot distinguish Jean’s record from the other
three records (Igor’s, Ken’s, and Lewis’) based on the quasi-identifier
attributes, we are 100% sure that she has cancer (if we know her quasi-
identifier attributes and the fact that her data are in Table 1.2). Fur-
thermore, some anonymization algorithm have special behavior that
may allow the adversary to make further inference about the data, and
the adversary may have more background knowledge than a privacy
criterion assumes. We review interesting attacks against sanitized data
in Section 6.

We note that there can potentially be multiple data users with
different data needs, multiple adversaries with different purposes and
knowledge about individuals in the data, and multiple data publish-
ers (whose data sets may overlap with each other) who would like to
release versions of their data. A single data publisher may also want
to release different versions of the data at different times. Further-
more, the original data set may not be a single table; it may be a
relational database (that contains multiple tables), a market-basket
database (in which each record is a set of items), a search log (in which
each record is a search query with some metadata), a social network
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(relating individuals), and so on. These variations all add to the com-
plexity of the problem and will be addressed with different levels of
details (in proportion to the progress that has been made on these prob-
lems). In particular, we discuss social network privacy in Section 7.1,
search log privacy in Section 7.2, location privacy of mobile applications
in Section 7.3, and challenges for future research in Section 7.4.

1.5 Examples of Sanitization Mechanisms

Before proceeding to the next chapter, we will first briefly introduce a
number of common sanitization mechanisms to facilitate our discussion.
It is important to have a basic idea of such mechanisms because a
privacy criterion is defined on the output of such a mechanism, an
adversary breaches privacy by analyzing such an output, and a data
user studies such an output. However, we do not try to cover all of the
sanitization mechanisms here. An in-depth discussion of mechanisms
and algorithms will be presented in Section 4.

Recall that a sanitization mechanism defines the space of all pos-
sible release candidates in an application of privacy-preserving data
publishing. An anonymization algorithm finds a release candidate that
is both useful and safe (according to a given privacy criterion) from
this space. To simplify our discussion, we consider the original data set
to be a table (e.g., Table 1.1), in which each column is an attribute
and each row is the data record of an individual. Other kinds of data
(sets of items, text data, graph and network data, and others) will be
discussed later (primarily in Section 7).

Generalization: The generalization mechanism produces a release
candidate by generalizing (coarsening) some attribute values in the
original table. We have seen two examples of such release candidates
in Tables 1.2 and 1.3. The basic idea is that, after generalizing some
attribute values, some records (e.g., Ann’s record and Bruce’s record in
Table 1.2) would become identical when projected on the set of quasi-
identifier (QI) attributes (e.g., age, gender, zip code, and nationality).
Each group of records that have identical QI attribute values is called
an equivalence class.
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Suppression: The suppression mechanism produces a release candi-
date by replacing some attribute values (or parts of attribute values)
by a special symbol that indicates that the value has been suppressed
(e.g., “*” or “Any”). Suppression can be thought of as a special kind of
generalization. For example, in Table 1.2, we can say that some digits
of zip codes and all the gender values have been suppressed.

Swapping: The swapping mechanism produces a release candidate by
swapping some attribute values. For example, consider Table 1.1. After
removing the names, the data publisher may swap the age values of Ann
and Eshwar, swap the gender values of Bruce and Cary, and so on.

Bucketization: The bucketization mechanism produces a release can-
didate by first partitioning the original data table into non-overlapping
groups (or buckets) and then, for each group, releasing its projection
on the non-sensitive attributes and also its projection on the sensitive
attribute. Table 1.4 is a release candidate of the bucketization mech-
anism when applied to Table 1.1. In this case the Condition attribute
is considered to be sensitive and the other attributes are not. The idea
is that after bucketization, the sensitive attribute value of an individ-
ual would be indistinguishable from that of any other individual in the
same group. Each group is also called an equivalence class.

Table 1.4. Bucketized medical record table.

Age Gender Zip Code Nationality BID

(Ann) 28 F 13053 Russian 1

(Bruce) 29 M 13068 Chinese 1
(Cary) 21 F 13068 Japanese 1

(Dick) 23 M 13053 American 1

(Eshwar) 50 M 14853 Indian 2

(Fox) 55 M 14750 Japanese 2

(Gary) 47 M 14562 Chinese 2
(Helen) 49 F 14821 Korean 2

(Igor) 31 M 13222 American 3
(Jean) 37 F 13227 American 3

(Ken) 36 M 13228 American 3

(Lewis) 35 M 13221 American 3

BID Condition

1 Heart disease

1 Heart disease
1 Viral infection

1 Viral infection

2 Cancer

2 Flu

2 Heart disease
2 Flu

3 Cancer
3 Cancer

3 Cancer

3 Cancer

aThree buckets are created and identified by their bucket IDs (BID).
bA patient’s condition in a bucket is indistinguishable from any other patient’s con-
dition in the same bucket.
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Table 1.5. Randomized medical record table.

Age Gender Zip code Nationality Condition

(Ann) 1 30 F 13073 Russian Heart disease
(Bruce) 2 28 M 13121 American Heart disease

(Cary) 3 22 M 13024 Japanese Cancer

(Dick) 4 20 M 13030 American Viral infection
. . . . . . . . . . . . . . . . . .

aNames are removed. Random noise is added to each attribute value. For

numeric attributes (age and zip code), Gaussian noise is added. For cate-
gorical attributes (gender, zip code, and nationality), with some probabil-

ity, an attribute value is replaced by a random value in the domain.

Randomization: A release candidate of the randomization mechanism
is generated by adding random noise to the data. The sanitized data
could be sampled from a probability distribution (in which case it is
known as synthetic data) or the sanitized data could be created by ran-
domly perturbing the attribute values. For example, Table 1.5 is such
a release candidate for Table 1.1, where random noise is added to each
attribute value. We add Gaussian noise with mean 0 and variance 4
to age and also Gaussian noise with 0 mean and variance 500 to zip
code. For gender, nationality, and condition, with probability 1/4, we
replace the original attribute value with a random value in the domain;
otherwise, we keep the original attribute value. Note that, in general,
we may add different amounts of noise to different records and different
attributes. Several application scenarios of randomization can be distin-
guished. In input randomization, the data publisher adds random noise
to the original data set and releases the resulting randomized data, like
Table 1.5. In output randomization, data users submit queries to the
data publisher and the publisher releases randomized query results. In
local randomization, individuals (who contribute their data to the data
publisher) randomize their own data before giving their data to the
publisher. In this last scenario, the data publisher is no longer required
to be trusted.

Multi-view release: To increase data utility, the data publisher may
release multiple views of a single original data set, where the released
views are outputs of one (or more) of the above sanitization mecha-
nisms. For example, a release candidate could be a set of generalized
tables. As a special case of multiple generalized tables, we show an
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Table 1.6. An example of multi-marginal release.

(a) Marginal on gender, nationality

Gender Nationality Count

F Russian 1

F Japanese 1

F Korean 1
F American 1

M Chinese 2

M American 4
M Indian 1

M Japanese 1

(b) Marginal on gender, condition

Gender Condition Count

F Heart disease 1

F Viral infection 1

F Flu 1
F Cancer 1

M Heart disease 2

M Viral infection 1
M Flu 1

M Cancer 4

example of multi-marginal release in Table 1.6, which consists of two
views of the original data Table 1.1. Each view is generated by project-
ing the original data table on a subset of attributes and computing the
counts. Such a view is called a marginal table or a histogram on the
subset of attributes.
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