
Datalog and Recursive
Query Processing

Todd J. Green
LogicBlox Inc.

todd.green@logicblox.com

Shan Shan Huang
LogicBlox Inc.

ssh@logicblox.com

Boon Thau Loo
University of Pennsylvania

boonloo@cis.upenn.edu

Wenchao Zhou
Georgetown University

wzhou@cs.georgetown.edu

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/1900000017

Foundations and Trends R© in Databases

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

T. J. Green, S. Huang, B. T. Loo, W. Zhou. Datalog and Recursive Query
Processing. Foundations and TrendsR© in Databases, vol. 5, no. 2, pp. 105–195,
2012.

This Foundations and TrendsR© issue was typeset in LATEX using a class file designed
by Neal Parikh. Printed on acid-free paper.

ISBN: 978-1-60198-753-2
c© 2013 T. J. Green, S. Huang, B. T. Loo, W. Zhou

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, mechanical, photocopying, recording
or otherwise, without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen-
ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for
internal or personal use, or the internal or personal use of specific clients, is granted by
now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The
‘services’ for users can be found on the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system
of payment has been arranged. Authorization does not extend to other kinds of copy-
ing, such as that for general distribution, for advertising or promotional purposes, for
creating new collective works, or for resale. In the rest of the world: Permission to pho-
tocopy must be obtained from the copyright owner. Please apply to now Publishers Inc.,
PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781 871 0245; www.nowpublishers.com;
sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to
now Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com;
e-mail: sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/1900000017

Foundations and Trends R© in Databases
Volume 5, Issue 2, 2012

Editorial Board

Editor-in-Chief

Joseph M. Hellerstein
University of California, Berkeley
United States

Editors

Anastasia Ailamaki
EPFL
Michael Carey
UC Irvine
Surajit Chaudhuri
Microsoft Research
Ronald Fagin
IBM Research
Minos Garofalakis
Yahoo! Research
Johannes Gehrke
Cornell University

Alon Halevy
Google
Jeffrey Naughton
University of Wisconsin
Christopher Olston
Yahoo! Research
Jignesh Patel
University of Michigan
Raghu Ramakrishnan
Yahoo! Research
Gerhard Weikum
Max Planck Institute Saarbrücken

Full text available at: http://dx.doi.org/10.1561/1900000017

Editorial Scope

Topics

Foundations and Trends R© in Databases covers a breadth of topics re-
lating to the management of large volumes of data. The journal targets
the full scope of issues in data management, from theoretical founda-
tions, to languages and modeling, to algorithms, system architecture,
and applications. The list of topics below illustrates some of the in-
tended coverage, though it is by no means exhaustive:

• Data models and query languages
• Query processing and

optimization
• Storage, access methods, and

indexing
• Transaction management,

concurrency control, and
recovery

• Deductive databases
• Parallel and distributed database

systems
• Database design and tuning
• Metadata management
• Object management
• Trigger processing and active

databases
• Data mining and OLAP
• Approximate and interactive

query processing

• Data warehousing

• Adaptive query processing

• Data stream management

• Search and query integration

• XML and semi-structured data

• Web services and middleware

• Data integration and exchange

• Private and secure data
management

• Peer-to-peer, sensornet, and
mobile data management

• Scientific and spatial data
management

• Data brokering and
publish/subscribe

• Data cleaning and information
extraction

• Probabilistic data management

Information for Librarians

Foundations and Trends R© in Databases, 2012, Volume 5, 4 issues. ISSN pa-
per version 1931-7883. ISSN online version 1931-7891. Also available as a
combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/1900000017

Foundations and TrendsR© in Databases
Vol. 5, No. 2 (2012) 105–195
c© 2013 T. J. Green, S. Huang, B. T. Loo, W. Zhou
DOI: 10.1561/1900000017

Datalog and Recursive Query Processing

Todd J. Green Shan Shan Huang
LogicBlox Inc. LogicBlox Inc.

todd.green@logicblox.com ssh@logicblox.com

Boon Thau Loo Wenchao Zhou
University of Pennsylvania Georgetown University
boonloo@cis.upenn.edu wzhou@cs.georgetown.edu

Full text available at: http://dx.doi.org/10.1561/1900000017

Contents

1 Introduction 2
1.1 Contributions and Roadmap 4
1.2 Relationship with Previous Surveys 5
1.3 First Example: All-Pairs Reachability 6

2 Language and Semantics 9
2.1 Language . 9
2.2 Semantics . 11
2.3 Negation . 16
2.4 Aggregation . 22

3 Recursive Query Processing 27
3.1 Bottom-up Evaluation . 28
3.2 Top-down Evaluation . 31
3.3 Magic Sets . 37

4 Incremental Maintenance 47
4.1 Counting Algorithm for Non-recursive Queries 48
4.2 Delete and Re-Derive Algorithm (DRed) 49
4.3 Provenance-based Incremental Maintenance 51
4.4 Incremental Maintenance for Negation and Aggregates . . 51

ii

Full text available at: http://dx.doi.org/10.1561/1900000017

iii

5 Datalog Extensions 53
5.1 Beyond Stratified Negation 53
5.2 Beyond Stratified Aggregation 55
5.3 Arithmetic and Infinite Relations 57
5.4 Functors . 59
5.5 States and Updates . 61

