
Big Graph Analytics
Platforms

Da Yan
The University of Alabama at Birmingham

yanda@uab.edu

Yingyi Bu
Couchbase, Inc.

yingyi@couchbase.com

Yuanyuan Tian
IBM Almaden Research Center, USA

ytian@us.ibm.com

Amol Deshpande
University of Maryland

amol@cs.umd.edu

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/1900000056

Foundations and Trends R© in Databases

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

D. Yan, Y. Bu, Y. Tian, and A. Deshpande. Big Graph Analytics Platforms.
Foundations and TrendsR© in Databases, vol. 7, no. 1-2, pp. 1–195, 2015.

This Foundations and TrendsR© issue was typeset in LATEX using a class file designed
by Neal Parikh. Printed on acid-free paper.

ISBN: 978-1-68083-242-6
c© 2017 D. Yan, Y. Bu, Y. Tian, and A. Deshpande

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, mechanical, photocopying, recording
or otherwise, without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen-
ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for
internal or personal use, or the internal or personal use of specific clients, is granted by
now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The
‘services’ for users can be found on the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system
of payment has been arranged. Authorization does not extend to other kinds of copy-
ing, such as that for general distribution, for advertising or promotional purposes, for
creating new collective works, or for resale. In the rest of the world: Permission to pho-
tocopy must be obtained from the copyright owner. Please apply to now Publishers Inc.,
PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781 871 0245; www.nowpublishers.com;
sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to
now Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com;
e-mail: sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/1900000056

Foundations and Trends R© in Databases
Volume 7, Issue 1-2, 2015

Editorial Board

Editor-in-Chief

Joseph M. Hellerstein
University of California, Berkeley
United States

Editors

Anastasia Ailamaki
EPFL
Peter Bailis
University of California, Berkeley
Mike Cafarella
University of Michigan
Michael Carey
University of California, Irvine
Surajit Chaudhuri
Microsoft Research
Minos Garofalakis
Yahoo! Research

Ihab Ilyas
University of Waterloo
Christopher Olston
Yahoo! Research
Jignesh Patel
University of Michigan
Chris Re
Stanford University
Gerhard Weikum
Max Planck Institute Saarbrücken

Full text available at: http://dx.doi.org/10.1561/1900000056

Editorial Scope

Topics

Foundations and Trends R© in Databases covers a breadth of topics re-
lating to the management of large volumes of data. The journal targets
the full scope of issues in data management, from theoretical founda-
tions, to languages and modeling, to algorithms, system architecture,
and applications. The list of topics below illustrates some of the in-
tended coverage, though it is by no means exhaustive:

• Data models and query languages
• Query processing and

optimization
• Storage, access methods, and

indexing
• Transaction management,

concurrency control, and
recovery

• Deductive databases
• Parallel and distributed database

systems
• Database design and tuning
• Metadata management
• Object management
• Trigger processing and active

databases
• Data mining and OLAP
• Approximate and interactive

query processing

• Data warehousing

• Adaptive query processing

• Data stream management

• Search and query integration

• XML and semi-structured data

• Web services and middleware

• Data integration and exchange

• Private and secure data
management

• Peer-to-peer, sensornet, and
mobile data management

• Scientific and spatial data
management

• Data brokering and
publish/subscribe

• Data cleaning and information
extraction

• Probabilistic data management

Information for Librarians

Foundations and Trends R© in Databases, 2015, Volume 7, 4 issues. ISSN pa-
per version 1931-7883. ISSN online version 1931-7891. Also available as a
combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/1900000056

Foundations and TrendsR© in Databases
Vol. 7, No. 1-2 (2015) 1–195
c© 2017 D. Yan, Y. Bu, Y. Tian, and A. Deshpande
DOI: 10.1561/1900000056

Big Graph Analytics Platforms

Da Yan
The University of Alabama at Birmingham

yanda@uab.edu

Yingyi Bu
Couchbase, Inc.

yingyi@couchbase.com

Yuanyuan Tian
IBM Almaden Research Center, USA

ytian@us.ibm.com

Amol Deshpande
University of Maryland

amol@cs.umd.edu

Full text available at: http://dx.doi.org/10.1561/1900000056

Contents

1 Introduction 2
1.1 History of Big Graph Systems Research 3
1.2 Features of Big Graph Systems 6
1.3 Organization of the Survey 13

2 Preliminaries 17
2.1 Data Models and Analytics Tasks 17
2.2 Distributed Architecture 19
2.3 Single-Machine Architecture 23

I Vertex-Centric Programming Model 25

3 Vertex-Centric Message Passing (Pregel-like) Systems 26
3.1 The Framework of Pregel 26
3.2 Algorithm Design in Pregel 29
3.3 Optimizations in Communication Mechanism 34
3.4 Load Balancing . 37
3.5 Out-Of-Core Execution 40
3.6 Fault Tolerance . 44
3.7 Summary . 50

ii

Full text available at: http://dx.doi.org/10.1561/1900000056

iii

4 Vertex-Centric Message-Passing Systems Beyond Pregel 51
4.1 Block-Centric Computation 51
4.2 Asynchronous Execution 63
4.3 Vertex-Centric Query Processing 69
4.4 Summary . 72

5 Vertex-Centric Systems with Shared Memory Abstraction 73
5.1 Distributed Systems with Shared Memory Abstraction . . . 74
5.2 Out-of-Core Systems for a Single PC 80
5.3 Summary . 90

II Beyond Vertex-Centric Programming Model 92

6 Matrix Algebra-Based Systems 93
6.1 PEGASUS . 93
6.2 GBASE . 95
6.3 SystemML . 97
6.4 Summary . 99

7 Subgraph-Centric Programming Models 103
7.1 Complex Analysis Tasks 104
7.2 NScale . 109
7.3 Arabesque . 110
7.4 Summary . 112

8 DBMS-Inspired Systems 113
8.1 The Recursive Query Abstraction 115
8.2 Dataflow-Based Graph Analytical Systems 121
8.3 Incremental Graph Processing 129
8.4 Integrated Analytical Pipelines 131
8.5 Summary . 134

III Miscellaneous Issues 135

9 More on Single-Machine Systems 136

Full text available at: http://dx.doi.org/10.1561/1900000056

iv

9.1 Vertex-Centric Systems with Matrix Backends 136
9.2 In-Memory Systems for Multi-Core Execution 142
9.3 Summary . 148

10 Hardware-Accelerated Systems 150
10.1 Out-of-Core SSD-Based Systems 150
10.2 Systems for Execution with GPU(s) 154
10.3 Summary . 159

11 Temporal and Streaming Graph Analytics 161
11.1 Overview . 162
11.2 Historical Graph Systems 164
11.3 Streaming Graph Systems 170
11.4 Brief Summary of Other Work 174
11.5 Summary . 176

12 Conclusions and Future Directions 178

References 182

Full text available at: http://dx.doi.org/10.1561/1900000056

Abstract

Due to the growing need to process large graph and network datasets
created by modern applications, recent years have witnessed a surg-
ing interest in developing big graph platforms. Tens of such big graph
systems have already been developed, but there lacks a systematic cat-
egorization and comparison of these systems. This article provides a
timely and comprehensive survey of existing big graph systems, and
summarizes their key ideas and technical contributions from various
aspects. In addition to the popular vertex-centric systems which es-
pouse a think-like-a-vertex paradigm for developing parallel graph ap-
plications, this survey also covers other programming and computation
models, contrasts those against each other, and provides a vision for
the future research on big graph analytics platforms. This survey aims
to help readers get a systematic picture of the landscape of recent big
graph systems, focusing not just on the systems themselves, but also
on the key innovations and design philosophies underlying them.

D. Yan, Y. Bu, Y. Tian, and A. Deshpande. Big Graph Analytics Platforms.
Foundations and TrendsR© in Databases, vol. 7, no. 1-2, pp. 1–195, 2015.
DOI: 10.1561/1900000056.

Full text available at: http://dx.doi.org/10.1561/1900000056

1
Introduction

The growing need to deal with massive graphs in real-life applications
has led to a surge in the development of big graph analytics platforms.
Tens of big graph systems have already been developed, and more are
expected to emerge in the near future. Researchers new to this young
field can easily get overwhelmed and lost by the large amount of liter-
ature. Although several experimental studies have been conducted in
recent years that compare the performance of several big graph sys-
tems [Lu et al., 2014, Han et al., 2014a, Satish et al., 2014, Guo et al.,
2014], there lacks a comprehensive survey that clearly summarizes the
key features and techniques developed in existing big graph systems.
A recent survey [McCune et al., 2015] attempts to cover the landscape
as well, but primarily focuses on vertex-centric systems; it omits most
of the work on other programming models and also several crucial op-
timization and programmability issues with vertex-centric systems. In
addition to describing the various systems, this survey puts more em-
phasis on the innovations and technical contributions of existing sys-
tems, in order to help readers quickly obtain a systemic view of the key
ideas and concepts. We hope this will help big graph system researchers

2

Full text available at: http://dx.doi.org/10.1561/1900000056

1.1. History of Big Graph Systems Research 3

avoid reinventing the wheel, apply useful existing techniques to their
own systems, and come up with new innovations.

