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Abstract

Invented about 40 years ago and called ubiquitous less than 10 years
later, B-tree indexes have been used in a wide variety of computing
systems from handheld devices to mainframes and server farms. Over
the years, many techniques have been added to the basic design in
order to improve efficiency or to add functionality. Examples include
separation of updates to structure or contents, utility operations such
as non-logged yet transactional index creation, and robust query pro-
cessing such as graceful degradation during index-to-index navigation.

This survey reviews the basics of B-trees and of B-tree indexes in
databases, transactional techniques and query processing techniques
related to B-trees, B-tree utilities essential for database operations,
and many optimizations and improvements. It is intended both as a
survey and as a reference, enabling researchers to compare index inno-
vations with advanced B-tree techniques and enabling professionals to
select features, functions, and tradeoffs most appropriate for their data
management challenges.
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1

Introduction

Less than 10 years after Bayer and McCreight [7] introduced B-trees,
and now more than a quarter century ago, Comer called B-tree indexes
ubiquitous [27]. Gray and Reuter asserted that “B-trees are by far the
most important access path structure in database and file systems” [59].
B-trees in various forms and variants are used in databases, information
retrieval, and file systems. It could be said that the world’s information
is at our fingertips because of B-trees.

1.1 Perspectives on B-trees

Figure 1.1 shows a very simple B-tree with a root node and four leaf
nodes. Individual records and keys within the nodes are not shown.
The leaf nodes contain records with keys in disjoint key ranges. The
root node contains pointers to the leaf nodes and separator keys that
divide the key ranges in the leaves. If the number of leaf nodes exceeds
the number of pointers and separator keys that fit in the root node,
an intermediate layer of “branch” nodes is introduced. The separator
keys in the root node divide key ranges covered by the branch nodes
(also known as internal, intermediate, or interior nodes), and separator

1
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2 Introduction

Fig. 1.1 A simple B-tree with root node and four leaf nodes.

keys in the branch nodes divide key ranges in the leaves. For very
large data collections, B-trees with multiple layers of branch nodes are
used. One or two branch levels are common in B-trees used as database
indexes.

Complementing this “data structures perspective” on B-trees is the
following “algorithms perspective.” Binary search in a sorted array
permits efficient search with robust performance characteristics. For
example, a search among 109 or 230 items can be accomplished with
only 30 comparisons. If the array of data items is larger than memory,
however, some form of paging is required, typically relying on virtual
memory or on a buffer pool. It is fairly inefficient with respect to I/O,
however, because for all but the last few comparisons, entire pages con-
taining tens or hundreds of keys are fetched but only a single key is
inspected. Thus, a cache might be introduced that contains the keys
most frequently used during binary searches in the large array. These
are the median key in the sorted array, the median of each resulting half
array, the median of each resulting quarter array, etc., until the cache
reaches the size of a page. In effect, the root of a B-tree is this cache,
with some flexibility added in order to enable array sizes that are not
powers of two as well as efficient insertions and deletions. If the keys
in the root page cannot divide the original large array into sub-arrays
smaller than a single page, keys of each sub-array are cached, forming
branch levels between the root page and page-sized sub-arrays.

B-tree indexes perform very well for a wide variety of operations that
are required in information retrieval and database management, even
if some other index structure is faster for some individual index opera-
tions. Perhaps the “B” in their name “B-trees” should stand for their
balanced performance across queries, updates, and utilities. Queries
include exact-match queries (“=” and “in” predicates), range queries
(“<” and “between” predicates), and full scans, with sorted output if
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1.2 Purpose and Scope 3

required. Updates include insertion, deletion, modifications of existing
data associated with a specific key value, and “bulk” variants of those
operations, for example bulk loading new information and purging out-
of-date records. Utilities include creation and removal of entire indexes,
defragmentation, and consistency checks. For all of those operations,
including incremental and online variants of the utilities, B-trees also
enable efficient concurrency control and recovery.

1.2 Purpose and Scope

Many students, researchers, and professionals know the basic facts
about B-tree indexes. Basic knowledge includes their organization
in nodes including one root and many leaves, the uniform distance
between root and leaves, their logarithmic height and logarithmic
search effort, and their efficiency during insertions and deletions. This
survey briefly reviews the basics of B-tree indexes but assumes that
the reader is interested in more detailed and more complete informa-
tion about modern B-tree techniques.

