
Modern B-Tree

Techniques

Full text available at: http://dx.doi.org/10.1561/1900000028



Modern B-Tree
Techniques

Goetz Graefe

Hewlett-Packard Laboratories
USA

goetz.graefe@hp.com

Boston – Delft

Full text available at: http://dx.doi.org/10.1561/1900000028



Foundations and Trends R© in
Databases

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
USA
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is G. Graefe, Modern B-Tree Techniques,

Foundation and Trends R© in Databases, vol 3, no 4, pp 203–402, 2010

ISBN: 978-1-60198-482-1
c© 2011 G. Graefe

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, mechanical, photocopying, recording
or otherwise, without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen-
ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for
internal or personal use, or the internal or personal use of specific clients, is granted by
now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The
‘services’ for users can be found on the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system
of payment has been arranged. Authorization does not extend to other kinds of copy-
ing, such as that for general distribution, for advertising or promotional purposes, for
creating new collective works, or for resale. In the rest of the world: Permission to pho-
tocopy must be obtained from the copyright owner. Please apply to now Publishers Inc.,
PO Box 1024, Hanover, MA 02339, USA; Tel. +1-781-871-0245; www.nowpublishers.com;
sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/1900000028



Foundations and Trends R© in
Databases

Volume 3 Issue 4, 2010

Editorial Board

Editor-in-Chief:
Joseph M. Hellerstein
Computer Science Division
University of California, Berkeley
Berkeley, CA
USA
hellerstein@cs.berkeley.edu

Editors
Anastasia Ailamaki (EPFL)
Michael Carey (UC Irvine)
Surajit Chaudhuri (Microsoft Research)
Ronald Fagin (IBM Research)
Minos Garofalakis (Yahoo! Research)
Johannes Gehrke (Cornell University)
Alon Halevy (Google)
Jeffrey Naughton (University of Wisconsin)
Christopher Olston (Yahoo! Research)
Jignesh Patel (University of Michigan)
Raghu Ramakrishnan (Yahoo! Research)
Gerhard Weikum (Max-Planck Institute)

Full text available at: http://dx.doi.org/10.1561/1900000028



Editorial Scope

Foundations and Trends R© in Databases covers a breadth of top-
ics relating to the management of large volumes of data. The journal
targets the full scope of issues in data management, from theoretical
foundations, to languages and modeling, to algorithms, system archi-
tecture, and applications. The list of topics below illustrates some of
the intended coverage, though it is by no means exhaustive:

• Data Models and Query
Languages

• Query Processing and
Optimization

• Storage, Access Methods, and
Indexing

• Transaction Management,
Concurrency Control and Recovery

• Deductive Databases

• Parallel and Distributed Database
Systems

• Database Design and Tuning

• Metadata Management

• Object Management

• Trigger Processing and Active
Databases

• Data Mining and OLAP

• Approximate and Interactive
Query Processing

• Data Warehousing

• Adaptive Query Processing

• Data Stream Management

• Search and Query Integration

• XML and Semi-Structured Data

• Web Services and Middleware

• Data Integration and Exchange

• Private and Secure Data
Management

• Peer-to-Peer, Sensornet and
Mobile Data Management

• Scientific and Spatial Data
Management

• Data Brokering and
Publish/Subscribe

• Data Cleaning and Information
Extraction

• Probabilistic Data Management

Information for Librarians
Foundations and Trends R© in Databases, 2010, Volume 3, 4 issues. ISSN paper
version 1931-7883. ISSN online version 1931-7891. Also available as a com-
bined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/1900000028



Foundations and Trends R© in
Databases

Vol. 3, No. 4 (2010) 203–402
c© 2011 G. Graefe

DOI: 10.1561/1900000028

Modern B-Tree Techniques

Goetz Graefe

Hewlett-Packard Laboratories, USA, goetz.graefe@hp.com

Abstract

Invented about 40 years ago and called ubiquitous less than 10 years
later, B-tree indexes have been used in a wide variety of computing
systems from handheld devices to mainframes and server farms. Over
the years, many techniques have been added to the basic design in
order to improve efficiency or to add functionality. Examples include
separation of updates to structure or contents, utility operations such
as non-logged yet transactional index creation, and robust query pro-
cessing such as graceful degradation during index-to-index navigation.

This survey reviews the basics of B-trees and of B-tree indexes in
databases, transactional techniques and query processing techniques
related to B-trees, B-tree utilities essential for database operations,
and many optimizations and improvements. It is intended both as a
survey and as a reference, enabling researchers to compare index inno-
vations with advanced B-tree techniques and enabling professionals to
select features, functions, and tradeoffs most appropriate for their data
management challenges.