6 Applications 65
6.1 Program Analysis . 65
6.2 Declarative Networking 68
6.3 Data Integration and Exchange 71
6.4 Enterprise Software . 76
6.5 Other Applications . 79

Acknowledgements 82

References 83

Full text available at: http://dx.doi.org/10.1561/1900000017

Abstract

In recent years, we have witnessed a revival of the use of recursive
queries in a variety of emerging application domains such as data in-
tegration and exchange, information extraction, networking, and pro-
gram analysis. A popular language used for expressing these queries is
Datalog. This paper surveys for a general audience the Datalog lan-
guage, recursive query processing, and optimization techniques. This
survey differs from prior surveys written in the eighties and nineties
in its comprehensiveness of topics, its coverage of recent developments
and applications, and its emphasis on features and techniques beyond
“classical” Datalog which are vital for practical applications. Specifi-
cally, the topics covered include the core Datalog language and various
extensions, semantics, query optimizations, magic-sets optimizations,
incremental view maintenance, aggregates, negation, and types. We
conclude the paper with a survey of recent systems and applications
that use Datalog and recursive queries.

T. J. Green, S. Huang, B. T. Loo, W. Zhou. Datalog and Recursive Query
Processing. Foundations and TrendsR© in Databases, vol. 5, no. 2, pp. 105–195,
2012.
DOI: 10.1561/1900000017.

Full text available at: http://dx.doi.org/10.1561/1900000017

1
Introduction

Mainstream interest in Datalog in the database systems community
flourished in the eighties and early nineties. During this period, there
were several pioneering Datalog systems, primarily from academia. Two
of the more prominent ones with complete implementations include
Coral [99] and LDL++ [20]. Some ideas from these early research pro-
totypes made it into mainstream commercial databases. For instance,
Oracle, DB2, and SQL Server provide support for limited forms of sup-
port for recursion, based on SQL-99 standards. However, a perceived
lack of compelling applications at the time [113] ultimately forced Dat-
alog research into a long dormancy, and stifled its use in practice. Coral
and LDL++ ceased active development in 1997 and 2000 respectively,
and commercial systems did not extend a limited form of Datalog.

In recent years, however, Datalog has reemerged at the center of a
wide range of new applications, including data integration [68, 43, 50],
declarative networking [80, 77, 75], program analysis [29], information
extraction [110], network monitoring [10], security [85, 60], optimiza-
tions [73], and cloud computing [15, 16]. Compared to the state-of-the-
art of two decades ago, the modern systems that drives these emerging
applications have significantly more mature and complete Datalog im-

2

Full text available at: http://dx.doi.org/10.1561/1900000017

3

plementations, and often times deploy applications that are orders of
magnitude larger in code size and complexity compared to the older
generation of Datalog programs.

In terms of modern academic systems, the IRIS reasoner [59] is an
open-source general purpose Datalog execution engine with support for
optimizations, stratified and locally stratified negation. There are also
publicly available Datalog systems tailored for specific applications.
These include the Orchestra system for collaborative data sharing [92],
BDDBDD [24] for program analysis, the RapidNet [101] declarative
networking platforms, and the Bloom [16] platform for declarative pro-
gramming in the cloud.

In the commercial world, a major development is the emergence of
enterprise Datalog systems, most notably LogicBlox [4], Datomic [2],
Semmle [7], and Lixto [49]. Semmle and Lixto are targeted at specific
domains of program analysis and information extraction respectively,
while LogicBlox and Datomic aim to provide a general platform for
developing enterprise software.

The revival of Datalog in the new generation of applications is
driven by the increasing need for high-level abstractions for reason-
ing about and rapidly developing complex systems that process large
amounts of data, and are sometimes distributed and parallel. Datalog
provides a declarative interface that allows the programmer to focus
on the tasks (“what”), not the low-level details (“how”). A common
thread across these systems is the use of the Datalog language as a
declarative abstraction for querying graphs and relational structures,
and implementing iterations and recursions. Its clear and simple syntax
with well understood semantics aims to achieve the best of both worlds
– having a rich enough language to support a wide range of applica-
tions, yet at a high and concise level that makes rapid prototyping easy
for programmers without having to worry about low level messy details
related to robustness and parallelism. The high-level specifications also
make code analysis easier, for applying optimizations and for reasoning
about transactions and safety.