In the rest of this chapter, we first review the history of research
on Big Graph systems, and then overview some important features of
existing Big Graph systems. Finally, we present the organization of
this survey. Many contents of this survey are covered by our tutorial
in SIGMOD 2016 [Yan et al., 2016a], the slides of which are available
online1 and contain animations to illustrate the various techniques used
by existing systems.

1.1 History of Big Graph Systems Research

Although graph analytics has always been an important research topic
throughout the history of computation, the research on big graph pro-
cessing only flourished in recent years as part of the big data movement,
which has seen increased use of advanced analytics on large volumes
of unstructured or semi-structured data. A hallmark of this movement
has been the MapReduce distributed data processing framework, in-
troduced by Google [Dean and Ghemawat, 2004], and the companion
Google File System (GFS) [Ghemawat et al., 2003]. Subsequently, the
Apache Hadoop project2 implemented the open-source counterparts,
the Hadoop Distributed File System (HDFS) and the Hadoop MapRe-
duce framework in 2006. Since then, a huge body of research has focused
on designing novel MapReduce algorithms as well as on improving the
framework for particular workloads. A large body of work in that space
focused on big graph analytics, and many tailor-made MapReduce al-
gorithms were proposed for solving specific graph problems [Lin and
Schatz, 2010]. As an early MapReduce-based framework designed for
general-purpose graph processing, PEGASUS [Kang et al., 2009] mod-
els graph computation by a generalization of matrix-vector multipli-
cation. However, the reliance on the disk-based Hadoop MapReduce
runtime, which requires repeated reads and writes of large files from
HDFS, fundamentally limits its performance.

1http://www.cse.cuhk.edu.hk/systems/gsys_tutorial/
2https://hadoop.apache.org/

Full text available at: http://dx.doi.org/10.1561/1900000056

http://www.cse.cuhk.edu.hk/systems/gsys_tutorial/
https://hadoop.apache.org/

4 Introduction

Later, Malewicz et al. [2010] proposed the Pregel framework spe-
cially designed for large-scale big graph processing. Since many graph
algorithms are iterative, Pregel keeps the graph data in the main mem-
ory and adopts an iterative, message-passing computation model (in-
spired by the well-known Bulk Synchronous Parallel model for parallel
computation), and is thus much more efficient than MapReduce. Pregel
also adopts a “think-like-a-vertex” programming model which is more
intuitive and user-friendly for average programmers and a natural fit
for a range of graph analysis tasks. The vertex-centric programming
model of Pregel is also very expressive since a vertex can communicate
with any other vertex by passing messages. Since the introduction of
Pregel, it has sparked a large number of research works on extending
the basic Pregel framework in different aspects to improve the graph
processing performance [Tian et al., 2013, Yan et al., 2014a, Zhang
et al., 2014, Han and Daudjee, 2015, Yan et al., 2016b].

Independent of Pregel, Low et al. [2010] developed a multi-core,
shared-memory graph-based computation model, called GraphLab.
Then, Low et al. [2012] extended it to work in a distributed environ-
ment, while keeping the shared memory programming abstraction, in
which a vertex can directly access the states of its adjacent vertices and
edges. Later, GraphLab switched to the GAS (Gatter-Apply-Scatter)
computation model to further improve the system performance [Gon-
zalez et al., 2012]. Although the GAS model covers a large number of
graph algorithms, it is less expressive than the Pregel model, since a ver-
tex can only access the data of its adjacent vertices and edges; we call
this a neighborhood-based shared memory abstraction. This program-
ming abstraction is especially popular among recent big graph systems
designed to run on a single machine, such as GraphChi [Kyrola et al.,
2012].

While Pregel and GraphLab are designed specially for graph pro-
cessing, a number of systems, such as GraphX [Gonzalez et al., 2014]
and Pregelix [Bu et al., 2014], rely on a general-purpose data process-
ing engine for execution, at the same time providing graph-specific
programming interfaces similar to those in Pregel and GraphLab.

Full text available at: http://dx.doi.org/10.1561/1900000056

1.1. History of Big Graph Systems Research 5

Vertex-centric systems are ideally suited for graph analysis tasks
like PageRank computation where the overall computation can be bro-
ken down into individual tasks, each involving a specific vertex (i.e., its
local state, and the states of its adjacent edges). Many machine learning
tasks (e.g., belief propagation, matrix factorization, stochastic gradi-
ent descent) are also a natural fit for those systems. However, many
complex graph analysis tasks cannot be easily decomposed in such
fashion. For example, a class of graph problems termed “ego-centric
analysis” [Quamar et al., 2016] require analyzing the neighborhoods
of the vertices in their entirety. Also, graph problems such as graph
matching or graph mining may have intermediate or output results with
size superlinear or even exponential in the input graph size. Complex
graph algorithms, e.g., the Hungarian algorithm for maximum bipartite
matching, even require random access to the entire graph. Solving these
problems using vertex-centric processing leads to substantial commu-
nication and memory overheads, since each vertex needs to collect the
relevant neighborhood subgraph (if not the entire graph) to its local
state before processing the subgraph.

This has led to the development of many alternative programming
frameworks, examples of which include Socialite [Seo et al., 2013b],
Arabesque [Teixeira et al., 2015], NScale [Quamar et al., 2016], among
others. In addition, several systems including Ligra [Shun and Blelloch,
2013], Galois [Nguyen et al., 2013], Green-Marl DSL [Hong et al., 2012],
etc., provide low-level graph programming frameworks that can handle
nearly arbitrary graph computations. These frameworks often focus
on specific classes of graph problems, and make a range of different
assumptions about the computing environment, making them incom-
parable in many cases. Arabesque tackles problems like graph matching
and graph mining where the intermediate result can be very large, while
assuming that the entire graph can be held in a single machine mem-
ory. NScale is a strict generalization of the vertex-centric framework,
and can handle tasks that require access to multi-hop neighborhoods of
vertices; but it does not support the other classes of problems discussed
above. Socialite uses a Datalog-inspired programming model which is
most suitable for graph problems that can be expressed as recursive

Full text available at: http://dx.doi.org/10.1561/1900000056

6 Introduction

Datalog queries. Ligra, Galois, and other similar systems require ran-
dom access to the graph and focus on large-memory multi-core environ-
ments. Thus, developing a sufficiently expressive, yet easy-to-use and
easy-to-parallelize graph programming model, remains a critical and
open challenge in this field.

The majority of existing big graph systems are designed for pro-
cessing static graphs (or with small topology mutations). However,
real-world graphs often evolve over time, with vertices and edges con-
tinually being added or deleted, and their attributes being frequently
updated. A new class of big graph systems, such as KineoGraph [Cheng
et al., 2012], TIDE [Xie et al., 2015b], DeltaGraph [Khurana and Desh-
pande, 2013], and Chronos [Han et al., 2014b], have emerged to process
and analyze temporal and streaming graph data. This area is however
still in its infancy and there are many open problems that need to be
addressed to effectively handle continuous and/or temporal analytics
on big graphs.

There is also a large body of work on executing queries related to
a specific vertex (or a small subset of vertices) against large volumes
of graph data, which has developed a range of specialized indexes and
search algorithms. This survey does not cover that body of work.

1.2 Features of Big Graph Systems

We can categorize the big graph platforms along various dimensions.
Since an important feature of the modern big graph systems is user-
friendliness in programming parallel graph algorithms, we first summa-
rize the programming abstractions (languages and models) of existing
systems. While most systems adopt existing programming languages
that are familiar to users (e.g., C/C++ and Java), some systems require
users to learn a new domain-specific language dedicated to program-
ming parallel graph algorithms (e.g., Green-Marl [Hong et al., 2012]
and Trinity Specification Language [Shao et al., 2013]).

Full text available at: http://dx.doi.org/10.1561/1900000056

1.2. Features of Big Graph Systems 7

1.2.1 Programming Model

Most big graph systems adopt the vertex-centric model where a pro-
grammer only needs to specify the behavior of one vertex. The vertex-
centric model can be further divided into two types: (1) message passing
(e.g., in Pregel), where vertices communicate with each other by send-
ing messages; and (2) shared-memory abstraction (e.g., in GraphLab),
where vertices directly access the states of other vertices and edges.