Full text available at: http://dx.doi.org/10.1561/1900000028



Contents

1 Introduction 1

1.1 Perspectives on B-trees 1
1.2 Purpose and Scope 3
1.3 New Hardware 4
1.4 Overview 5

2 Basic Techniques 7

2.1 Data Structures 10
2.2 Sizes, Tree Height, etc. 12
2.3 Algorithms 13
2.4 B-trees in Databases 18
2.5 B-trees Versus Hash Indexes 23
2.6 Summary 27

3 Data Structures and Algorithms 29

3.1 Node Size 30
3.2 Interpolation Search 31
3.3 Variable-length Records 33
3.4 Normalized Keys 35
3.5 Prefix B-trees 37
3.6 CPU Caches 42
3.7 Duplicate Key Values 44
3.8 Bitmap Indexes 47

ix

Full text available at: http://dx.doi.org/10.1561/1900000028



3.9 Data Compression 51
3.10 Space Management 54
3.11 Splitting Nodes 56
3.12 Summary 57

4 Transactional Techniques 59

4.1 Latching and Locking 64
4.2 Ghost Records 67
4.3 Key Range Locking 72
4.4 Key Range Locking at Leaf Boundaries 79
4.5 Key Range Locking of Separator Keys 81
4.6 Blink-trees 82
4.7 Latches During Lock Acquisition 85
4.8 Latch Coupling 87
4.9 Physiological Logging 88
4.10 Non-logged Page Operations 92
4.11 Non-logged Index Creation 94
4.12 Online Index Operations 95
4.13 Transaction Isolation Levels 99
4.14 Summary 103

5 Query Processing 105

5.1 Disk-order Scans 109
5.2 Fetching Rows 112
5.3 Covering Indexes 113
5.4 Index-to-index Navigation 117
5.5 Exploiting Key Prefixes 124
5.6 Ordered Retrieval 127
5.7 Multiple Indexes for a Single Table 129
5.8 Multiple Tables in a Single Index 133
5.9 Nested Queries and Nested Iteration 134
5.10 Update Plans 137
5.11 Partitioned Tables and Indexes 140
5.12 Summary 142

Full text available at: http://dx.doi.org/10.1561/1900000028



6 B-tree Utilities 143

6.1 Index Creation 144
6.2 Index Removal 149
6.3 Index Rebuild 150
6.4 Bulk Insertions 152
6.5 Bulk Deletions 157
6.6 Defragmentation 159
6.7 Index Verification 164
6.8 Summary 171

7 Advanced Key Structures 173

7.1 Multi-dimensional UB-trees 174
7.2 Partitioned B-trees 176
7.3 Merged Indexes 179
7.4 Column Stores 182
7.5 Large Values 186
7.6 Record Versions 187
7.7 Summary 191

8 Summary and Conclusions 193

Acknowledgments 195

References 197

Full text available at: http://dx.doi.org/10.1561/1900000028



1

Introduction

Less than 10 years after Bayer and McCreight [7] introduced B-trees,
and now more than a quarter century ago, Comer called B-tree indexes
ubiquitous [27]. Gray and Reuter asserted that “B-trees are by far the
most important access path structure in database and file systems” [59].
B-trees in various forms and variants are used in databases, information
retrieval, and file systems. It could be said that the world’s information
is at our fingertips because of B-trees.

1.1 Perspectives on B-trees

Figure 1.1 shows a very simple B-tree with a root node and four leaf
nodes. Individual records and keys within the nodes are not shown.
The leaf nodes contain records with keys in disjoint key ranges. The
root node contains pointers to the leaf nodes and separator keys that
divide the key ranges in the leaves. If the number of leaf nodes exceeds
the number of pointers and separator keys that fit in the root node,
an intermediate layer of “branch” nodes is introduced. The separator
keys in the root node divide key ranges covered by the branch nodes
(also known as internal, intermediate, or interior nodes), and separator

1

Full text available at: http://dx.doi.org/10.1561/1900000028



2 Introduction

Fig. 1.1 A simple B-tree with root node and four leaf nodes.

keys in the branch nodes divide key ranges in the leaves. For very
large data collections, B-trees with multiple layers of branch nodes are
used. One or two branch levels are common in B-trees used as database
indexes.

Complementing this “data structures perspective” on B-trees is the
following “algorithms perspective.” Binary search in a sorted array
permits efficient search with robust performance characteristics. For
example, a search among 109 or 230 items can be accomplished with
only 30 comparisons. If the array of data items is larger than memory,
however, some form of paging is required, typically relying on virtual
memory or on a buffer pool. It is fairly inefficient with respect to I/O,
however, because for all but the last few comparisons, entire pages con-
taining tens or hundreds of keys are fetched but only a single key is
inspected. Thus, a cache might be introduced that contains the keys
most frequently used during binary searches in the large array. These
are the median key in the sorted array, the median of each resulting half
array, the median of each resulting quarter array, etc., until the cache
reaches the size of a page. In effect, the root of a B-tree is this cache,
with some flexibility added in order to enable array sizes that are not
powers of two as well as efficient insertions and deletions. If the keys
in the root page cannot divide the original large array into sub-arrays
smaller than a single page, keys of each sub-array are cached, forming
branch levels between the root page and page-sized sub-arrays.

B-tree indexes perform very well for a wide variety of operations that
are required in information retrieval and database management, even
if some other index structure is faster for some individual index opera-
tions. Perhaps the “B” in their name “B-trees” should stand for their
balanced performance across queries, updates, and utilities. Queries
include exact-match queries (“=” and “in” predicates), range queries
(“<” and “between” predicates), and full scans, with sorted output if

Full text available at: http://dx.doi.org/10.1561/1900000028



1.2 Purpose and Scope 3

required. Updates include insertion, deletion, modifications of existing
data associated with a specific key value, and “bulk” variants of those
operations, for example bulk loading new information and purging out-
of-date records. Utilities include creation and removal of entire indexes,
defragmentation, and consistency checks. For all of those operations,
including incremental and online variants of the utilities, B-trees also
enable efficient concurrency control and recovery.

