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Abstract

In recent years, we have witnessed a revival of the use of recursive
queries in a variety of emerging application domains such as data in-
tegration and exchange, information extraction, networking, and pro-
gram analysis. A popular language used for expressing these queries is
Datalog. This paper surveys for a general audience the Datalog lan-
guage, recursive query processing, and optimization techniques. This
survey differs from prior surveys written in the eighties and nineties
in its comprehensiveness of topics, its coverage of recent developments
and applications, and its emphasis on features and techniques beyond
“classical” Datalog which are vital for practical applications. Specifi-
cally, the topics covered include the core Datalog language and various
extensions, semantics, query optimizations, magic-sets optimizations,
incremental view maintenance, aggregates, negation, and types. We
conclude the paper with a survey of recent systems and applications
that use Datalog and recursive queries.

T. J. Green, S. Huang, B. T. Loo, W. Zhou. Datalog and Recursive Query
Processing. Foundations and TrendsR© in Databases, vol. 5, no. 2, pp. 105–195,
2012.
DOI: 10.1561/1900000017.
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1
Introduction

Mainstream interest in Datalog in the database systems community
flourished in the eighties and early nineties. During this period, there
were several pioneering Datalog systems, primarily from academia. Two
of the more prominent ones with complete implementations include
Coral [99] and LDL++ [20]. Some ideas from these early research pro-
totypes made it into mainstream commercial databases. For instance,
Oracle, DB2, and SQL Server provide support for limited forms of sup-
port for recursion, based on SQL-99 standards. However, a perceived
lack of compelling applications at the time [113] ultimately forced Dat-
alog research into a long dormancy, and stifled its use in practice. Coral
and LDL++ ceased active development in 1997 and 2000 respectively,
and commercial systems did not extend a limited form of Datalog.

In recent years, however, Datalog has reemerged at the center of a
wide range of new applications, including data integration [68, 43, 50],
declarative networking [80, 77, 75], program analysis [29], information
extraction [110], network monitoring [10], security [85, 60], optimiza-
tions [73], and cloud computing [15, 16]. Compared to the state-of-the-
art of two decades ago, the modern systems that drives these emerging
applications have significantly more mature and complete Datalog im-

2
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3

plementations, and often times deploy applications that are orders of
magnitude larger in code size and complexity compared to the older
generation of Datalog programs.

In terms of modern academic systems, the IRIS reasoner [59] is an
open-source general purpose Datalog execution engine with support for
optimizations, stratified and locally stratified negation. There are also
publicly available Datalog systems tailored for specific applications.
These include the Orchestra system for collaborative data sharing [92],
BDDBDD [24] for program analysis, the RapidNet [101] declarative
networking platforms, and the Bloom [16] platform for declarative pro-
gramming in the cloud.

In the commercial world, a major development is the emergence of
enterprise Datalog systems, most notably LogicBlox [4], Datomic [2],
Semmle [7], and Lixto [49]. Semmle and Lixto are targeted at specific
domains of program analysis and information extraction respectively,
while LogicBlox and Datomic aim to provide a general platform for
developing enterprise software.

The revival of Datalog in the new generation of applications is
driven by the increasing need for high-level abstractions for reason-
ing about and rapidly developing complex systems that process large
amounts of data, and are sometimes distributed and parallel. Datalog
provides a declarative interface that allows the programmer to focus
on the tasks (“what”), not the low-level details (“how”). A common
thread across these systems is the use of the Datalog language as a
declarative abstraction for querying graphs and relational structures,
and implementing iterations and recursions. Its clear and simple syntax
with well understood semantics aims to achieve the best of both worlds
– having a rich enough language to support a wide range of applica-
tions, yet at a high and concise level that makes rapid prototyping easy
for programmers without having to worry about low level messy details
related to robustness and parallelism. The high-level specifications also
make code analysis easier, for applying optimizations and for reasoning
about transactions and safety.