Message passing is a natural model in a distributed environment,
since users can explicitly dictate message passing behavior in their pro-
grams. In contrast, the shared-memory abstraction allows programmers
to directly access data as if operating on a single machine, and most
single-machine vertex-centric systems adopt this model. However, dis-
tributed GraphLab adopts the shared-memory abstraction and there
are also single-machine systems that adopt message passing (e.g., Flash-
Graph [Zheng et al., 2015]).

The vertex-centric framework can be further extended with a block-
centric model (e.g., Giraph++ [Tian et al., 2013] and Blogel [Yan et al.,
2014a]), which partitions the vertices into multiple disjoint subgraphs,
so that value propagation within each subgraph could bypass network
communication. The block-centric model often improves the perfor-
mance of graph computation by orders of magnitude.

Besides the vertex-centric systems, some big graph systems adopt
a matrix-based programming model; these include PEGASUS [Kang
et al., 2009], GBASE [Kang et al., 2011], and SystemML [Ghoting
et al., 2011]. These systems represent a graph algorithm by a sequence
of generalized matrix-vector multiplications, which can be efficiently
processed since sparse matrix algebra has been studied for decades in
the High Performance Computing (HPC) field. However, users who are
not familiar with matrix algebra might prefer vertex-centric program-
ming to matrix-based programming. Recently, Sundaram et al. [2015]
helped bridge the gap for these users: their GraphMat system translates
a vertex-centric program to high performance sparse matrix operations
to be run on the backend.

Another important class of programming models is subgraph-
centric models, where users write programs to process a subgraph in-

Full text available at: http://dx.doi.org/10.1561/1900000056

8 Introduction

stead of a single vertex. These models target graph problems whose
output size can be exponential to the graph size (e.g., graph matching
and finding motifs), or problems that require analyzing entire neigh-
borhoods in a holistic manner. Since vertices in a subgraph can be
randomly accessed by a user program, a critical issue for a subgraph-
centric model is how to efficiently construct the relevant subgraphs.
Arabesque [Teixeira et al., 2015] and NScale [Quamar et al., 2016] are
two systems that use a subgraph-centric model, although there are sig-
nificant differences in the models they adopt.

There are also systems that require users to write graph algorithms
using a domain specific language (DSL), e.g., Green-Marl [Hong et al.,
2012, 2014], Galois [Nguyen et al., 2013], and Ligra [Shun and Blelloch,
2013]. The language constructs of those DSLs expose opportunities for
parallelism, which can be utilized by the system for efficient parallel ex-
ecution. Of course, users have to learn a new language or programming
paradigm in order to use such a system.

Finally, several recent systems have been built to bring in declara-
tive query languages for big graph analytics. First, since many graph
algorithms can be expressed as recursive Datalog [Bancilhon and Ra-
makrishnan, 1986] queries, a number of research projects are inventing
new-generation Datalog systems for scalable big graph analytics. Sec-
ond, often times, a graph analytics job is only one part of a gigantic,
end-to-end SQL3-dominated data analysis pipeline which includes con-
structing graphs dynamically from tabular data sources and converting
graph computation results back into tabular reports; therefore, sev-
eral systems have integrated vertex-centric programming models into
declarative query languages to make those end-to-end data analysis
tasks easier [Simmen et al., 2014, Gonzalez et al., 2014].

1.2.2 Expressiveness

Most big graph systems aim at solving a broad class of graph problems
using a unified programming framework. Therefore, it is meaningless
to study big graph systems without studying the algorithms and ap-
plications that can be implemented in these systems. However, many

3SQL. https://en.wikipedia.org/wiki/SQL

Full text available at: http://dx.doi.org/10.1561/1900000056

https://en.wikipedia.org/wiki/SQL

1.2. Features of Big Graph Systems 9

papers just introduce API simplicity and performance advantages of
their systems in order to promote their work, but these benefits may
come at a cost of additional assumptions and narrower expressiveness
that were understated, which should be made clear to avoid blind or
even wrong system choice. We now discuss the expressiveness of the
various programming models described before, and provide some ad-
vice on how to choose an appropriate framework for an application at
hand.

Many graph algorithms only require each vertex to communicate
with its neighbors, such as PageRank and other more complicated ran-
dom walk algorithms (e.g., [Zhang et al., 2016]). In these algorithms,
intermediate data are only exchanged along edges, and so the volume
of intermediate data is comparable to the data size. We say that these
algorithms require edge-based communication. In some of these algo-
rithms, a vertex only needs the aggregated value of the received values,
which provides opportunities for further optimization. For example,
MOCgraph [Zhou et al., 2014], GraphD [Yan et al., 2016d], and the
superstep-splitting technique of Giraph [Ching et al., 2015] all propose
aggregating messages earlier instead of buffering them for later pro-
cessing, in order to save memory space; while PowerGraph [Gonzalez
et al., 2012], GraphChi [Kyrola et al., 2012] and X-Stream [Roy et al.,
2013] assume that data values are aggregated at each vertex from its
incoming edges, in their model design. We, however, would like to indi-
cate that not all algorithms with edge-based communication allow its
vertices to aggregate received values, such as the attribute broadcast
algorithm of Yan et al. [2015].

Edge-based communication implies that any information can be
propagated for just one hop at a time, which leads to poor perfor-
mance if a vertex u needs to transmit a value to another vertex v far
away from u in a large-diameter graph. Pointer jumping (aka path dou-
bling), a technique from PRAM algorithm design, solves this problem
by doubling the propagation length from u to v, until v is reached. This
requires a vertex to be able to send data to any other vertex, not just
its neighbors. We say that these algorithms require ID-based communi-
cation, where a vertex u can send messages to another vertex w as long

Full text available at: http://dx.doi.org/10.1561/1900000056

10 Introduction

as w’s ID is known. Pregel [Malewicz et al., 2010] adopts ID-based com-
munication and thus can implement pointer-jumping algorithms such
as those to be described in Chapter 3.2, while GraphLab [Gonzalez
et al., 2012] only allows each vertex to access its neighbors’ data, and
thus cannot support these algorithms. In fact, Pregel has probably the
most expressive programming model in theory, and it is known how
to write a large number of graph algorithms efficiently in that model.
The Bulk Synchronous Parallel (BSP) model, on which Pregel is based,
has been very well-studied, but as a synchronous model, the number
of iterations must be kept low in a distributed setting, which can be
achieved with the help of pointer jumping.

Another solution to avoid slow value propagation is to use a block-
centric model, where nearby vertices are grouped into a block for pro-
cessing together each time. In a distributed environment, since a block
is assigned to a unique machine, only blocks need to communicate with
each other, and computation over vertices inside a block does not gener-
ate communication. In a single-machine environment, each block usu-
ally fits in a CPU cache, and thus block-based processing improves
cache locality in its execution. In addition to faster value propagation
(i.e., block-wise), the block-centric model also significantly reduces the
communication workload. Representative block-centric system include
Giraph++ [Tian et al., 2013] and Blogel [Yan et al., 2014a].

Some graph algorithms (e.g., k-core finding [Salihoglu and Widom,
2014]) need to mutate the graph topology during computation, and
thus, support for deletion and addition of edges and vertices is
also an important aspect of system expressiveness. For example,
VENUS [Cheng et al., 2015] streams immutable graph structure and
thus does not support algorithms that require graph mutations.

The models discussed so far are mostly vertex-centric. However,
many graph mining problems define constraints on subgraphs, e.g.,
graph matching and motif mining. Subgraph-based models are pro-
posed to solve these problems by writing user-friendly programs, where
computation is directly performed on subgraphs. Such systems include
NScale [Quamar et al., 2016] and Arabesque [Teixeira et al., 2015],
which we discuss in more detail in Chapter 7.

Full text available at: http://dx.doi.org/10.1561/1900000056

1.2. Features of Big Graph Systems 11

We remark that there are other models that could be more appro-
priate for a specific application at hand. For example, if one is viewing
a graph as a matrix, and solving a machine learning problem that uses
matrix operations, then matrix-based systems like SystemML [Ghoting
et al., 2011] could be a better choice. Also, if graph processing is just
part of a dataflow program, then dataflow-based systems could provide
more flexibility, e.g., GraphX [Gonzalez et al., 2014] can interoperate
with other dataflow operators in Spark [Zaharia et al., 2012] to avoid
data import/export.

1.2.3 Execution Mode

Most big graph systems target iterative graph computation, where ver-
tex values are repeatedly updated until the computation converges.
There are two typical execution modes: synchronous and asynchronous.
The synchronous mode is also called bulk synchronous parallel (BSP),
exemplified by Pregel, while the asynchronous mode is adopted by
GraphLab and several other systems (especially those targeting ma-
chine learning workloads). The difference between these two modes is
that, in the synchronous mode, there is a global barrier from one iter-
ation to another, and out-going messages or updates of one iteration
are only accessible in the next iteration; in the asynchronous mode, a
vertex has immediate access to its in-bound messages or updates.