Commonly held knowledge often falls short when it comes to deeper
topics such as concurrency control and recovery or to practical top-
ics such as incremental bulk loading and structural consistency check-
ing. The same is true about the many ways in which B-trees assist in
query processing, e.g., in relational databases. The goal here is to make
such knowledge readily available as a survey and as a reference for the
advanced student or professional.

The present survey goes beyond the “classic” B-tree references [7, 8,
27, 59] in multiple ways. First, more recent techniques are covered, both
research ideas and proven implementation techniques. Whereas the first
twenty years of B-tree improvements are covered in those references, the
last twenty years are not. Second, in addition to core data structure and
algorithms, the present survey also discusses their usage, for example
in query processing and in efficient update plans. Finally, auxiliary
algorithms are covered, for example defragmentation and consistency
checks.

During the time since their invention, the basic design of B-trees
has been improved upon in many ways. These improvements pertain

Full text available at: http://dx.doi.org/10.1561/1900000028



4 Introduction

to additional levels in the memory hierarchy such as CPU caches, to
multi-dimensional data and multi-dimensional queries, to concurrency
control techniques such as multi-level locking and key range locking,
to utilities such as online index creation, and to many more aspects of
B-trees. Another goal here is to gather many of these improvements
and techniques in a single document.

The focus and primary context of this survey are B-tree indexes in
database management systems, primarily in relational databases. This
is reflected in many specific explanations, examples, and arguments.
Nonetheless, many of the techniques are readily applicable or at least
transferable to other possible application domains of B-trees, in par-
ticular to information retrieval [83], file systems [71], and “No SQL”
databases and key-value stores recently popularized for web services
and cloud computing [21, 29].

A survey of techniques cannot provide a comprehensive performance
evaluation or immediate implementation guidance. The reader still
must choose what techniques are required or appropriate for specific
environments and requirements. Issues to consider include the expected
data size and workload, the anticipated hardware and its memory
hierarchy, expected reliability requirements, degree of parallelism and
needs for concurrency control, the supported data model and query
patterns, etc.

1.3 New Hardware

Flash memory, flash devices, and other solid state storage technology
are about to change the memory hierarchy in computer systems in gen-
eral and in data management in particular. For example, most current
software assumes two levels in the memory hierarchy, namely RAM and
disk, whereas any further levels such as CPU caches and disk caches are
hidden by hardware and its embedded control software. Flash memory
might also remain hidden, perhaps as large and fast virtual memory
or as fast disk storage. The more likely design for databases, however,
seems to be explicit modeling of a memory hierarchy with three or
even more levels. Not only algorithms such as external merge sort but
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1.4 Overview 5

also storage structures such as B-tree indexes will need a re-design and
perhaps a re-implementation.

Among other effects, flash devices with their very fast access latency
are about to change database query processing. They likely will shift
the break-even point toward query execution plans based on index-to-
index navigation, away from large scans and large set operations such
as sort and hash join. With more index-to-index navigation, tuning the
set of indexes including automatic incremental index creation, growth,
optimization, etc. will come more into focus in future database engines.

As much as solid state storage will change tradeoffs and optimiza-
tions for data structures and access algorithms, many-core processors
will change tradeoffs and optimizations for concurrency control and
recovery. High degrees of concurrency can be enabled only by appro-
priate definitions of consistent states and of transaction boundaries,
and recovery techniques for individual transactions and for the system
state must support them. These consistent intermediate states must be
defined for each kind of index and data structure, and B-trees will likely
be first index structure for which such techniques are implemented
in production-ready database systems, file systems, and key-value
stores.

In spite of future changes for databases and indexes on flash devices
and other solid state storage technology, the present survey often men-
tions tradeoffs or design choices appropriate for traditional disk drives,
because much of the presently known and implemented techniques have
been invented and designed in this context. The goal is to provide com-
prehensive background knowledge about B-trees for those research-
ing and implementing techniques appropriate for the new types of
storage.

1.4 Overview

The next section (Section 2) sets out the basics as they may be found in
a college level text book. The following sections cover implementation
techniques for mature database management products. Their topics
are implementation techniques for data structures and algorithms
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6 Introduction

(Section 3), transactional techniques (Section 4), query processing
using B-trees (Section 5), utility operations specific to B-tree indexes
(Section 6), and B-trees with advanced key structures (Section 7).
These sections might be more suitable for an advanced course on data
management implementation techniques and for a professional devel-
oper desiring in-depth knowledge about B-tree indexes.
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