Full text available at: http://dx.doi.org/10.1561/1900000017

4 Introduction

1.1 Contributions and Roadmap

This survey paper aims to provide an accessible and gentle introduc-
tion to Datalog and recursive query processing to readers with some
basic background in databases (in particular, SQL and the relational
model). Given the wide range of research literature on Datalog span-
ning decades, we identify a “practical” subset of Datalog based on re-
cent advances in the adoption of Datalog. In particular, our survey
aims to cover the following:

• Language. Core Datalog syntax and semantics. (Chapter 2)

• Query processing. Recursive query processing techniques for
executing Datalog programs efficiently, using the bottom-up and
top-down evaluation strategies, such as the well-known semi-
naïve [22, 21] and Query/Subquery (QSQ) [67] evaluation strate-
gies. (Chapter 3)

• Incremental maintenance. Extensions to query processing
techniques in the previous chapter, to include mechanisms for
incrementally updating the materialized views of a Datalog pro-
gram, as the input data changes, without having to recompute
the entire Datalog program from scratch. (Chapter 4)

• Common extensions. Each application domain takes the core
Datalog language and then further customizes and extends the
core language and implementation techniques to meet its partic-
ular needs. Here, we discuss extensions to incorporate negation,
aggregation, arithmetic, uninterpreted functions, and updates, as
well as the query processing techniques to handle these exten-
sions. (Chapter 5).

The survey concludes in Chapter 6 with a brief survey of recent
applications of Datalog, in the domains of program analysis, declar-
ative networking, data integration and exchange, enterprise software
systems, etc.

Full text available at: http://dx.doi.org/10.1561/1900000017

1.2. Relationship with Previous Surveys 5

1.2 Relationship with Previous Surveys

Our survey serves as an entry point into several other survey papers
and books on Datalog. We briefly mention some of them:

• Bancilhon et al. [23] surveys and compares various strategies for
processing and optimizing recursive queries in a greater depth
compared to our survey.

• Ceri et al. [32] presents the syntax and semantics of Datalog along
with evaluation and optimization techniques for efficient execu-
tion. Extensions to the Datalog language, such as built-in predi-
cates and negation are also discussed.

• Ramakrishnan and Ullman [100] provides a high-level overview
of the Datalog language, query evaluation and optimizations, and
more advanced topics on negation and aggregation in a few pages.
This should be viewed as a “quick-starter” guide for someone
exposed to Datalog for the first time.

• Textbooks [12, 27, 33, 118, 36] cover some topics (e.g. language,
semantics, magic sets) in greater detail than our survey. Abite-
boul et al. [12] in particular is a widely used textbook geared
towards a database theory audience.

Overall, our survey is broader than Bancilhon [23], which focuses
primarily on query processing, and Ramakrishnan and Ullman [100],
which surveys Datalog systems (which are now more than a decade
old) with a brief discussion on query processing and optimizations. We
cover a breath of topics similar to the surveys [32, 88], but provide sig-
nificantly more details on systems issues related to query processing,
incremental maintenance, and modern applications. Compared to all
of the above surveys, we provide a more systems approach in presenta-
tion of classical topics, and discuss only extensions relevant to modern
applications.

Full text available at: http://dx.doi.org/10.1561/1900000017

6 Introduction

1.3 First Example: All-Pairs Reachability

We begin with a high level introduction to the Datalog language and its
basic evaluation strategy. As our first example, we consider a Datalog
program that computes all-pairs reachability, essentially a transitive
closure computation in a graph for figuring out all pairs of nodes that
are connected (reachable) to each other.

r1 reachable(X,Y) :- link(X,Y).
r2 reachable(X,Y) :- link(X,Z), reachable(Z,Y).
query(X,Y) :- reachable(X,Y).

The above two rules, named as r1 and r2, derive the reachable
nodes (i.e. reachable(X,Y) using facts about directly linked nodes (i.e.
link(X,Y)). Here, we use capital letters X and Y to signify that they are
variables in the domain of all the nodes. The output of interest in this
program, as denoted by the special predicate query(X,Y), is the set of
derived reachable facts. The input graph in this case can represent a
network of routers, and forms a basis for implementing network routing
protocols [80], web crawlers [81], and network crawlers [79].

Rule r1 expresses that node X is reachable from Y (i.e.
reachable(X,Y)) if they are directly linked. Rule r2 is a bit more
interesting, as it specifies the reachable relation in terms of itself:
(X,Y) are reachable from one another if X has a direct link to a node
(Z) that is reachable to Y. We refer to rules such as r2 as recursive
rules, since the reachable relation appears in both the rule body (right
of “ :- ”) and head (left of “ :- ”). Rule r2 is also a linear recursive
rule ,since reachable appears only once in the rule body.

a b c d

Figure 1.1: Example graph used for reachability computation.