Full text available at: http://dx.doi.org/10.1561/1900000017



4 Introduction

1.1 Contributions and Roadmap

This survey paper aims to provide an accessible and gentle introduc-
tion to Datalog and recursive query processing to readers with some
basic background in databases (in particular, SQL and the relational
model). Given the wide range of research literature on Datalog span-
ning decades, we identify a “practical” subset of Datalog based on re-
cent advances in the adoption of Datalog. In particular, our survey
aims to cover the following:

• Language. Core Datalog syntax and semantics. (Chapter 2)

• Query processing. Recursive query processing techniques for
executing Datalog programs efficiently, using the bottom-up and
top-down evaluation strategies, such as the well-known semi-
naïve [22, 21] and Query/Subquery (QSQ) [67] evaluation strate-
gies. (Chapter 3)

• Incremental maintenance. Extensions to query processing
techniques in the previous chapter, to include mechanisms for
incrementally updating the materialized views of a Datalog pro-
gram, as the input data changes, without having to recompute
the entire Datalog program from scratch. (Chapter 4)

• Common extensions. Each application domain takes the core
Datalog language and then further customizes and extends the
core language and implementation techniques to meet its partic-
ular needs. Here, we discuss extensions to incorporate negation,
aggregation, arithmetic, uninterpreted functions, and updates, as
well as the query processing techniques to handle these exten-
sions. (Chapter 5).

The survey concludes in Chapter 6 with a brief survey of recent
applications of Datalog, in the domains of program analysis, declar-
ative networking, data integration and exchange, enterprise software
systems, etc.
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1.2. Relationship with Previous Surveys 5

1.2 Relationship with Previous Surveys

Our survey serves as an entry point into several other survey papers
and books on Datalog. We briefly mention some of them:

• Bancilhon et al. [23] surveys and compares various strategies for
processing and optimizing recursive queries in a greater depth
compared to our survey.

• Ceri et al. [32] presents the syntax and semantics of Datalog along
with evaluation and optimization techniques for efficient execu-
tion. Extensions to the Datalog language, such as built-in predi-
cates and negation are also discussed.

• Ramakrishnan and Ullman [100] provides a high-level overview
of the Datalog language, query evaluation and optimizations, and
more advanced topics on negation and aggregation in a few pages.
This should be viewed as a “quick-starter” guide for someone
exposed to Datalog for the first time.

• Textbooks [12, 27, 33, 118, 36] cover some topics (e.g. language,
semantics, magic sets) in greater detail than our survey. Abite-
boul et al. [12] in particular is a widely used textbook geared
towards a database theory audience.

Overall, our survey is broader than Bancilhon [23], which focuses
primarily on query processing, and Ramakrishnan and Ullman [100],
which surveys Datalog systems (which are now more than a decade
old) with a brief discussion on query processing and optimizations. We
cover a breath of topics similar to the surveys [32, 88], but provide sig-
nificantly more details on systems issues related to query processing,
incremental maintenance, and modern applications. Compared to all
of the above surveys, we provide a more systems approach in presenta-
tion of classical topics, and discuss only extensions relevant to modern
applications.
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6 Introduction

1.3 First Example: All-Pairs Reachability

We begin with a high level introduction to the Datalog language and its
basic evaluation strategy. As our first example, we consider a Datalog
program that computes all-pairs reachability, essentially a transitive
closure computation in a graph for figuring out all pairs of nodes that
are connected (reachable) to each other.

r1 reachable(X,Y) :- link(X,Y).
r2 reachable(X,Y) :- link(X,Z), reachable(Z,Y).
query(X,Y) :- reachable(X,Y).

The above two rules, named as r1 and r2, derive the reachable
nodes (i.e. reachable(X,Y) using facts about directly linked nodes (i.e.
link(X,Y)). Here, we use capital letters X and Y to signify that they are
variables in the domain of all the nodes. The output of interest in this
program, as denoted by the special predicate query(X,Y), is the set of
derived reachable facts. The input graph in this case can represent a
network of routers, and forms a basis for implementing network routing
protocols [80], web crawlers [81], and network crawlers [79].