Asynchronous parallel computation incurs race conditions and thus
requires additional effort to enforce data consistency (e.g., by using
locks). Moreover, in a distributed environment, asynchronous execu-
tion tends to transmit a lot of small messages, since the update to
a vertex value should be reflected in time. In contrast, BSP only re-
quires updates to be synchronized at the end of each iteration, and
messages can be sent in large batches. In fact, GraphLab has a syn-
chronous mode that simulates the BSP mode of Pregel, and both Lu
et al. [2014] and Han et al. [2014a] found that the synchronous mode is
generally faster than the asynchronous mode. Further, for many algo-
rithms, asynchronous execution is not an option because the indeter-
ministic execution may lead to incorrect answers.

Full text available at: http://dx.doi.org/10.1561/1900000056

12 Introduction

However, for some problems like PageRank computation, vertex
values converge asymmetrically: most vertices converge quickly after a
few iterations, but some vertices take a large number of iterations to
converge. In that case, asynchronous execution can schedule those ver-
tices that converge more slowly to compute for more iterations, while
synchronous execution processes every vertex once in each iteration
even if most vertices are converged. Therefore, asynchronous mode is
much faster for such algorithms and is thus preferred. Moreover, asyn-
chronous computation is always preferred in a single-machine system
since data access no longer incurs network communication, and access-
ing the latest vertex value leads to faster convergence.

It is, however, worth noting that some asynchronous frameworks
may not converge to the exact results (e.g., PageRank values), but
the approximate results are often good enough while the significant
improvement in performance (compared with synchronous execution)
is highly attractive. More discussion can be found in Section 4.2.

Recently, PowerSwitch [Xie et al., 2015a] showed how to support
mode switch between asynchronous execution and synchronous execu-
tion in GraphLab. They found that when the workload is low, asyn-
chronous execution is faster due to the faster convergence rate provided
by accessing the latest values. Race conditions (e.g., updates to the
same vertex) are unlikely to occur since only a small portion of vertices
participate in computation, and the number of messages is too small to
benefit from sending in large batches. In contrast, when the workload
is high, synchronous execution is faster since there is no need to han-
dle race conditions (i.e., it avoids the expensive locking/unlocking cost
required by asynchronous execution), and messages are sent in large
batches. Thus, PowerSwitch constantly collects execution statistics on-
the-fly, which are used to predict future performance and determine
the timing of a profitable mode switch.

1.2.4 Other Features

There are also many other dimensions to categorize big graph systems.
As for the execution environment, there are systems developed to
process graphs in a single machine, or using a cluster of machines.

Full text available at: http://dx.doi.org/10.1561/1900000056

1.3. Organization of the Survey 13

The single-machine environment can be further divided into two types,
commodity PCs and high-end servers. The former targets processing
big graphs efficiently using readily available resources; since the avail-
able memory on a commodity PC is limited, the graph is usually disk-
resident, and loaded into memory for processing part-by-part or in
a streaming fashion. The latter aims at beating distributed systems
by eliminating the cost of network communication, and the graph is
usually memory-resident. As for the graph placement, distributed
systems usually keep the graph in main memory, since there are many
machines and the total RAM size is sufficient, while single-PC systems
tend to process disk-resident or SSD-resident graphs. There are also
distributed systems that process disk-resident graphs in order to scale
to giant graphs whose size is much larger than the total RAM size in a
cluster, such as Pregelix [Bu et al., 2014], GraphD [Yan et al., 2016d]
and Chaos [Roy et al., 2015].

There are also many design techniques that may significantly influ-
ence the system performance for specific algorithms. For example, disk-
based single-machine systems like GraphChi [Kyrola et al., 2012] are
designed for iterative batch processing, while TurboGraph [Han et al.,
2013] maintains an in-memory page ID table for directly locating the
disk page of any vertex. Given these differences in system design, a
reader will not be surprised to see a claim like TurboGraph “signifi-
cantly outperforms GraphChi by up to four orders of magnitude”, for
a query that is to find the neighbors of a particular vertex.

1.3 Organization of the Survey

The diverse features supported by different big graph systems, and the
cross-cutting nature of many of the key designs, make it challenging
to organize such a survey. As an example, the popular vertex-centric
programming model is easy to support on top of a wide range of differ-
ent underlying implementations, including distributed frameworks like
Hadoop MapReduce, matrix-based systems, and relational databases.
However, each of those implementations raises unique and different
challenges despite their use of the vertex-centric model on top.

Full text available at: http://dx.doi.org/10.1561/1900000056

14 Introduction

In this survey, we focus on presenting the key designs and features
of the various graph processing systems, while endeavoring to place
related systems together to summarize the common ideas underlying
their designs. For quick reference, Table 1.1 presents a list of all the
systems that we discuss in each chapter.

We broadly divide the survey into three parts. In Part I, we discuss
the big graph systems that primarily use the vertex-centric program-
ming model, which has been widely studied recently due to its sim-
plicity in programming parallel graph algorithms. Specifically, Chap-
ter 3 reviews the framework of Pregel, and introduces how to develop
algorithms with performance guarantees in Pregel; it then discusses
existing open-source Pregel-like systems with improvements in com-
munication mechanism, load balancing, out-of-core support and fault
tolerance. Chapter 4 walks through the various extensions to the basic
framework of Pregel that could significantly improve the performance
of graph computations. Chapter 5 covers a few important big graph sys-
tems that adopt shared memory abstraction, including the pioneering
GraphLab system.

In Part II, we review other systems that attempt to provide sup-
port for more general graph programming models; most of these are
motivated by the observation that complex graph algorithms or analy-
sis tasks are often difficult to program using the simple vertex-centric
programming framework. Chapter 6 describes several matrix-based big
graph systems, including the pioneering MapReduce-based systems PE-
GASUS and GBASE, and the more powerful SystemML system. Chap-
ter 7 explains why the vertex-centric and matrix-based frameworks are
not sufficient for graph problems like graph matching and motif mining,
and introduces two subgraph-centric systems, NScale and Arabesque,
to process such graph problems efficiently. Chapter 8 reviews several
systems that either offer database-style declarative query languages or
leverage database-style query processing techniques.

Finally, in Part III, we discuss some miscelleneous issues. While
some vertex-centric single-machine big graph systems are also intro-
duced in Chapter 5, Chapter 9 surveys more single-machine systems
that adopt a computation model beyond a pure vertex-centric one.

Full text available at: http://dx.doi.org/10.1561/1900000056

1.3. Organization of the Survey 15

Table 1.1

Section System
3.1 Pregel
3.3 Giraph, Pregel+, GPS, MOCgraph
3.4 WindCatch, PAGE
3.5 GraphD
4.1 Giraph++, Blogel
4.2 Maiter, GiraphUC
4.3 Quegel
5.1 GraphLab/PowerGraph
5.2 GraphChi, X-Stream, Chaos, VENUS, GridGraph
6.1 PEGASUS
6.2 GBASE
6.2 SystemML
7.1.1 Trinity
7.2 NScale
7.3 Arabesque
8.1 SociaLite, DeALS, Myria, Yedalog
8.2 GraphX, Pregelix, Vertexica
8.3 REX, Maiter
8.4 Aster Data
9.1 GraphMat, GraphTwist
9.2 Green-Marl, Ligra, GRACE, Galois
10.1 TurboGraph, FlashGraph
10.2 Medusa, MapGraph, CuSha
11.2 Chronos, DeltaGraph, LLAMA
11.3 Kineograph, TIDE

Full text available at: http://dx.doi.org/10.1561/1900000056

16 Introduction

Chapter 10 discusses a few systems that utilize new hardware tech-
nologies to significantly boost the performance of big graph analytics.
Then, in Chapter 11, we discuss the issues of managing time-evolving
graphs and supporting real-time analytics over streaming graph data,
and discuss several recent systems that focus on providing those capa-
bilities. Finally, we conclude the survey in Chapter 12 and provide a
discussion on future research in big graph analytics platforms.

Full text available at: http://dx.doi.org/10.1561/1900000056

References

Charu C. Aggarwal, Yao Li, Philip S. Yu, and Ruoming Jin. On dense pattern
mining in graph streams. VLDB, 2010.

Jae-wook Ahn, Catherine Plaisant, and Ben Shneiderman. A task taxonomy
for network evolution analysis. IEEE Transactions on Visualization and
Computer Graphics, 2014.

Sattam Alsubaiee, Yasser Altowim, Hotham Altwaijry, Alexander Behm,
Vinayak R. Borkar, Yingyi Bu, Michael J. Carey, Inci Cetindil, Mad-
husudan Cheelangi, Khurram Faraaz, Eugenia Gabrielova, Raman Grover,
Zachary Heilbron, Young-Seok Kim, Chen Li, Guangqiang Li, Ji Mahn Ok,
Nicola Onose, Pouria Pirzadeh, Vassilis J. Tsotras, Rares Vernica, JianWen,
and Till Westmann. Asterixdb: A scalable, open source BDMS. PVLDB,
7(14):1905–1916, 2014.