1.2 Purpose and Scope

Many students, researchers, and professionals know the basic facts
about B-tree indexes. Basic knowledge includes their organization
in nodes including one root and many leaves, the uniform distance
between root and leaves, their logarithmic height and logarithmic
search effort, and their efficiency during insertions and deletions. This
survey briefly reviews the basics of B-tree indexes but assumes that
the reader is interested in more detailed and more complete informa-
tion about modern B-tree techniques.

Commonly held knowledge often falls short when it comes to deeper
topics such as concurrency control and recovery or to practical top-
ics such as incremental bulk loading and structural consistency check-
ing. The same is true about the many ways in which B-trees assist in
query processing, e.g., in relational databases. The goal here is to make
such knowledge readily available as a survey and as a reference for the
advanced student or professional.

The present survey goes beyond the “classic” B-tree references [7, 8,
27, 59] in multiple ways. First, more recent techniques are covered, both
research ideas and proven implementation techniques. Whereas the first
twenty years of B-tree improvements are covered in those references, the
last twenty years are not. Second, in addition to core data structure and
algorithms, the present survey also discusses their usage, for example
in query processing and in efficient update plans. Finally, auxiliary
algorithms are covered, for example defragmentation and consistency
checks.

During the time since their invention, the basic design of B-trees
has been improved upon in many ways. These improvements pertain

Full text available at: http://dx.doi.org/10.1561/1900000028



4 Introduction

to additional levels in the memory hierarchy such as CPU caches, to
multi-dimensional data and multi-dimensional queries, to concurrency
control techniques such as multi-level locking and key range locking,
to utilities such as online index creation, and to many more aspects of
B-trees. Another goal here is to gather many of these improvements
and techniques in a single document.

The focus and primary context of this survey are B-tree indexes in
database management systems, primarily in relational databases. This
is reflected in many specific explanations, examples, and arguments.
Nonetheless, many of the techniques are readily applicable or at least
transferable to other possible application domains of B-trees, in par-
ticular to information retrieval [83], file systems [71], and “No SQL”
databases and key-value stores recently popularized for web services
and cloud computing [21, 29].

A survey of techniques cannot provide a comprehensive performance
evaluation or immediate implementation guidance. The reader still
must choose what techniques are required or appropriate for specific
environments and requirements. Issues to consider include the expected
data size and workload, the anticipated hardware and its memory
hierarchy, expected reliability requirements, degree of parallelism and
needs for concurrency control, the supported data model and query
patterns, etc.

1.3 New Hardware

Flash memory, flash devices, and other solid state storage technology
are about to change the memory hierarchy in computer systems in gen-
eral and in data management in particular. For example, most current
software assumes two levels in the memory hierarchy, namely RAM and
disk, whereas any further levels such as CPU caches and disk caches are
hidden by hardware and its embedded control software. Flash memory
might also remain hidden, perhaps as large and fast virtual memory
or as fast disk storage. The more likely design for databases, however,
seems to be explicit modeling of a memory hierarchy with three or
even more levels. Not only algorithms such as external merge sort but

Full text available at: http://dx.doi.org/10.1561/1900000028



1.4 Overview 5

also storage structures such as B-tree indexes will need a re-design and
perhaps a re-implementation.

Among other effects, flash devices with their very fast access latency
are about to change database query processing. They likely will shift
the break-even point toward query execution plans based on index-to-
index navigation, away from large scans and large set operations such
as sort and hash join. With more index-to-index navigation, tuning the
set of indexes including automatic incremental index creation, growth,
optimization, etc. will come more into focus in future database engines.

As much as solid state storage will change tradeoffs and optimiza-
tions for data structures and access algorithms, many-core processors
will change tradeoffs and optimizations for concurrency control and
recovery. High degrees of concurrency can be enabled only by appro-
priate definitions of consistent states and of transaction boundaries,
and recovery techniques for individual transactions and for the system
state must support them. These consistent intermediate states must be
defined for each kind of index and data structure, and B-trees will likely
be first index structure for which such techniques are implemented
in production-ready database systems, file systems, and key-value
stores.

In spite of future changes for databases and indexes on flash devices
and other solid state storage technology, the present survey often men-
tions tradeoffs or design choices appropriate for traditional disk drives,
because much of the presently known and implemented techniques have
been invented and designed in this context. The goal is to provide com-
prehensive background knowledge about B-trees for those research-
ing and implementing techniques appropriate for the new types of
storage.

1.4 Overview

The next section (Section 2) sets out the basics as they may be found in
a college level text book. The following sections cover implementation
techniques for mature database management products. Their topics
are implementation techniques for data structures and algorithms

Full text available at: http://dx.doi.org/10.1561/1900000028



6 Introduction

(Section 3), transactional techniques (Section 4), query processing
using B-trees (Section 5), utility operations specific to B-tree indexes
(Section 6), and B-trees with advanced key structures (Section 7).
These sections might be more suitable for an advanced course on data
management implementation techniques and for a professional devel-
oper desiring in-depth knowledge about B-tree indexes.

Full text available at: http://dx.doi.org/10.1561/1900000028



References

[1] V. N. Anh and A. Moffat, “Index compression using 64-bit words,” Software:
Practice and Experience, vol. 40, no. 2, pp. 131–147, 2010.