We illustrate the execution of Datalog rules by evaluating the
reachable rules over the graph shown in Figure 1.1, which depicts a
network consisting of three nodes and four direct links. Thus, there are

Full text available at: http://dx.doi.org/10.1561/1900000017

1.3. First Example: All-Pairs Reachability 7

(initial base tuples)
link
X Y
a b
b c
c c
c d

(iteration 2)
reachable
X Y
a b
b c
c c
c d
a c
b c
b d
c d

(iteration 1)
reachable
X Y
a b
b c
c c
c d

(iteration 3)
reachable
X Y
a b
b c
c c
c d
a c
b d
a d

Figure 1.2: Tuples derived by the All-pairs Reachability program for each iteration.
New tuples derived in the current iteration that are not known in prior iterations
are shaded.

four initial entries (tuples) in link: link(a,b), link(b,c), link(c,c),
and link(c,d).

Intuitively, rule evaluation can be understood as the repeated ap-
plication of rules over existing tuples to derive new tuples, until no
more new tuples can be derived (i.e. evaluation has reached a fixpoint).
Each application of rules over existing tuples is referred to as an iter-
ation. This evaluation strategy is often times referred to as the naïve
evaluation strategy.

The evaluation of the reachability rules over the network in Fig-
ure 1.1 reaches a fixpoint in three iterations, as shown in Figure 1.2.
In iteration 1, rule r1 takes as input the initial link tuples, and use
that to generate 4 reachable tuples. These tuples essentially represent
all pairs of nodes reachable within one hop. In the next two iterations,
all reachable tuples generated in previous iterations are used as input
to rule r2 to generate more reachable tuples that are two and three

Full text available at: http://dx.doi.org/10.1561/1900000017

8 Introduction

hops apart. Iteration 4 (not shown in the figure) derives the same set
of tuples as iteration 3, and hence, a fixpoint is reached. Given that
no two nodes are separated by more than 3 hops, the recursive query
completes in 4 iterations.

As an optimization, instead of using all derived facts as input to
rules at each iteration, one can suppress the evaluation that uses only
tuples already learned in prior iterations when computing new tuples
the next iteration. For instance, when generating new facts in iteration
3, rule r2 will not evaluate for inputs reachable(b,c) and link(a,b),
since they have already been used in iteration 1. The intuitive descrip-
tion above corresponds loosely to the semi-naïve evaluation strategy,
which will be described in greater detail in Chapter 3.

Note that the above approach is a bottom-up evaluation technique,
where existing facts are used as input to rule bodies to derive new
facts. A fixpoint is reached when no new facts are derived. This is
also known as a forward-chaining style of evaluation. An alternative
approach used in Prolog [112] uses a goal-oriented backward-chaining
approach, starting from the goal (i.e. query), and then expanding the
rule bodies in a top-down fashion.

A top-down approach allows for an evaluation strategy that focuses
only on facts necessary for the goal. However, a bottom-up evaluation
approach used in Datalog allows us to draw upon a wealth of query
processing and optimization techniques to draw upon for doing the
computations efficiently even when datasets are too large to fit in main
memory. Moreover, as we show in Section 3.3, query optimization tech-
niques can optimize Datalog programs for bottom-up evaluation, to
avoid deriving facts not relevant to answering queries.

Full text available at: http://dx.doi.org/10.1561/1900000017

References

[1] BioPerl, http://bioperl.org.
[2] Datomic website, http://www.datomic.com/.
[3] H2 Database Engine, http://www.h2database.com.
[4] LogicBlox website, http://www.logicblox.com/.
[5] Microsoft SQL server, http://www.microsoft.com/sql.
[6] PostgreSQL, http://www.postgresql.org/.
[7] Semmle Web site, http://www.semmle.com.
[8] uBio, http://www.ubio.org.
[9] S. Abiteboul, E. Simon, and V. Vianu. Non-deterministic languages to

express deterministic transformations. In PODS, 1990.
[10] Serge Abiteboul, Zoe Abrams, Stefan Haar, and Tova Milo. Diagnosis

of Asynchronous Discrete Event Systems—Datalog to the Rescue! In
PODS, 2005.

[11] Serge Abiteboul and Oliver Duschka. Complexity of answering queries
using materialized views. In PODS, 1998.

[12] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[13] Serge Abiteboul and Victor Vianu. Datalog extensions for database
queries and updates. J. Comput. Syst. Sci., 43:62–124, August 1991.

[14] Foto Afrati, Stavros S. Cosmadakis, and Mihalis Yannakakis. On dat-
alog vs. polynomial time. In PODS, 1991.

83

Full text available at: http://dx.doi.org/10.1561/1900000017

84 References

[15] Peter Alvaro, Tyson Condie, Neil Conway, Khaled Elmeleegy, Joseph M.
Hellerstein, and Russell Sears. Boom analytics: exploring data-centric,
declarative programming for the cloud. In EuroSys, 2010.

[16] Peter Alvaro, Neil Conway, Joseph M. Hellerstein, and William R. Mar-
czak. Consistency analysis in bloom: a calm and collected approach. In
CIDR, 2011.