Darko Anicic, Paul Fodor, Sebastian Rudolph, and Nenad Stojanovic. EP-
SPARQL: a unified language for event processing and stream reasoning. In
WWW, 2011.

Lars Backstrom and Jure Leskovec. Supervised random walks: predicting and
recommending links in social networks. In WSDM, pages 635–644, 2011.

Bahman Bahmani, Abdur Chowdhury, and Ashish Goel. Fast incremental
and personalized pagerank. VLDB, 2010.

Isaac Balbin and Kotagiri Ramamohanarao. A generalization of the differen-
tial approach to recursive query evaluation. J. Log. Program., 4(3):259–262,
1987.

182

Full text available at: http://dx.doi.org/10.1561/1900000056

References 183

François Bancilhon and Raghu Ramakrishnan. An amateur’s introduction to
recursive query processing strategies. In SIGMOD, pages 16–52, 1986.

François Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D. Ullman.
Magic sets and other strange ways to implement logic programs. In VLDB,
pages 1–15, 1986.

Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, and Michael Gross-
niklaus. An execution environment for C-SPARQL queries. In EDBT,
2010.

Alain Barrat, Marc Barthelemy, and Alessandro Vespignani. Dynamical pro-
cesses on complex networks. Cambridge University Press Cambridge, 2008.

Luca Becchetti, Paolo Boldi, Carlos Castillo, and Aristides Gionis. Efficient
semi-streaming algorithms for local triangle counting in massive graphs. In
KDD, pages 16–24, 2008.

Catriel Beeri, Shamim A. Naqvi, Raghu Ramakrishnan, Oded Shmueli, and
Shalom Tsur. Sets and negation in a logic database language (LDL1). In
PODS, pages 21–37, 1987.

Tanya Y Berger-Wolf and Jared Saia. A framework for analysis of dynamic
social networks. In SIGKDD, 2006.

Matthias Boehm, Shirish Tatikonda, Berthold Reinwald, Prithviraj Sen,
Yuanyuan Tian, Douglas R. Burdick, and Shivakumar Vaithyanathan. Hy-
brid parallelization strategies for large-scale machine learning in systemml.
PVLDB, 7(7):553–564, 2014.

Matthias Boehm, Michael W. Dusenberry, Deron Eriksson, Alexandre V. Ev-
fimievski, Faraz Makari Manshadi, Niketan Pansare, Berthold Reinwald,
Frederick R. Reiss, Prithviraj Sen, Arvind C. Surve, and Shirish Tatikonda.
Systemml: Declarative machine learning on spark. PVLDB, 9(13):1425 –
1436, 2016.

Vinayak R. Borkar, Michael J. Carey, Raman Grover, Nicola Onose, and Rares
Vernica. Hyracks: A flexible and extensible foundation for data-intensive
computing. In ICDE, 2011.

Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual
web search engine. In Proceedings of the Seventh International World-Wide
Web Conference (WWW), pages 107–117, 1998.

Yingyi Bu. On Software Infrastructure for Scalable Graph Analytics. PhD the-
sis, Computer Science Department, University of California, Irvine, August
2015.

Full text available at: http://dx.doi.org/10.1561/1900000056

184 References

Yingyi Bu, Vinayak R. Borkar, Jianfeng Jia, Michael J. Carey, and Tyson
Condie. Pregelix: Big(ger) graph analytics on a dataflow engine. PVLDB,
8(2):161–172, 2014.

Craig Chambers, Ashish Raniwala, Frances Perry, Stephen Adams, Robert R.
Henry, Robert Bradshaw, and Nathan Weizenbaum. FlumeJava: easy, effi-
cient data-parallel pipelines. In PLDI, pages 363–375, 2010.

K. Mani Chandy and Leslie Lamport. Distributed snapshots: Determining
global states of distributed systems. ACM Trans. Comput. Syst., 3(1):63–
75, 1985.

Surajit Chaudhuri. An overview of query optimization in relational systems.
In PODS, pages 34–43, 1998.

Jiefeng Cheng, Qin Liu, Zhenguo Li, Wei Fan, John C. S. Lui, and Cheng He.
VENUS: vertex-centric streamlined graph computation on a single PC. In
ICDE, pages 1131–1142, 2015.

Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan Miao, Xuetian Weng, Ming
Wu, Fan Yang, Lidong Zhou, Feng Zhao, and Enhong Chen. Kineograph:
taking the pulse of a fast-changing and connected world. In EuroSys, pages
85–98, 2012.

Brian Chin, Daniel von Dincklage, Vuk Ercegovac, Peter Hawkins, Mark S.
Miller, Franz Josef Och, Christopher Olston, and Fernando Pereira. Yeda-
log: Exploring knowledge at scale. In SNAPL, pages 63–78, 2015.

Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sam-
bavi Muthukrishnan. One trillion edges: Graph processing at facebook-
scale. PVLDB, 8(12):1804–1815, 2015.

Sutanay Choudhury, Lawrence Holder, George Chin, Khushbu Agarwal, and
John Feo. A selectivity based approach to continuous pattern detection in
streaming graphs. EDBT, 2015.

Atish Das Sarma, Sreenivas Gollapudi, and Rina Panigrahy. Estimating pager-
ank on graph streams. In PODS, 2008.

Ankur Dave, Alekh Jindal, Li Erran Li, Reynold Xin, Joseph Gonzalez, and
Matei Zaharia. GraphFrames: An integrated api for mixing graph and
relational queries. In Proceedings of the Fourth International Workshop on
Graph Data Management Experiences and Systems, GRADES ’16, pages
2:1–2:8, 2016.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing
on large clusters. In OSDI, pages 137–150, 2004.

Camil Demetrescu, Irene Finocchi, and Andrea Ribichini. Trading off space
for passes in graph streaming problems. ACM Trans. Algorithms, 2009.

Full text available at: http://dx.doi.org/10.1561/1900000056

References 185

David J. DeWitt and Jim Gray. Parallel database systems: The future of high
performance database systems. Commun. ACM, 35(6):85–98, 1992.

Jason Eisner and Nathaniel Wesley Filardo. Dyna: Extending datalog for
modern AI. In Datalog, pages 181–220, 2010.

Ahmed Elgohary, Matthias Boehm, Peter J. Haas, Frederick R. Reiss, and
Berthold Reinwald. Compressed linear algebra for large-scale machine
learning. PVLDB, 9(12):960–971, 2016.

E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B. John-
son. A survey of rollback-recovery protocols in message-passing systems.
ACM Comput. Surv., 34(3):375–408, September 2002.

David Eppstein, Zvi Galil, and Giuseppe F. Italiano. Dynamic Graph Algo-
rithms. CRC Press, 1999.

Shimon Even. Graph Algorithms. Cambridge University Press, New York,
NY, USA, 2nd edition, 2011.

Stephan Ewen, Kostas Tzoumas, Moritz Kaufmann, and Volker Markl. Spin-
ning fast iterative data flows. PVLDB, 5(11):1268–1279, 2012.

Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and
Jian Zhang. On graph problems in a semi-streaming model. In ICALP,
2004.

Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and
Jian Zhang. Graph distances in the streaming model: the value of space.
In SODA, 2005.

Zhisong Fu, Bryan B. Thompson, and Michael Personick. Mapgraph: A high
level API for fast development of high performance graph analytics on gpus.
In GRADES, pages 2:1–2:6, 2014.

Jun Gao, Chang Zhou, Jiashuai Zhou, and Jeffrey Xu Yu. Continuous pattern
detection over billion-edge graph using distributed framework. In ICDE,
pages 556–567, 2014.

B. Gedik and R. Bordawekar. Disk-based management of interaction graphs.
TKDE, 2014.

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file
system. In SOSP, pages 29–43, 2003.

Amol Ghoting, Rajasekar Krishnamurthy, Edwin Pednault, Berthold Rein-
wald, Vikas Sindhwani, Shirish Tatikonda, Yuanyuan Tian, and Shivaku-
mar Vaithyanathan. Systemml: Declarative machine learning on mapre-
duce. In ICDE, pages 231–242, 2011.

Full text available at: http://dx.doi.org/10.1561/1900000056

186 References

A. Ghrab, S. Skhiri, S. Jouili, and E. Zimányi. An analytics-aware conceptual
model for evolving graphs. In Data Warehousing and Knowledge Discovery.
Springer, 2013.

Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos
Guestrin. Powergraph: Distributed graph-parallel computation on natural
graphs. In OSDI, pages 17–30, 2012.

Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw,
Michael J. Franklin, and Ion Stoica. Graphx: Graph processing in a dis-
tributed dataflow framework. In OSDI, pages 599–613, 2014.

Goetz Graefe. Query evaluation techniques for large databases. ACM Comput.
Surv., 25(2):73–170, 1993.

D. Greene, D. Doyle, and P. Cunningham. Tracking the evolution of commu-
nities in dynamic social networks. In ASONAM, 2010.

Yong Guo, Marcin Biczak, Ana Lucia Varbanescu, Alexandru Iosup, Claudio
Martella, and Theodore L. Willke. How well do graph-processing platforms
perform? an empirical performance evaluation and analysis. In IPDPS,
pages 395–404, 2014.

Pankaj Gupta, Ashish Goel, Jimmy Lin, Aneesh Sharma, Dong Wang, and
Reza Zadeh. WTF: the who to follow service at twitter. In WWW, pages
505–514, 2013.

Minyang Han and Khuzaima Daudjee. Giraph unchained: Barrierless
asynchronous parallel execution in pregel-like graph processing systems.
PVLDB, 8(9):950–961, 2015.

Minyang Han, Khuzaima Daudjee, Khaled Ammar, M Tamer Özsu, Xingfang
Wang, and Tianqi Jin. An experimental comparison of Pregel-like graph
processing systems. PVLDB, 7(12):1047–1058, 2014a.

Wentao Han, Youshan Miao, Kaiwei Li, Ming Wu, Fan Yang, Lidong Zhou,
Vijayan Prabhakaran, Wenguang Chen, and Enhong Chen. Chronos: a
graph engine for temporal graph analysis. In EuroSys, pages 1:1–1:14,
2014b.

Wook-Shin Han, Sangyeon Lee, Kyungyeol Park, Jeong-Hoon Lee, Min-Soo
Kim, Jinha Kim, and Hwanjo Yu. TurboGraph: a fast parallel graph engine
handling billion-scale graphs in a single PC. In KDD, pages 77–85, 2013.

Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim,
Phillip B. Gibbons, Garth A. Gibson, Gregory R. Ganger, and Eric P. Xing.
More effective distributed ML via a stale synchronous parallel parameter
server. In NIPS, pages 1223–1231, 2013.

Full text available at: http://dx.doi.org/10.1561/1900000056

References 187

Sungpack Hong, Hassan Chafi, Eric Sedlar, and Kunle Olukotun. Green-marl:
a DSL for easy and efficient graph analysis. In ASPLOS, pages 349–362,
2012.

Sungpack Hong, Semih Salihoglu, Jennifer Widom, and Kunle Olukotun. Sim-
plifying scalable graph processing with a domain-specific language. In CGO,
page 208, 2014.

Botong Huang, Matthias Boehm, Yuanyuan Tian, Berthold Reinwald, Shirish
Tatikonda, and Frederick R. Reiss. Resource elasticity for large-scale ma-
chine learning. In SIGMOD, pages 137–152, 2015.

W. Huo and V. Tsotras. Efficient temporal shortest path queries on evolving
social graphs. In SSDBM, 2014.

Dawei Jiang, Gang Chen, Beng Chin Ooi, Kian-Lee Tan, and Sai Wu. epic:
an extensible and scalable system for processing big data. PVLDB, 7(7):
541–552, 2014.

Alekh Jindal, Samuel Madden, Malú Castellanos, and Meichun Hsu. Graph
analytics using the Vertica relational database. CoRR, abs/1412.5263,
2014a.

Alekh Jindal, Praynaa Rawlani, Eugene Wu, Samuel Madden, Amol Desh-
pande, and Mike Stonebraker. VERTEXICA: your relational friend for
graph analytics! PVLDB, 7(13):1669–1672, 2014b.

Hossein Jowhari and Mohammad Ghodsi. New streaming algorithms for
counting triangles in graphs. In Lusheng Wang, editor, Computing and
Combinatorics, Lecture Notes in Computer Science. Springer Berlin / Hei-
delberg, 2005.

U. Kang, Charalampos E. Tsourakakis, and Christos Faloutsos. PEGASUS:
A peta-scale graph mining system. In ICDM, pages 229–238, 2009.

U. Kang, Hanghang Tong, Jimeng Sun, Ching-Yung Lin, and Christos Falout-
sos. GBASE: a scalable and general graph management system. In
SIGKDD, pages 1091–1099, 2011.

George Karypis and Vipin Kumar. Multilevel k-way partitioning scheme for
irregular graphs. J. Parallel Distrib. Comput., 48(1):96–129, 1998.

Leo Katz. A new status index derived from sociometric analysis. Psychome-
trika, 18(1):39–43, 1953.

Jeremy Kepner and John Gilbert. Graph algorithms in the language of linear
algebra, volume 22. SIAM, 2011.

Full text available at: http://dx.doi.org/10.1561/1900000056

188 References

Zuhair Khayyat, Karim Awara, Amani Alonazi, Hani Jamjoom, DanWilliams,
and Panos Kalnis. Mizan: a system for dynamic load balancing in large-
scale graph processing. In EuroSys, pages 169–182, 2013.

Farzad Khorasani, Keval Vora, Rajiv Gupta, and Laxmi N. Bhuyan. Cusha:
vertex-centric graph processing on gpus. In HPDC, pages 239–252, 2014.

Udayan Khurana and Amol Deshpande. Efficient snapshot retrieval over his-
torical graph data. In ICDE, pages 997–1008, 2013.

Udayan Khurana and Amol Deshpande. Storing and analyzing historical
graph data at scale. In EDBT, pages 65–76, 2016.

Eric D Kolaczyk. Statistical analysis of network data. Springer, 2009.
G. Koloniari and E. Pitoura. Partial view selection for evolving social graphs.

In GRADES workshop, 2013.
M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky, C. Ching, A. Choi,

J. Erickson, M. Grund, D. Hecht, M. Jacobs, I. Joshi, L. Kuff, D. Kumar,
A. Leblang, N. Li, I. Pandis, H. Robinson, D. Rorke, S. Rus, J. Russell,
D. Tsirogiannis, S. Wanderman-Milne, and M. Yoder. Impala: A Modern,
Open-Source SQL Engine for Hadoop. In CIDR, 2015.

Aapo Kyrola, Guy E. Blelloch, and Carlos Guestrin. GraphChi: Large-scale
graph computation on just a PC. In OSDI, pages 31–46, 2012.

A. Labouseur, J. Birnbaum, Jr. Olsen, P., S. Spillane, J. Vijayan, J. Hwang,
and W. Han. The G* graph database: efficiently managing large distributed
dynamic graphs. Distributed and Parallel Databases, 2014.

Longbin Lai, Lu Qin, Xuemin Lin, and Lijun Chang. Scalable subgraph enu-
meration in mapreduce. PVLDB, 8(10):974–985, 2015.

Jure Leskovec and Julian J. Mcauley. Learning to discover social circles in
ego networks. In NIPS, pages 548–556, 2012.

Jimmy Lin and Michael Schatz. Design patterns for efficient graph algorithms
in mapreduce. In MLG, pages 78–85. ACM, 2010.

Guimei Liu and Limsoon Wong. Effective pruning techniques for mining
quasi-cliques. In ECML/PKDD Part II, pages 33–49, 2008.

Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos
Guestrin, and Joseph M. Hellerstein. Graphlab: A new framework for par-
allel machine learning. In UAI, pages 340–349, 2010.

Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos
Guestrin, and Joseph M. Hellerstein. Distributed GraphLab: A framework
for machine learning in the cloud. PVLDB, 5(8):716–727, 2012.

Full text available at: http://dx.doi.org/10.1561/1900000056

References 189

Yi Lu, James Cheng, Da Yan, and Huanhuan Wu. Large-scale distributed
graph computing systems: An experimental evaluation. PVLDB, 8(3):281–
292, 2014.

Peter Macko, Virendra J. Marathe, Daniel W. Margo, and Margo I. Seltzer.
LLAMA: efficient graph analytics using large multiversioned arrays. In
ICDE, pages 363–374, 2015.

Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert,
Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for
large-scale graph processing. In SIGMOD Conference, pages 135–146, 2010.

Mirjana Mazuran, Edoardo Serra, and Carlo Zaniolo. Extending the power
of datalog recursion. VLDB J., 22(4):471–493, 2013.

Robert Ryan McCune, Tim Weninger, and Greg Madey. Thinking like a
vertex: A survey of vertex-centric frameworks for large-scale distributed
graph processing. ACM Comput. Surv., 48(2):25, 2015.

Frank McSherry, Michael Isard, and Derek G Murray. Scalability! but at what
cost. In HotOS. USENIX Association, 2015.

Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shiv-
akumar, Matt Tolton, and Theo Vassilakis. Dremel: Interactive analysis of
web-scale datasets. PVLDB, 3(1):330–339, 2010.

Youshan Miao, Wentao Han, Kaiwei Li, Ming Wu, Fan Yang, Lidong Zhou,
Vijayan Prabhakaran, Enhong Chen, and Wenguang Chen. Immortal-
graph: A system for storage and analysis of temporal graphs. ACM TOS,
July 2015. URL http://research.microsoft.com/apps/pubs/default.
aspx?id=242176.

Svilen R. Mihaylov, Zachary G. Ives, and Sudipto Guha. REX: Recursive,
delta-based data-centric computation. PVLDB, 5(11):1280–1291, 2012.

Jayanta Mondal and Amol Deshpande. Managing large dynamic graphs effi-
ciently. In SIGMOD, pages 145–156, 2012.

Jayanta Mondal and Amol Deshpande. Eagr: supporting continuous ego-
centric aggregate queries over large dynamic graphs. In SIGMOD, pages
1335–1346, 2014.

Inderpal Singh Mumick, Hamid Pirahesh, and Raghu Ramakrishnan. The
magic of duplicates and aggregates. In VLDB, pages 264–277, 1990.

Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul
Barham, and Martín Abadi. Naiad: A timely dataflow system. In SOSP,
pages 439–455, 2013.

Full text available at: http://dx.doi.org/10.1561/1900000056

http://research.microsoft.com/apps/pubs/default.aspx?id=242176
http://research.microsoft.com/apps/pubs/default.aspx?id=242176

190 References

Donald Nguyen, Andrew Lenharth, and Keshav Pingali. A lightweight infras-
tructure for graph analytics. In SOSP, pages 456–471, 2013.

Raj Kumar Pan and Jari Saramäki. Path lengths, correlations, and centrality
in temporal networks. Physical Review E, 2011.

Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin Burtscher, Muham-
mad Amber Hassaan, Rashid Kaleem, Tsung-Hsien Lee, Andrew Lenharth,
Roman Manevich, Mario Méndez-Lojo, Dimitrios Prountzos, and Xin Sui.
The tao of parallelism in algorithms. In PLDI, pages 12–25, 2011.

Abdul Quamar and Amol Deshpande. NScaleSpark: Subgraph-centric graph
analytics on Apache Spark. In Proceedings of the SIGMOD Workshop on
Network Data Analytics (NDA), pages 5:1–5:8, 2016.

Abdul Quamar, Amol Deshpande, and Jimmy Lin. NScale: neighborhood-
centric large-scale graph analytics in the cloud. VLDB Journal, 25(2):
125–150, 2016.

Louise Quick, Paul Wilkinson, and David Hardcastle. Using pregel-like
large scale graph processing frameworks for social network analysis. In
ASONAM, pages 457–463, 2012.

Chenghui Ren, Eric Lo, Ben Kao, Xinjie Zhu, and Reynold Cheng. On query-
ing historical evolving graph sequences. PVLDB, 4(11):726–737, 2011.

Liam Roditty and Uri Zwick. On dynamic shortest paths problems. Algorith-
mica, 61(2):389–401, 2011. .

Kenneth A. Ross and Yehoshua Sagiv. Monotonic aggregation in deductive
databases. In PODS, pages 114–126, 1992.

Maayan Roth, Assaf Ben-David, David Deutscher, Guy Flysher, Ilan Horn,
Ari Leichtberg, Naty Leiser, Yossi Matias, and Ron Merom. Suggesting
friends using the implicit social graph. In KDD, pages 233–242, 2010.

Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. X-stream: edge-centric
graph processing using streaming partitions. In SOSP, pages 472–488, 2013.

Amitabha Roy, Laurent Bindschaedler, Jasmina Malicevic, and Willy
Zwaenepoel. Chaos: scale-out graph processing from secondary storage.
In SOSP, pages 410–424, 2015.

Semih Salihoglu and Jennifer Widom. GPS: a graph processing system. In
SSDBM, pages 22:1–22:12, 2013.

Semih Salihoglu and Jennifer Widom. Optimizing graph algorithms on pregel-
like systems. PVLDB, 7(7):577–588, 2014.

Full text available at: http://dx.doi.org/10.1561/1900000056

References 191

Nadathur Satish, Narayanan Sundaram, Md. Mostofa Ali Patwary, Jiwon Seo,
Jongsoo Park, M. Amber Hassaan, Shubho Sengupta, Zhaoming Yin, and
Pradeep Dubey. Navigating the maze of graph analytics frameworks using
massive graph datasets. In SIGMOD, pages 979–990, 2014.

Sebastian Schelter, Stephan Ewen, Kostas Tzoumas, and Volker Markl. “All
roads lead to rome”: optimistic recovery for distributed iterative data pro-
cessing. In CIKM, pages 1919–1928, 2013.

Jiwon Seo, Stephen Guo, and Monica S. Lam. Socialite: Datalog extensions
for efficient social network analysis. In ICDE, pages 278–289, 2013a.

Jiwon Seo, Jongsoo Park, Jaeho Shin, and Monica S. Lam. Distributed so-
cialite: A datalog-based language for large-scale graph analysis. PVLDB, 6
(14):1906–1917, 2013b.

Zechao Shang and Jeffrey Xu Yu. Catch the wind: Graph workload balancing
on cloud. In ICDE, pages 553–564, 2013.

Bin Shao, Haixun Wang, and Yatao Li. Trinity: a distributed graph engine
on a memory cloud. In SIGMOD, pages 505–516, 2013.

Yingxia Shao, Bin Cui, and Lin Ma. PAGE: A partition aware engine for
parallel graph computation. IEEE Trans. Knowl. Data Eng., 27(2):518–
530, 2015.

Yanyan Shen, Gang Chen, H. V. Jagadish, Wei Lu, Beng Chin Ooi, and Bog-
dan Marius Tudor. Fast failure recovery in distributed graph processing
systems. PVLDB, 8(4):437–448, 2014.

Yossi Shiloach and Uzi Vishkin. An o(log n) parallel connectivity algorithm.
J. Algorithms, 3(1):57–67, 1982.

Alexander Shkapsky, Mohan Yang, and Carlo Zaniolo. Optimizing recursive
queries with monotonic aggregates in deals. In ICDE, pages 867–878, 2015.

Julian Shun and Guy E. Blelloch. Ligra: a lightweight graph processing frame-
work for shared memory. In ACM SIGPLAN Notices, pages 135–146, 2013.

David E. Simmen, Karl Schnaitter, Jeff Davis, Yingjie He, Sangeet Lohari-
wala, Ajay Mysore, Vinayak Shenoi, Mingfeng Tan, and Yu Xiao. Large-
scale graph analytics in aster 6: Bringing context to big data discovery.
PVLDB, 7(13):1405–1416, 2014.

Yogesh Simmhan, Alok Gautam Kumbhare, Charith Wickramaarachchi,
Soonil Nagarkar, Santosh Ravi, Cauligi S. Raghavendra, and Viktor K.
Prasanna. Goffish: A sub-graph centric framework for large-scale graph
analytics. In Euro-Par, pages 451–462, 2014.

Full text available at: http://dx.doi.org/10.1561/1900000056

192 References

Chunyao Song, Tingjian Ge, Cindy Chen, and Jie Wang. Event pattern match-
ing over graph streams. VLDB, 2014.

Isabelle Stanton and Gabriel Kliot. Streaming graph partitioning for large
distributed graphs. In SIGKDD, pages 1222–1230, 2012.

Zhao Sun, Hongzhi Wang, Haixun Wang, Bin Shao, and Jianzhong Li. Ef-
ficient subgraph matching on billion node graphs. PVLDB, 5(9):788–799,
2012.

Narayanan Sundaram, Nadathur Satish, Md. Mostofa Ali Patwary, Subra-
manya Dulloor, Michael J. Anderson, Satya Gautam Vadlamudi, Dipankar
Das, and Pradeep Dubey. Graphmat: High performance graph analytics
made productive. PVLDB, 8(11):1214–1225, 2015.

Siddharth Suri and Sergei Vassilvitskii. Counting triangles and the curse of
the last reducer. In WWW, pages 607–614, 2011.

Aubrey Tatarowicz, Carlo Curino, Evan P. C. Jones, and Sam Madden.
Lookup tables: Fine-grained partitioning for distributed databases. In
ICDE, pages 102–113, 2012.

Carlos H. C. Teixeira, Alexandre J. Fonseca, Marco Serafini, Georgos Siganos,
Mohammed J. Zaki, and Ashraf Aboulnaga. Arabesque: a system for dis-
tributed graph mining. In SOSP, pages 425–440, 2015.

Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,
Ning Zhang, Suresh Anthony, Hao Liu, and Raghotham Murthy. Hive - a
petabyte scale data warehouse using hadoop. In ICDE, pages 996–1005,
2010.