Rule r1 expresses that node X is reachable from Y (i.e.
reachable(X,Y)) if they are directly linked. Rule r2 is a bit more
interesting, as it specifies the reachable relation in terms of itself:
(X,Y) are reachable from one another if X has a direct link to a node
(Z) that is reachable to Y. We refer to rules such as r2 as recursive
rules, since the reachable relation appears in both the rule body (right
of “ :- ”) and head (left of “ :- ”). Rule r2 is also a linear recursive
rule ,since reachable appears only once in the rule body.

a b c d

Figure 1.1: Example graph used for reachability computation.

We illustrate the execution of Datalog rules by evaluating the
reachable rules over the graph shown in Figure 1.1, which depicts a
network consisting of three nodes and four direct links. Thus, there are
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1.3. First Example: All-Pairs Reachability 7

(initial base tuples)
link
X Y
a b
b c
c c
c d

(iteration 2)
reachable
X Y
a b
b c
c c
c d
a c
b c
b d
c d

(iteration 1)
reachable
X Y
a b
b c
c c
c d

(iteration 3)
reachable
X Y
a b
b c
c c
c d
a c
b d
a d

Figure 1.2: Tuples derived by the All-pairs Reachability program for each iteration.
New tuples derived in the current iteration that are not known in prior iterations
are shaded.

four initial entries (tuples) in link: link(a,b), link(b,c), link(c,c),
and link(c,d).

Intuitively, rule evaluation can be understood as the repeated ap-
plication of rules over existing tuples to derive new tuples, until no
more new tuples can be derived (i.e. evaluation has reached a fixpoint).
Each application of rules over existing tuples is referred to as an iter-
ation. This evaluation strategy is often times referred to as the naïve
evaluation strategy.

The evaluation of the reachability rules over the network in Fig-
ure 1.1 reaches a fixpoint in three iterations, as shown in Figure 1.2.
In iteration 1, rule r1 takes as input the initial link tuples, and use
that to generate 4 reachable tuples. These tuples essentially represent
all pairs of nodes reachable within one hop. In the next two iterations,
all reachable tuples generated in previous iterations are used as input
to rule r2 to generate more reachable tuples that are two and three
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8 Introduction

hops apart. Iteration 4 (not shown in the figure) derives the same set
of tuples as iteration 3, and hence, a fixpoint is reached. Given that
no two nodes are separated by more than 3 hops, the recursive query
completes in 4 iterations.

As an optimization, instead of using all derived facts as input to
rules at each iteration, one can suppress the evaluation that uses only
tuples already learned in prior iterations when computing new tuples
the next iteration. For instance, when generating new facts in iteration
3, rule r2 will not evaluate for inputs reachable(b,c) and link(a,b),
since they have already been used in iteration 1. The intuitive descrip-
tion above corresponds loosely to the semi-naïve evaluation strategy,
which will be described in greater detail in Chapter 3.

Note that the above approach is a bottom-up evaluation technique,
where existing facts are used as input to rule bodies to derive new
facts. A fixpoint is reached when no new facts are derived. This is
also known as a forward-chaining style of evaluation. An alternative
approach used in Prolog [112] uses a goal-oriented backward-chaining
approach, starting from the goal (i.e. query), and then expanding the
rule bodies in a top-down fashion.

A top-down approach allows for an evaluation strategy that focuses
only on facts necessary for the goal. However, a bottom-up evaluation
approach used in Datalog allows us to draw upon a wealth of query
processing and optimization techniques to draw upon for doing the
computations efficiently even when datasets are too large to fit in main
memory. Moreover, as we show in Section 3.3, query optimization tech-
niques can optimize Datalog programs for bottom-up evaluation, to
avoid deriving facts not relevant to answering queries.
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