[2] G. Antoshenkov, D. B. Lomet, and J. Murray, “Order-preserving compres-
sion,” International Conference on Data Engineering, pp. 655–663, 1996.

[3] R. Avnur and J. M. Hellerstein, “Eddies: Continuously adaptive query pro-
cessing,” Special Interest Group on Management of Data, pp. 261–272, 2000.

[4] S. Bächle and T. Härder, “The real performance drivers behind XML lock
protocols,” DEXA, pp. 38–52, 2009.

[5] L. N. Bairavasundaram, M. Rungta, N. Agrawal, A. C. Arpaci-Dusseau, R. H.
Arpaci-Dusseau, and M. M. Swift, “Analyzing the effects of disk-pointer cor-
ruption,” Dependable Systems and Networks, pp. 502–511, 2008.

[6] R. Bayer, “The universal B-Tree for multidimensional indexing: General con-
cepts,” World Wide Computing and its Applications, pp. 198–209, 1997.

[7] R. Bayer and E. M. McCreight, “Organization and maintenance of large
ordered indexes,” SIGFIDET Workshop, pp. 107–141, 1970.

[8] R. Bayer and E. M. McCreight, “Organization and maintenance of large
ordered indexes,” Acta Informatica, vol. 1, pp. 173–189, 1972.

[9] R. Bayer and M. Schkolnick, “Concurrency of operations on B-trees,” Acta
Informatica, vol. 9, pp. 1–21, 1977.

[10] R. Bayer and K. Unterauer, “Prefix B-trees,” ACM Transactions on Database
Systems, vol. 2, no. 1, pp. 11–26, 1977.

[11] M. A. Bender, E. D. Demaine, and M. Farach-Colton, “Cache-oblivious
B-trees,” SIAM Journal of Computing (SIAMCOMP), vol. 35, no. 2, pp. 341–
358, 2005.

197

Full text available at: http://dx.doi.org/10.1561/1900000028



198 References

[12] M. A. Bender and H. Hu, “An adaptive packed-memory array,” ACM Trans-
actions on Database Systems, vol. 32, no. 4, 2007.

[13] H. Berenson, P. A. Bernstein, J. Gray, J. Melton, E. J. O’Neil, and P. E.
O’Neil, “A critique of ANSI SQL isolation levels,” Special Interest Group on
Management of Data, pp. 1–10, 1995.

[14] P. A. Bernstein and D.-M. W. Chiu, “Using semi-joins to solve relational
queries,” Journal of the ACM, vol. 28, no. 1, pp. 25–40, 1981.

[15] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control and
Recovery in Database Systems. Addison-Wesley, 1987.

[16] D. Bitton and D. J. DeWitt, “Duplicate record elimination in large data files,”
ACM Transactions on Database Systems, vol. 8, no. 2, pp. 255–265, 1983.

[17] P. A. Boncz, M. L. Kersten, and S. Manegold, “Breaking the memory wall in
MonetDB,” Communications of the ACM, vol. 51, no. 12, pp. 77–85, 2008.

[18] M. J. Carey, D. J. DeWitt, J. E. Richardson, and E. J. Shekita, “Object and
file management in the EXODUS extensible database system,” International
Journal on Very Large Data Bases, pp. 91–100, 1986.

[19] M. J. Carey, D. J. DeWitt, J. E. Richardson, and E. J. Shekita, “Storage man-
agement for objects in EXODUS,” in Object-Oriented Concepts, Databases,
and Applications, (W. Kim and F. H. Lochovsky, eds.), ACM Press and
Addison-Wesley, 1989.

[20] M. J. Carey, E. J. Shekita, G. Lapis, B. G. Lindsay, and J. McPherson, “An
incremental join attachment for Starburst,” International Journal on Very
Large Data Bases, pp. 662–673, 1990.

[21] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed storage
system for structured data,” ACM on Theoretical Computer Science, vol. 26,
no. 2, 2008.

[22] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang, “NiagaraCQ: A scalable
continuous query system for internet databases,” Special Interest Group on
Management of Data, pp. 379–390, 2000.

[23] L. Chen, R. Choubey, and E. A. Rundensteiner, “Merging R-trees: Efficient
strategies for local bulk insertion,” GeoInformatica, vol. 6, no. 1, pp. 7–34,
2002.

[24] S. Chen, P. B. Gibbons, T. C. Mowry, and G. Valentin, “Fractal prefetch-
ing B+-Trees: Optimizing both cache and disk performance,” Special Interest
Group on Management of Data, pp. 157–168, 2002.

[25] J. Cheng, D. Haderle, R. Hedges, B. R. Iyer, T. Messinger, C. Mohan, and
Y. Wang, “An efficient hybrid join algorithm: A DB2 prototype,” International
Conference on Data Engineering, pp. 171–180, 1991.

[26] H.-T. Chou and D. J. DeWitt, “An evaluation of buffer management strategies
for relational database systems,” International Journal on Very Large Data
Bases, pp. 127–141, 1985.

[27] D. Comer, “The ubiquitous B-tree,” ACM Computing Surveys, vol. 11, no. 2,
pp. 121–137, 1979.

[28] W. M. Conner, “Offset value coding,” IBM Technical Disclosure Bulletin,
vol. 20, no. 7, pp. 2832–2837, 1977.