[17] Peter Alvaro, William Marczak, Neil Conway, Joseph M. Hellerstein,
David Maier, and Russell C Sears. Dedalus: Datalog in time and space.
Technical Report UCB/EECS-2009-173, EECS Department, University
of California, Berkeley, Dec 2009.

[18] Tom J. Ameloot, Frank Neven, and Jan Van den Bussche. Relational
Transducers for Declarative Networking. In PODS, 2011.

[19] K. R. Apt, H. A. Blair, and A. Walker. Towards a theory of declarative
knowledge. pages 89–148, 1988.

[20] Faiz Arni, KayLiang Ong, Shalom Tsur, Haixun Wang, and Carlo Zan-
iolo. The deductive database system LDL++. TPLP, 3(1):61–94, 2003.

[21] I. Balbin and K. Ramamohanarao. A generalization of the differential
approach to recursive query evaluation. Journal of Logic Programming,
4(3), 1987.

[22] Francois Bancilhon. Naive evaluation of recursively defined relations.
On Knowledge Base Management Systems: Integrating AI and DB Tech-
nologies, 1986.

[23] Francois Bancilhon and Raghu Ramakrishnan. An amateur’s introduc-
tion to recursive query processing strategies. SIGMOD Rec., 15(2):16–
52, 1986.

[24] BDD-Based Deductive DataBase. http://bddbddb.sourceforge.
net/.

[25] Catriel. Beeri and Raghu. Ramakrishnan. On the power of magic. In
PODS, 1987.

[26] Catriel Beeri and Moshe Y. Vardi. A proof procedure for data depen-
dencies. J. ACM, 31(4):718–741, 1984.

[27] Nicole Bidoit. Bases de Données Déductives: Présentation de Datalog.
Armand Colin, 1992.

[28] Martin Bravenboer and Yannis Smaragdakis. Doop website,
http://doop.program-analysis.org/.

[29] Martin Bravenboer and Yannis Smaragdakis. Strictly declarative spec-
ification of sophisticated points-to analyses. In OOPSLA, 2009.

Full text available at: http://dx.doi.org/10.1561/1900000017

http://bddbddb.sourceforge.net/
http://bddbddb.sourceforge.net/

References 85

[30] R.E. Bryant. Graph-based algorithms for boolean function manipula-
tion. IEEE Transactions on Computers, 35(8):677–691, 1986.

[31] Dario Campagna, Beata Sarna-Starosta, and Tom Schrijvers. Optimiz-
ing Inequality Joins in Datalog with Approximated Constraint Propa-
gation. In Claudio Russo and Neng-Fa Zhou, editors, Practical Aspects
of Declarative Languages, 14th International Symposium, Proceedings.
Springer, 2012.

[32] S. Ceri, G. Gottlob, and L. Tanca. What you always wanted to know
about datalog (and never dared to ask). IEEE TKDE, 1(1):146–166,
1989.

[33] Stefano Ceri, Georg Gottlob, and L. Tanca. Logic Programming and
Databases. Springer, 1990.

[34] Keith L. Clark. Negation as failure. In Logic and Data Bases, pages
293–322, 1977.

[35] Sara Cohen, Joseph Gil, and Evelina Zarivach. Datalog programs over
infinite databases, revisited. In DBPL, 2007.

[36] Robert M. Colomb. Deductive Databases and their Applications. Taylor
and Francis, 1998.

[37] Neil Conway, William R. Marczak, Peter Alvaro, Joseph M. Hellerstein,
and David Maier. Logic and lattices for distributed programming. In
SoCC, 2012.

[38] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction or approx-
imation of fixpoints. In POPL, 1977.

[39] Steven Dawson, C. R. Ramakrishnan, and David S. Warren. Practical
program analysis using general purpose logic programming systems—a
case study. In PLDI, 1996.

[40] Alin Deutsch and Val Tannen. Reformulation of xml queries and con-
straints. In ICDT, pages 225–241, 2003.

[41] Guozhu Dong, Leonid Libkin, Jianwen Su, and Limsoon Wong. Main-
taining transitive closure of graphs in sql. In Int. J. Information Tech-
nology, 5, 1999.

[42] Guozhu Dong and Jianwen Su. Incremental and decremental evaluation
of transitive closure by first-order queries. Inf. Comput., 120(1):101–106,
1995.

Full text available at: http://dx.doi.org/10.1561/1900000017

86 References

[43] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa.
Data exchange: semantics and query answering. TCS, 336(1):89–124,
2005.

[44] John Field, Maria-Cristina Marinescu, and Christian Stefansen. Reac-
tors: A data-oriented synchronous/asynchronous programming model
for distributed applications. Theor. Comput. Sci., 410(2-3):168–201,
2009.

[45] Jörg Flum, Max Kubierschky, and Bertram Ludäscher. Total and partial
well-founded datalog coincide. In ICDT, 1997.

[46] Jörg Flum, Max Kubierschky, and Bertram Ludäscher. Games and total
datalog¬ queries. Theoretical Computer Science, 239(2):257–276, 2000.