Yuanyuan Tian, Shirish Tatikonda, and Berthold Reinwald. Scalable and
numerically stable descriptive statistics in systemml. In ICDE, pages 1351–
1359, 2012.

Yuanyuan Tian, Andrey Balmin, Severin Andreas Corsten, Shirish Tatikonda,
and John McPherson. From ”think like a vertex” to “think like a graph”.
PVLDB, 7(3):193–204, 2013.

Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad Agarwal,
Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah,
Siddharth Seth, Bikas Saha, Carlo Curino, Owen O’Malley, Sanjay Radia,
Benjamin Reed, and Eric Baldeschwieler. Apache hadoop yarn: Yet another
resource negotiator. In SOCC, pages 5:1–5:16, 2013.

Changliang Wang and Lei Chen. Continuous subgraph pattern search over
graph streams. In ICDE, 2009.

Full text available at: http://dx.doi.org/10.1561/1900000056

References 193

Jingjing Wang, Magdalena Balazinska, and Daniel Halperin. Asynchronous
and fault-tolerant recursive datalog evaluation in shared-nothing engines.
PVLDB, 8(12):1542–1553, 2015.

Peng Wang, Kaiyuan Zhang, Rong Chen, Haibo Chen, and Haibing Guan.
Replication-based fault-tolerance for large-scale graph processing. In DSN,
pages 562–573, 2014.

Ming Wu, Fan Yang, Jilong Xue, Wencong Xiao, Youshan Miao, Lan Wei,
Haoxiang Lin, Yafei Dai, and Lidong Zhou. Gram: Scaling graph compu-
tation to the trillions. In SoCC, pages 408–421, 2015.

Jingen Xiang, Cong Guo, and Ashraf Aboulnaga. Scalable maximum clique
computation using mapreduce. In ICDE, pages 74–85, 2013.

Chenning Xie, Rong Chen, Haibing Guan, Binyu Zang, and Haibo Chen.
SYNC or ASYNC: time to fuse for distributed graph-parallel computation.
In PPoPP, pages 194–204, 2015a.

Wenlei Xie, Guozhang Wang, David Bindel, Alan J. Demers, and Johannes
Gehrke. Fast iterative graph computation with block updates. PVLDB, 6
(14):2014–2025, 2013.

Wenlei Xie, Yuanyuan Tian, Yannis Sismanis, Andrey Balmin, and Peter J.
Haas. Dynamic interaction graphs with probabilistic edge decay. In ICDE,
pages 1143–1154, 2015b.

Konstantinos Xirogiannopoulos, Udayan Khurana, and Amol Deshpande.
Graphgen: Exploring interesting graphs in relational data. PVLDB, 8(12),
2015.

Da Yan, James Cheng, Yi Lu, and Wilfred Ng. Blogel: A block-centric frame-
work for distributed computation on real-world graphs. PVLDB, 7(14):
1981–1992, 2014a.

Da Yan, James Cheng, Kai Xing, Yi Lu, Wilfred Ng, and Yingyi Bu. Pregel
algorithms for graph connectivity problems with performance guarantees.
PVLDB, 7(14):1821–1832, 2014b.

Da Yan, James Cheng, Yi Lu, and Wilfred Ng. Effective techniques for mes-
sage reduction and load balancing in distributed graph computation. In
WWW, pages 1307–1317, 2015.

Da Yan, Yingyi Bu, Yuanyuan Tian, Amol Deshpande, and James Cheng.
Big graph analytics systems. In SIGMOD, pages 2241–2243, 2016a.

Da Yan, James Cheng, M. Tamer Özsu, Fan Yang, Yi Lu, John C. S. Lui,
Qizhen Zhang, and Wilfred Ng. A general-purpose query-centric framework
for querying big graphs. PVLDB, 9(7):564–575, 2016b.

Full text available at: http://dx.doi.org/10.1561/1900000056

194 References

Da Yan, James Cheng, and Fan Yang. Lightweight fault tolerance in large-
scale distributed graph processing. CoRR, abs/1601.06496, 2016c.

Da Yan, Yuzhen Huang, James Cheng, and Huanhuan Wu. Efficient process-
ing of very large graphs in a small cluster. CoRR, abs/1601.05590, 2016d.

Mohan Yang, Alexander Shkapsky, and Carlo Zaniolo. Parallel bottom-up
evaluation of logic programs: Deals on shared-memory multicore machines.
In ICLP, 2015.

Philip S. Yu, Xin Li, and Bing Liu. On the temporal dimension of search. In
WWW Alt, pages 448–449, 2004.

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin
Ma, Murphy McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica.
Resilient distributed datasets: A fault-tolerant abstraction for in-memory
cluster computing. In NSDI, pages 15–28, 2012.

Honglei Zhang, Jenni Raitoharju, Serkan Kiranyaz, and Moncef Gabbouj.
Limited random walk algorithm for big graph data clustering. CoRR,
abs/1606.06450, 2016.

Yanfeng Zhang, Qixin Gao, Lixin Gao, and Cuirong Wang. Maiter: An asyn-
chronous graph processing framework for delta-based accumulative iterative
computation. IEEE Trans. Parallel Distrib. Syst., 25(8):2091–2100, 2014.

Peixiang Zhao, Charu C. Aggarwal, and Min Wang. gSketch: on query esti-
mation in graph streams. VLDB, 2011.

Da Zheng, Disa Mhembere, Randal C. Burns, Joshua T. Vogelstein, Carey E.
Priebe, and Alexander S. Szalay. Flashgraph: Processing billion-node
graphs on an array of commodity ssds. In FAST, pages 45–58, 2015.

Li Zheng, Chao Shen, Liang Tang, Tao Li, Steve Luis, and Shu-Ching Chen.
Applying data mining techniques to address disaster information manage-
ment challenges on mobile devices. In KDD, pages 283–291, 2011.

Jianlong Zhong and Bingsheng He. Medusa: Simplified graph processing on
gpus. IEEE Trans. Parallel Distrib. Syst., 25(6):1543–1552, 2014.

Chang Zhou, Jun Gao, Binbin Sun, and Jeffrey Xu Yu. Mocgraph: Scalable
distributed graph processing using message online computing. PVLDB, 8
(4):377–388, 2014.

Yang Zhou, Ling Liu, Kisung Lee, and Qi Zhang. Graphtwist: Fast iterative
graph computation with two-tier optimizations. PVLDB, 8(11):1262–1273,
2015.

Full text available at: http://dx.doi.org/10.1561/1900000056

References 195

Xiaowei Zhu, Wentao Han, and Wenguang Chen. Gridgraph: Large-scale
graph processing on a single machine using 2-level hierarchical partitioning.
In USENIX ATC, pages 375–386, 2015.

Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. Gemini: A
computation-centric distributed graph processing system. In OSDI, 2016.

Full text available at: http://dx.doi.org/10.1561/1900000056

	Introduction
	History of Big Graph Systems Research
	Features of Big Graph Systems
	Organization of the Survey

	Preliminaries
	Data Models and Analytics Tasks
	Distributed Architecture
	Single-Machine Architecture

	I Vertex-Centric Programming Model
	Vertex-Centric Message Passing (Pregel-like) Systems
	The Framework of Pregel
	Algorithm Design in Pregel
	Optimizations in Communication Mechanism
	Load Balancing
	Out-Of-Core Execution
	Fault Tolerance
	Summary

	Vertex-Centric Message-Passing Systems Beyond Pregel
	Block-Centric Computation
	Asynchronous Execution
	Vertex-Centric Query Processing
	Summary

	Vertex-Centric Systems with Shared Memory Abstraction
	Distributed Systems with Shared Memory Abstraction
	Out-of-Core Systems for a Single PC
	Summary

	II Beyond Vertex-Centric Programming Model
	Matrix Algebra-Based Systems
	PEGASUS
	GBASE
	SystemML
	Summary

	Subgraph-Centric Programming Models
	Complex Analysis Tasks
	NScale
	Arabesque
	Summary

	DBMS-Inspired Systems
	The Recursive Query Abstraction
	Dataflow-Based Graph Analytical Systems
	Incremental Graph Processing
	Integrated Analytical Pipelines
	Summary

	III Miscellaneous Issues
	More on Single-Machine Systems
	Vertex-Centric Systems with Matrix Backends
	In-Memory Systems for Multi-Core Execution
	Summary

	Hardware-Accelerated Systems
	Out-of-Core SSD-Based Systems
	Systems for Execution with GPU(s)
	Summary

	Temporal and Streaming Graph Analytics
	Overview
	Historical Graph Systems
	Streaming Graph Systems
	Brief Summary of Other Work
	Summary

	Conclusions and Future Directions
	References