Full text available at: http://dx.doi.org/10.1561/1900000028



References 199

[29] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” Symposium on Operating Systems
Principles, pp. 205–220, 2007.

[30] D. J. DeWitt, J. F. Naughton, and J. Burger, “Nested loops revisited,” Parallel
and distributed Information Systems, pp. 230–242, 1993.

[31] K. P. Eswaran, J. Gray, R. A. Lorie, and I. L. Traiger, “The notions of consis-
tency and predicate locks in a database system,” Communications of ACM,
vol. 19, no. 11, pp. 624–633, 1976.

[32] A. Fekete, D. Liarokapis, E. J. O’Neil, P. E. O’Neil, and D. Shasha, “Making
snapshot isolation serializable,” ACM Transactions on Database Systems,
vol. 30, no. 2, pp. 492–528, 2005.

[33] P. M. Fernandez, “Red Brick warehouse: A read-mostly RDBMS for open SMP
platforms,” Special Interest Group on Management of Data, p. 492, 1994.

[34] C. Freedman blog of October 07, 2008, retrieved August 16, 2011, at http://
blogs.msdn.com/craigfr/archive/2008/10/07/random-prefetching.aspx.

[35] P. Gassner, G. M. Lohman, K. B. Schiefer, and Y. Wang, “Query optimization
in the IBM DB2 family,” IEEE Data Engineerring on Bulletin, vol. 16, no. 4,
pp. 4–18, 1993.

[36] G. H. Gonnet, L. D. Rogers, and J. A. George, “An algorithmic and complexity
analysis of interpolation search,” Acta Informatica, vol. 13, pp. 39–52, 1980.

[37] N. K. Govindaraju, J. Gray, R. Kumar, and D. Manocha, “GPUTeraSort: High
performance graphics co-processor sorting for large database management,”
Special Interest Group on Management of Data, pp. 325–336, 2006.

[38] G. Graefe, “Options in physical database design,” Special Interest Group on
Management of Data Record, vol. 22, no. 3, pp. 76–83, 1993.

[39] G. Graefe, “Query evaluation techniques for large databases,” ACM Comput-
ing Surveys, vol. 25, no. 2, pp. 73–170, 1993.

[40] G. Graefe, “Iterators, schedulers, and distributed-memory parallelism,”
Software: Practice and Experience, vol. 26, no. 4, pp. 427–452, 1996.

[41] G. Graefe, “Per-Åke Larson: B-tree indexes and CPU caches,” International
Conference on Data Engineering, pp. 349–358, 2001.

[42] G. Graefe, “Executing nested queries,” Database Systems for Business, Tech-
nology and Web, pp. 58–77, 2003.

[43] G. Graefe, “Sorting and indexing with partitioned B-Trees,” Classless Inter
Domain Routing, 2003.

[44] G. Graefe, “Write-optimized B-trees,” International Journal on Very Large
Data Bases, pp. 672–683, 2004.

[45] G. Graefe, “B-tree indexes, interpolation search, and skew,” DaMoN, p. 5,
2006.

[46] G. Graefe, “Implementing sorting in database systems,” ACM Computing
Surveys, vol. 38, no. 3, 2006.

[47] G. Graefe, “Efficient columnar storage in B-trees,” Special Interest Group on
Management of Data Record, vol. 36, no. 1, pp. 3–6, 2007.

[48] G. Graefe, “Hierarchical locking in B-tree indexes,” Database Systems for
Business, Technology and Web, pp. 18–42, 2007.

Full text available at: http://dx.doi.org/10.1561/1900000028



200 References

[49] G. Graefe, “Master-detail clustering using merged indexes,” Informatik
Forschung und Entwicklung, vol. 21, no. 3–4, pp. 127–145, 2007.

[50] G. Graefe, “The five-minute rule 20 years later and how flash memory changes
the rules,” Communications of the ACM, vol. 52, no. 7, pp. 48–59, 2009.

[51] G. Graefe, “A survey of B-tree locking techniques,” ACM Transactions on
Database Systems, vol. 35, no. 3, 2010.

[52] G. Graefe, R. Bunker, and S. Cooper, “Hash joins and hash teams in Microsoft
SQL server,” International Journal on Very Large Data Bases, pp. 86–97,
1998.

[53] G. Graefe and H. A. Kuno, “Self-selecting, self-tuning, incrementally opti-
mized indexes,” Extending Database Technology, pp. 371–381, 2010.

[54] G. Graefe and R. Stonecipher, “Efficient verification of B-tree integrity,”
Database Systems for Business, Technology and Web, pp. 27–46, 2009.

[55] G. Graefe and M. J. Zwilling, “Transaction support for indexed views,” Special
Interest Group on Management of Data, pp. 323–334, 2004. (Extended version:
Hewlett-Packard Laboratories technical report HPL-2011-16.).

[56] J. Gray, “Notes on data base operating systems,” in Operating System — An
Advanced Course. Lecture Notes in Computer Science #60, (R. Bayer, R. M.
Graham, and G. Seegmüller, eds.), Berlin Heidelberg New York: Springer-
Verlag, 1978.

[57] J. Gray and G. Graefe, “The five-minute rule ten years later, and other com-
puter storage rules of thumb,” Special Interest Group on Management of Data
Record, vol. 26, no. 4, pp. 63–68, 1997.