[47] Allen Van Gelder. The alternating fixpoint of logic programs with nega-
tion. JCSS, 47(1):185 – 221, 1993.

[48] Michael Gelfond and Vladimir Lifschitz. The stable model semantics
for logic programming. In ICLP/SLP, pages 1070–1080, 1988.

[49] Georg Gottlob, Christoph Koch, Robert Baumgartner, Marcus Herzog,
and Sergio Flesca. The Lixto data extraction project: back and forth
between theory and practice. In PODS, 2004.

[50] Todd J. Green, Grigoris Karvounarakis, Zachary G. Ives, and Val Tan-
nen. Update exchange with mappings and provenance. In VLDB, 2007.

[51] Todd J. Green, Grigoris Karvounarakis, and Val Tannen. Provenance
semirings. In PODS, 2007.

[52] Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. Main-
taining views incrementally. In SIGMOD, 1993.

[53] GUS: The Genomics Unified Schema. http://www.gusdb.org/.
[54] Elnar Hajiyev, Mathieu Verbaere, and Oege de Moor. Codequest:

Scalable source code queries with datalog. In David Thomas, editor,
ECOOP, 2006.

[55] Alon Y. Halevy. Answering queries using views: A survey. VLDB Jour-
nal, 10(4):270–294, 2001.

[56] Y. Halevy, G. Ives, Dan Suciu, and Igor Tatarinov. Schema mediation
for large-scale semantic data sharing. VLDB Journal, 14(1):68–83, 2005.

[57] Joseph M. Hellerstein. Declarative imperative: Experiences and conjec-
tures in distributed logic. 2010. SIGMOD Record 39(1).

[58] Neil Immerman. Relational queries computable in polynomial time.
Information and Control, 68(1-3):86–104, 1986.

Full text available at: http://dx.doi.org/10.1561/1900000017

http://www.gusdb.org/

References 87

[59] IRIS (Integrated Rule Inference System) Reasoner. http://www.
iris-reasoner.org/.

[60] Trevor Jim. SD3: A Trust Management System With Certified Evalu-
ation. In IEEE Symposium on Security and Privacy, May 2001.

[61] David B. Kemp. Efficient recursive aggregation and negation in deduc-
tive databases. TKDE, 10(5), 1998.

[62] Michael Kifer. On the decidability and axiomatization of query finite-
ness in deductive databases. JACM, 45(4):588–633, July 1998.

[63] Michael Kifer, Raghu Ramakrishnan, and Abraham Silberschatz. An
axiomatic approach to deciding query safety in deductive databases. In
PODS, 1988.

[64] Anthony C. Klug. Equivalence of relational algebra and relational calcu-
lus query languages having aggregate functions. J. ACM, 29(3):699–717,
1982.

[65] Ravi Krishnamurthy, Raghu Ramakrishnan, and Oded Shmueli. A
framework for testing safety and effective computability of extended
datalog. In SIGMOD, 1988.

[66] Monica S. Lam, John Whaley, V. Benjamin Livshits, Michael C. Mar-
tin, Dzintars Avots, Michael Carbin, and Christopher Unkel. Context-
sensitive program analysis as database queries. In PODS, 2005.

[67] Laurent Vieille. Recursive Axioms in Deductive Database: The Query-
Subquery Approach. In 1st International Conference on Expert
Database Systems, 1986.

[68] Maurizio Lenzerini. Data integration: A theoretical perspective. In
PODS, 2002.

[69] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg
Gottlob, Simona Perri, and Francesco Scarcello. The dlv system for
knowledge representation and reasoning. ACM Trans. Comput. Logic,
7(3):499–562, July 2006.

[70] Ondřej Lhoták. Program Analysis using Binary Decision Diagrams.
PhD thesis, McGill University, January 2006.

[71] Senlin Liang and Michael Kifer. Deriving predicate statistics in datalog.
In PPDP, 2010.

[72] Leonid Libkin. Elements Of Finite Model Theory. Springer, 2004.
[73] Changbin Liu, Lu Ren, Boon Thau Loo, Yun Mao, and Prithwish Basu.

Cologne: A declarative distributed constraint optimization platform. In
VLDB, 2012.

Full text available at: http://dx.doi.org/10.1561/1900000017

http://www.iris-reasoner.org/
http://www.iris-reasoner.org/

88 References

[74] A. Livchak. Languages for polynomial-time queries. Computer-based
modeling and optimization of heat-power and electrochemical objects,
1992. In Russian.

[75] Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gay,
Joseph M. Hellerstein, Petros Maniatis, Raghu Ramakrishnan, Timothy
Roscoe, and Ion Stoica. Declarative Networking: Language, Execution
and Optimization. In SIGMOD, 2006.