[58] J. Gray, R. A. Lorie, G. R. Putzolu, and I. L. Traiger, “Granularity of locks
and degrees of consistency in a shared data base,” in IFIP Working Conference
on Modelling in Data Base Management Systems, pp. 365–394, 1976.

[59] J. Gray and A. Reuter, Transaction Processing: Concepts and Techniques.
Morgan Kaufmann, 1993.

[60] J. Gryz, K. B. Schiefer, J. Zheng, and C. Zuzarte, “Discovery and application
of check constraints in DB2,” International Conference on Data Engineering,
pp. 551–556, 2001.

[61] H. S. Gunawi, C. Rubio-González, A. C. Arpaci-Dusseau, R. H. Arpaci-
Dusseau, and B. Liblit, “EIO: Error handling is occasionally correct,” FAST,
pp. 207–222, 2008.

[62] A. Guttman, “R-trees: A dynamic index structure for spatial searching,”
Special Interest Group on Management of Data, pp. 47–57, 1984.

[63] L. M. Haas, M. J. Carey, M. Livny, and A. Shukla, “Seeking the truth about
ad hoc join costs,” VLDB Journal, vol. 6, no. 3, pp. 241–256, 1997.

[64] R. A. Hankins and J. M. Patel, “Effect of node size on the performance of
cache-conscious B+-trees,” SIGMETRICS, pp. 283–294, 2003.

[65] T. Härder, “Implementierung von Zugriffspfaden durch Bitlisten,” GI
Jahrestagung, pp. 379–393, 1975.

[66] T. Härder, “Implementing a generalized access path structure for a relational
database system,” ACM Transactions on Database Systems, vol. 3, no. 3,
pp. 285–298, 1978.

[67] T. Härder and A. Reuter, “Principles of transaction-oriented database
recovery,” ACM Computing Surveys, vol. 15, no. 4, pp. 287–317, 1983.

Full text available at: http://dx.doi.org/10.1561/1900000028



References 201

[68] G. Held and M. Stonebraker, “B-trees re-examined,” Communications of the
ACM, vol. 21, no. 2, pp. 139–143, 1978.

[69] A. L. Holloway, V. Raman, G. Swart, and D. J. DeWitt, “How to barter
bits for chronons: Compression and bandwidth trade offs for database scans,”
Special Interest Group on Management of Data, pp. 389–400, 2007.

[70] W. W. Hsu and A. J. Smith, “The performance impact of I/O optimizations
and disk improvements,” IBM Journal of Research and Development, vol. 48,
no. 2, pp. 255–289, 2004.

[71] http://en.wikipedia.org/wiki/Btrfs, retrieved December 6, 2009.
[72] B. R. Iyer, “Hardware assisted sorting in IBM’s DB2 DBMS,” COMAD, 2005.

(Hyderabad).
[73] I. Jaluta, S. Sippu, and E. Soisalon-Soininen, “Concurrency control and recov-

ery for balanced B-link trees,” International Journal on Very Large Data Bases
Journal, vol. 14, no. 2, pp. 257–277, 2005.

[74] C. Jermaine, A. Datta, and E. Omiecinski, “A novel index supporting high
volume data warehouse insertion,” International Journal on Very Large Data
Bases, pp. 235–246, 1999.

[75] T. Johnson and D. Shasha, “Utilization of B-trees with inserts, deletes and
modifies,” Principles of Database Systems, pp. 235–246, 1989.

[76] J. R. Jordan, J. Banerjee, and R. B. Batman, “Precision locks,” Special Inter-
est Group on Management of Data, pp. 143–147, 1981.

[77] R. Kimball, The Data Warehouse Toolkit: Practical Techniques for Building
Dimensional Data Warehouses. John Wiley, 1996.

[78] R. Kooi, “The optimization of queries in relational databases,” Ph.D. thesis,
Case Western Reserve University, 1980.

[79] H. F. Korth, “Locking primitives in a database system,” Journal of ACM,
vol. 30, no. 1, pp. 55–79, 1983.

[80] K. Küspert, “Fehlererkennung und Fehlerbehandlung in Speicherungsstruk-
turen von Datenbanksystemen,” in Informatik Fachberichte, vol. 99, Springer,
1985.

[81] P. L. Lehman and S. B. Yao, “Efficient locking for concurrent operations on
B-trees,” ACM Transactions on Database Systems, vol. 6, no. 4, pp. 650–670,
1981.

[82] H. Leslie, R. Jain, D. Birdsall, and H. Yaghmai, “Efficient search of multi-
dimensional B-trees,” International Journal on Very Large Data Bases,
pp. 710–719, 1995.

[83] N. Lester, A. Moffat, and J. Zobel, “Efficient online index construction for
text databases,” ACM Transactions on Database Systems, vol. 33, no. 3,
2008.

[84] Q. Li, M. Shao, V. Markl, K. S. Beyer, L. S. Colby, and G. M. Lohman,
“Adaptively reordering joins during query execution,” International Confer-
ence on Data Engineering, pp. 26–35, 2007.

[85] D. B. Lomet, “Key range locking strategies for improved concurrency,” Inter-
national Journal on Very Large Data Bases, pp. 655–664, 1993.

[86] D. B. Lomet, “B-tree page size when caching is considered,” Special Interest
Group on Management of Data Record, vol. 27, no. 3, pp. 28–32, 1998.

Full text available at: http://dx.doi.org/10.1561/1900000028



202 References

[87] D. B. Lomet, “The evolution of effective B-tree page organization and tech-
niques: A personal account,” Special Interest Group on Management of Data
Record, vol. 30, no. 3, pp. 64–69, 2001.

[88] D. B. Lomet, “Simple, robust and highly concurrent B-trees with node
deletion,” International Conference on Data Engineering, pp. 18–28, 2004.

[89] D. B. Lomet and M. R. Tuttle, “Redo recovery after system crashes,”
International Journal on Very Large Data Bases, pp. 457–468, 1995.

[90] P. McJones (ed.), “The 1995 SQL reunion: People, projects, and politics,”
Digital Systems Research Center, Technical Note 1997-018, Palo Alto, CA.
Also http://www.mcjones.org/System R.

[91] N. Megiddo and D. S. Modha, “ARC: A self-tuning, low overhead replacement
cache,” FAST, 2003.

[92] K. Mehlhorn, Data Structures and Algorithms 1: Sorting and Searching.
Springer, 1984.

[93] C. Mohan, “ARIES/KVL: A key-value locking method for concurrency con-
trol of multiaction transactions operating on B-tree indexes,” International
Journal on Very Large Data Bases, pp. 392–405, 1990.

[94] C. Mohan, “Disk read-write optimizations and data integrity in transaction
systems using write-ahead logging,” International Conference on Data Engi-
neering, pp. 324–331, 1995.

[95] C. Mohan, D. J. Haderle, B. G. Lindsay, H. Pirahesh, and P. M. Schwarz,
“ARIES: A transaction recovery method supporting fine-granularity lock-
ing and partial rollbacks using write-ahead logging,” ACM Transactions on
Database Systems, vol. 17, no. 1, pp. 94–162, 1992.

[96] C. Mohan, D. J. Haderle, Y. Wang, and J. M. Cheng, “Single table access
using multiple indexes: Optimization, execution, and concurrency control tech-
niques,” Extending Database Technology, pp. 29–43, 1990.

[97] C. Mohan and F. E. Levine, “ARIES/IM: An efficient and high concurrency
index management method using write-ahead logging,” Special Interest Group
on Management of Data, pp. 371–380, 1992.

[98] C. Mohan and I. Narang, “Algorithms for creating indexes for very large tables
without quiescing updates,” Special Interest Group on Management of Data,
pp. 361–370, 1992.

[99] Y. Mond and Y. Raz, “Concurrency control in B+-trees databases using
preparatory operations,” International Journal on Very Large Data Bases,
pp. 331–334, 1985.

[100] P. Muth, P. E. O’Neil, A. Pick, and G. Weikum, “The LHAM log-structured
history data access method,” International Journal on Very Large Data Bases
Journal, vol. 8, no. 3–4, pp. 199–221, 2000.

[101] C. Nyberg, T. Barclay, Z. Cvetanovic, J. Gray, and D. B. Lomet, “AlphaSort:
A cache-sensitive parallel external sort,” International Journal on Very Large
Data Bases Journal, vol. 4, no. 4, pp. 603–627, 1995.

[102] E. J. O’Neil, P. E. O’Neil, and K. Wu, “Bitmap index design choices and their
performance implications,” IDEAS, pp. 72–84, 2007.

[103] P. E. O’Neil, “Model 204 architecture and performance,” HPTS, pp. 40–59,
1987.

Full text available at: http://dx.doi.org/10.1561/1900000028



References 203

[104] P. E. O’Neil, “The SB-tree: An index-sequential structure for high-
performance sequential access,” Acta Informatica, vol. 29, no. 3, pp. 241–265,
1992.

[105] P. E. O’Neil and G. Graefe, “Multi-table joins through bitmapped join
indices,” Special Interest Group on Management of Data Record, vol. 24, no. 3,
pp. 8–11, 1995.

[106] J. A. Orenstein, “Spatial query processing in an object-oriented database sys-
tem,” Special Interest Group on Management of Data, pp. 326–336, 1986.

[107] Y. Perl, A. Itai, and H. Avni, “Interpolation search — a Log Log N search,”
Communications of the ACM, vol. 21, no. 7, pp. 550–553, 1978.

[108] V. Raman and G. Swart, “How to wring a table dry: Entropy compression
of relations and querying of compressed relations,” International Journal on
Very Large Data, pp. 858–869, 2006.

[109] F. Ramsak, V. Markl, R. Fenk, M. Zirkel, K. Elhardt, and R. Bayer, “Inte-
grating the UB-tree into a database system kernel,” International Journal on
Very Large Data Bases, pp. 263–272, 2000.

[110] J. Rao and K. A. Ross, “Making B+-trees cache conscious in main memory,”
Special Interest Group on Management of Data, pp. 475–486, 2000.

[111] G. Ray, J. R. Haritsa, and S. Seshadri, “Database compression: A performance
enhancement tool,” COMAD, 1995.

[112] D. Rinfret, P. E. O’Neil, and E. J. O’Neil, “Bit-sliced index arithmetic,” Special
Interest Group on Management of Data, pp. 47–57, 2001.

[113] C. M. Saracco and C. J. Bontempo, Getting a Lock on Integrity and Concur-
rency. Database Programming & Design, 1997.