[76] Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gay,
Joseph M. Hellerstein, Petros Maniatis, Raghu Ramakrishnan, Timo-
thy Roscoe, and Ion Stoica. Declarative networking. Commun. ACM,
52(11):87–95, 2009.

[77] Boon Thau Loo, Tyson Condie, Joseph M. Hellerstein, Petros Maniatis,
Timothy Roscoe, and Ion Stoica. Implementing Declarative Overlays.
In SOSP, 2005.

[78] Boon Thau Loo, Harjot Gill, Changbin Liu, Yun Mao, William R. Mar-
czak, Micah Sherr, Anduo Wang, and Wenchao Zhou. Recent advances
in declarative networking. In Fourteenth International Symposium on
Practical Aspects of Declarative Languages (PADL), 2012.

[79] Boon Thau Loo, Joseph M. Hellerstein, Ryan Huebsch, Timo thy
Roscoe, and Ion Stoica. Analyzing P2P Overlays with Recursive
Queries. Technical Report UCB-CS-04-1301, UC Berkeley, 2004.

[80] Boon Thau Loo, Joseph M. Hellerstein, Ion Stoica, and Raghu Ramakr-
ishnan. Declarative routing: extensible routing with declarative queries.
In SIGCOMM, 2005.

[81] Boon Thau Loo, Sailesh Krishnamurthy, and Owen Cooper. Distributed
Web Crawling over DHTs. Technical Report UCB-CS-04-1305, UC
Berkeley, 2004.

[82] Bertram Ludäscher. Integration of Active and Deductive Database
Rules, volume 45 of DISDBIS. Infix Verlag, St. Augustin, Germany,
1998. PhD thesis.

[83] Bertram Ludäscher, Ulrich Hamann, and Georg Lausen. A logical
framework for active rules. In COMAD, 1995.

[84] Bertram Ludäscher, Wolfgang May, and Georg Lausen. Nested trans-
actions in a logical language for active rules. In LID, 1996.

[85] William R. Marczak, Shan Shan Huang, Martin Bravenboer, Micah
Sherr, Boon Thau Loo, and Molham Aref. Secureblox: customizable
secure distributed data processing. In SIGMOD, 2010.

Full text available at: http://dx.doi.org/10.1561/1900000017

References 89

[86] Michael Meier, Michael Schmidt, and Georg Lausen. On chase termi-
nation beyond stratification. PVLDB, 2(1):970–981, 2009.

[87] Mengmeng Liu and Nicholas Taylor and Wenchao Zhou and Zachary
Ives and Boon Thau Loo. Recursive Computation of Regions and Con-
nectivity in Networks. In ICDE, 2009.

[88] Jack Minker. Logic and databases: A 20 year retrospective. In Dino
Pedreschi and Carlo Zaniolo, editors, Logic in Databases, volume 1154
of Lecture Notes in Computer Science, pages 1–57. Springer Berlin /
Heidelberg, 1996. 10.1007/BFb0031734.

[89] Inderpal Singh Mumick and Hamid Pirahesh. Implementation of magic-
sets in a relational database system. In SIGMOD, 1994.

[90] Inderpal Singh Mumick, Hamid Pirahesh, and Raghu Ramakrishnan.
The magic of duplicates and aggregates. In VLDB, 1990.

[91] Vivek Nigam, Limin Jia, Boon Thau Loo, and Andre Scedrov. Main-
taining distributed logic programs incrementally. In 13th International
ACM SIGPLAN Symposium on Principles and Practice of Declarative
Programming (PPDP), 2011.

[92] Orchestra Collaborative Data Sharing System. http://code.google.
com/p/penn-orchestra/.

[93] P2: Declarative Networking System. http://p2.cs.berkeley.edu.
[94] Christos H. Papadimitriou. A note on the expressive power of prolog.

Bulletin of the EATCS, 26:21–22, 1985.
[95] Lucian Popa, Yannis Velegrakis, Mauricio A. Hernández, Renée J.

Miller, and Ronald Fagin. Translating web data. In VLDB, 2002.
[96] R. Ramakrishnan, F. Bancilhon, and A. Silberschatz. Safety of recursive

horn clauses with infinite relations. In PODS, 1987.
[97] Raghu Ramakrishnan, Kenneth A. Ross, Divesh Srivastava, and S. Su-

darshan. Efficient Incremental Evaluation of Queries with Aggregation.
In SIGMOD, pages 204–218, 1992.

[98] Raghu Ramakrishnan, Kenneth A. Ross, Divesh Srivastava, and S. Su-
darshan. Efficient incremental evaluation of queries with aggregation.
In SIGMOD, 1994.

[99] Raghu Ramakrishnan, Divesh Srivastava, S. Sudarshan, and Praveen
Seshadri. The CORAL deductive system. VLDB Journal, 3(2):161–
210, 1994.