[114] B. Schroeder, E. Pinheiro, and W.-D. Weber, “DRAM errors in the wild: A
large-scale field study,” SIGMETRICS/Performance, pp. 193–204, 2009.

[115] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G.
Price, “Access path selection in a relational database management system,”
Special Interest Group on Management of Data, pp. 23–34, 1979.

[116] S. Sen and R. E. Tarjan, “Deletion without rebalancing in multiway search
trees,” ISAAC, pp. 832–841, 2009.

[117] D. G. Severance and G. M. Lohman, “Differential files: Their application to
the maintenance of large databases,” ACM Transactions on Database Systems,
vol. 1, no. 3, pp. 256–267, 1976.

[118] R. C. Singleton, “Algorithm 347: An efficient algorithm for sorting with mini-
mal storage,” Communications of the ACM, vol. 12, no. 3, pp. 185–186, 1969.

[119] V. Srinivasan and M. J. Carey, “Performance of on-line index construction
algorithms,” Extending Database Technology, pp. 293–309, 1992.

[120] M. Stonebraker, “Operating system support for database management,”
Communications of the ACM, vol. 24, no. 7, pp. 412–418, 1981.

[121] M. Stonebraker, “Technical perspective — one size fits all: An idea whose
time has come and gone,” Communications of the ACM, vol. 51, no. 12, p. 76,
2008.

[122] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira,
E. Lau, A. Lin, S. Madden, E. J. O’Neil, P. E. O’Neil, A. Rasin, N. Tran, and
S. B. Zdonik, “C-store: A column-oriented DBMS,” International Journal on
Very Large Data Bases, pp. 553–564, 2005.

Full text available at: http://dx.doi.org/10.1561/1900000028



204 References

[123] P. Valduriez, “Join indices,” ACM Transactions on Database Systems, vol. 12,
no. 2, pp. 218–246, 1987.

[124] I. H. Witten, A. Moffat, and T. C. Bell, Managing Gigabytes: Compressing
and Indexing Documents and Images. Morgan Kaufmann, 2nd ed., 1999.

[125] K. Wu, E. J. Otoo, and A. Shoshani, “On the performance of bitmap indices
for high cardinality attributes,” International Journal on Very Large Data
Bases, pp. 24–35, 2004.

[126] K. Wu, E. J. Otoo, and A. Shoshani, “Optimizing bitmap indices with effi-
cient compression,” ACM Transactions on Database Systems, vol. 31, no. 1,
pp. 1–38, 2006.

[127] A. Zandi, B. Iyer, and G. Langdon, “Sort order preserving data compression
for extended alphabets,” Data Compression Conference, pp. 330–339, 1993.

[128] J. Zhou and K. A. Ross, “Buffering accesses to memory-resident index struc-
tures,” International Journal on Very Large Data Bases, pp. 405–416, 2003.

[129] J. Zobel and A. Moffat, “Inverted files for text search engines,” ACM Com-
puting Surveys, vol. 38, no. 2, 2006.

[130] C. Zou and B. Salzberg, “Safely and efficiently updating references during
on-line reorganization,” International Journal on Very Large Data Bases,
pp. 512–522, 1998.

[131] M. Zukowski, S. Héman, N. Nes, and P. A. Boncz, “Super-scalar RAM-CPU
cache compression,” International Conference on Data Engineering, p. 59,
2006.

[132] M. Zukowski, S. Héman, N. Nes, and P. A. Boncz, “Cooperative scans:
Dynamic bandwidth sharing in a DBMS,” International Journal on Very Large
Data Bases, pp. 723–734, 2007.

Full text available at: http://dx.doi.org/10.1561/1900000028


	Introduction
	Perspectives on B-trees
	Purpose and Scope
	New Hardware
	Overview

	Basic Techniques
	Data Structures
	Sizes, Tree Height, etc.
	Algorithms
	B-trees in Databases
	B-trees Versus Hash Indexes
	Summary

	Data Structures and Algorithms
	Node Size
	Interpolation Search
	Variable-length Records
	Normalized Keys
	Prefix B-trees
	CPU Caches
	Duplicate Key Values
	Bitmap Indexes
	Data Compression
	Space Management
	Splitting Nodes
	Summary

	Transactional Techniques
	Latching and Locking
	Ghost Records
	Key Range Locking
	Key Range Locking at Leaf Boundaries
	Key Range Locking of Separator Keys
	Blink-trees
	Latches During Lock Acquisition
	Latch Coupling
	Physiological Logging
	Non-logged Page Operations
	Non-logged Index Creation
	Online Index Operations
	Transaction Isolation Levels
	Summary

	Query Processing
	Disk-order Scans
	Fetching Rows
	Covering Indexes
	Index-to-index Navigation
	Exploiting Key Prefixes
	Ordered Retrieval
	Multiple Indexes for a Single Table
	Multiple Tables in a Single Index
	Nested Queries and Nested Iteration
	Update Plans
	Partitioned Tables and Indexes
	Summary

	B-tree Utilities
	Index Creation
	Index Removal
	Index Rebuild
	Bulk Insertions
	Bulk Deletions
	Defragmentation
	Index Verification
	Summary

	Advanced Key Structures
	Multi-dimensional UB-trees
	Partitioned B-trees
	Merged Indexes
	Column Stores
	Large Values
	Record Versions
	Summary

	Summary and Conclusions
	Acknowledgments
	References