Full text available at: http://dx.doi.org/10.1561/1900000017

http://code.google.com/p/penn-orchestra/
http://code.google.com/p/penn-orchestra/
http://p2.cs.berkeley.edu

90 References

[100] Raghu Ramakrishnan and Jeffrey D. Ullman. A Survey of Research
on Deductive Database Systems. Journal of Logic Programming,
23(2):125–149, 1993.

[101] RapidNet Declarative Networking Engine. http://netdb.cis.upenn.
edu/rapidnet/.

[102] Thomas Reps. Demand interprocedural program analysis using logic
databases. Applications of Logic Databases, pages 163–196, 1994.

[103] Kenneth Ross. A syntactic stratification condition using constraints. In
ILPS, 1994.

[104] Kenneth A. Ross. Modular stratification and magic sets for datalog
programs with negation. J. ACM, 41:1216–1266, November 1994.

[105] Kenneth A. Ross. Structural totality and constraint stratification. In
PODS, 1995.

[106] Kenneth A. Ross and Yehoshua Sagiv. Monotonic aggregation in deduc-
tive databases. Journal of Computer and System Sciences, 54(1):79–97,
1997.

[107] Y. Sagiv and M. Y. Vardi. Safety of datalog queries over infinite
databases. In PODS, 1989.

[108] Damien Sereni, Pavel Avgustinov, and Oege de Moor. Adding magic to
an optimising datalog compiler. In SIGMOD, 2008.

[109] Praveen Seshadri, Joseph M. Hellerstein, Hamid Pirahesh, T. Y. Cliff
Leung, Raghu Ramakrishnan, Divesh Srivastava, Peter J. Stuckey, and
S. Sudarshan. Cost-based optimization for magic: Algebra and imple-
mentation. In SIGMOD, 1996.

[110] W. Shen, A. Doan, J. Naughton, and R. Ramakrishnan. Declarative
information extraction using datalog with embedded extraction predi-
cates. In VLDB, 2007.

[111] Divesh Srivastava and Raghu Ramakrishnan. Pushing constraint selec-
tions. In PODS, 1992.

[112] Leon Sterling and Ehud Shapiro. The Art of Prolog. The MIT Press,
2nd edition, 1994.

[113] Michael Stonebraker and Joseph M. Hellerstein, editors. Readings in
Database Systems, Third Edition. Morgan Kaufmann, 1998.

[114] Peter J. Stuckey and S. Sudarshan. Compiling query constraints (ex-
tended abstract). In PODS, 1994.

Full text available at: http://dx.doi.org/10.1561/1900000017

http://netdb.cis.upenn.edu/rapidnet/
http://netdb.cis.upenn.edu/rapidnet/

References 91

[115] S. Sudarshan and Raghu Ramakrishnan. Aggregation and relevance in
deductive databases. In VLDB, 1991.

[116] Frank Tip. A survey of program slicing techniques. Journal of Pro-
gramming Languages, 3:121–189, 1995.

[117] Jeffrey D. Ullman. Implementation of logical query languages for
databases. ACM Trans. Database Syst., 10:289–321, September 1985.

[118] Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems:
Volume II: The New Technologies. W. H. Freeman & Co., New York,
NY, USA, 1990.

[119] M. H. Van Emden and R. A. Kowalski. The semantics of predicate logic
as a programming language. J. ACM, 23:733–742, October 1976.

[120] Allen Van Gelder. The well-founded semantics of aggregation. In PODS,
1992.

[121] Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-
founded semantics for general logic programs. J. ACM, 38:619–649,
July 1991.

[122] Moshe Y. Vardi. The complexity of relational query languages. In
STOC, 1982.

[123] John Whaley and Monica S. Lam. Cloning-based context-sensitive
pointer alias analysis using binary decision diagrams. In PLDI, 2004.

[124] Jennifer Widom and Stefano Ceri. Active Database Systems: Triggers
and Rules for Advanced Database Processing. Morgan-Kaufmann, 1996.

[125] Wenchao Zhou, Yun Mao, Boon Thau Loo, and Martín Abadi. Unified
Declarative Platform for Secure Networked Information Systems. In
ICDE, 2009.

Full text available at: http://dx.doi.org/10.1561/1900000017

	Introduction
	Contributions and Roadmap
	Relationship with Previous Surveys
	First Example: All-Pairs Reachability

	Language and Semantics
	Language
	Semantics
	Negation
	Aggregation

	Recursive Query Processing
	Bottom-up Evaluation
	Top-down Evaluation
	Magic Sets

	Incremental Maintenance
	Counting Algorithm for Non-recursive Queries
	Delete and Re-Derive Algorithm (DRed)
	Provenance-based Incremental Maintenance
	Incremental Maintenance for Negation and Aggregates

	Datalog Extensions
	Beyond Stratified Negation
	Beyond Stratified Aggregation
	Arithmetic and Infinite Relations
	Functors
	States and Updates

	Applications
	Program Analysis
	Declarative Networking
	Data Integration and Exchange
	Enterprise Software
	Other Applications

	Acknowledgements
	References

