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ABSTRACT

Scalable and efficient distributed learning is one of the main
driving forces behind the recent rapid advancement of ma-
chine learning and artificial intelligence. One prominent
feature of this topic is that recent progress has been made
by researchers in two communities: (1) the system commu-
nity such as database, data management, and distributed
systems, and (2) the machine learning and mathematical
optimization community. The interaction and knowledge
sharing between these two communities has led to the rapid
development of new distributed learning systems and theory.

In this monograph, we hope to provide a brief introduction
of some distributed learning techniques that have recently
been developed, namely lossy communication compression
(e.g., quantization and sparsification), asynchronous com-
munication, and decentralized communication. One special
focus in this monograph is on making sure that it can be
easily understood by researchers in both communities — on
the system side, we rely on a simplified system model hiding
many system details that are not necessary for the intuition
behind the system speedups; while, on the theory side, we

Ji Liu and Ce Zhang (2020), “Distributed Learning Systems with First-Order
Methods”, Foundations and TrendsR© in Databases: Vol. 9, No. 1, pp 1–100. DOI:
10.1561/1900000062.
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rely on minimal assumptions and significantly simplify the
proof of some recent work to achieve comparable results.
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Notations and Definitions

Throughout this monograph, we make the following definitions.

• All vectors are assumed to be column vectors by default.

• α, β, and γ usually denote constants.

• Bold lowercase letters usually denote vectors, such as x, y, and v.

• 〈x,y〉 denotes the dot product between two vectors x and y.

• Capital letters usually denote matrices, such as W .

• . means “small and equal to up to a constant factor”, for example,
at . bt means that there exists a constant α > 0 independent of t
such that at ≤ αbt.

• 1 denotes a vector with 1 at everywhere and its dimension depends
on the context.

• f ′(·) denotes the gradient or differential of the function f(·).

• [M ] := {1, 2, . . . ,M} denotes a set containing integers from
1 to M .

3
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1
Introduction

Real-world distributed learning systems, especially those relying on
first-order methods, are often constructed in two “phases” — first comes
the textbook (stochastic) gradient descent (SGD) algorithm, and then
certain aspects of the system design are “relaxed” to remove the system
bottleneck, be that communication bandwidth, latency, synchronization
cost, etc. Throughout this work, we will describe multiple popular ways
of system relaxation developed in recent years and analyze their system
behaviors and theoretical guarantees.

In this section, we provide the background for both the theory and
the system. On the theory side, we describe the intuition and theoretical
properties of standard gradient descent (GD) and stochastic gradient
descent (SGD) algorithms (we refer the reader to Bottou et al., 2016 for
more details). On the system side, we introduce a simplified performance
model that hides many details but is just sophisticated enough for us to
reason about the performance impact of the different system relaxation
techniques that we will introduce in the later sections.

Summary of Results. In this monograph, we focus on three different
system relaxation techniques, namely lossy communication compression,

4
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1.1. Gradient Descent 5

Table 1.1: Summary of results covered in this monograph. For distributed settings,
we assume that there are N workers and the latency and the bandwidth of the
network are α and β, respectively. The lossy compression scheme has a compression
ratio of η(< 1) (which introduces additional variance σ′ to the gradient estimator)
and the decentralized communication scheme uses a communication graph g of degree
deg(G). ς measures the data variation among workers in the decentralized scenario —
ς = 0 if all workers have the same dataset. We assume the simplified communication
model and communication pattern as described in Subsection 1.3

Algorithm System # Iterations Communication
Optimization to ε Cost

GD / O
(

1
ε

)
N/A

SGD / O

(
1
ε

+ σ2

ε2

)
N/A

mb-SGD Distributed O

(
1
ε

+ σ2

Nε2

)
O(Nα+ β)

Baseline

CSGD Compression O

(
1
ε

+ σ2

Nε2 + σ′2

ε2

)
O(Nα+ βη)

EC-SGD Compression O

(
1
ε

+ σ2

Nε2 + σ′

ε2/3

)
O(Nα+ βη)

ASGD Asynchronization O

(
N
ε

+ σ2

Nε2

)
O(Nα+ β)

DSGD Decentralization O

(
1
ε

+ σ2

Nε2 + ς

(1−ρ)ε2/3

)
O(deg(G)(α+ β))

asynchronous communication, and decentralized communication. For
each system relaxation technique, we study their convergence behavior
(i.e., # iterations we need to achieve ε precision) and the communication
cost per iteration. Table 1.1 summarizes the results we will cover in this
monograph.

1.1 Gradient Descent

Let us consider the generic machine learning objective that can be
summarized by the following form

min
x∈Rd

{
f(x) := 1

M

M∑
m=1

Fm(x)
}
. (1.1)

Let f? := minx f(x) and assume that it exists by default. Each Fm
corresponds to a data sample in the context of machine learning.

Full text available at: http://dx.doi.org/10.1561/1900000062



6 Introduction

The gradient descent (GD) can be described as

(GD) xt+1 = xt − γf ′(xt) (1.2)

where t is the iteration index and f ′(xt) is the gradient of f at xt.

1.1.1 Intuitions

We provide two intuitions about the gradient descent GD algorithm to
indicate why it will work.

Steepest Descent Direction. The gradient (or a differential) of a
function is the steepest direction to increase the function value given
an infinitely small step, which can be seen from the property of the
function gradient ∀‖v‖ = 1

〈f ′(x),v〉 = f ′v(x) := lim
δ→0

f(x + vδ)− f(x)
δ

.

f ′v(x) is the directional gradient, which indicates how much increment
there is on function value along the direction v by a tiny unit step. To
find the steepest unit descent direction is to maximize

max
‖v‖=1

f ′v(x).

Since f ′v(x) = 〈f ′(x),v〉, it is easy to verify that the steepest direction
is v? = f ′(x)

‖f ′(x)‖ . Note that our goal is to minimize the function value.
Therefore, GD is a natural idea via moving the model xt along the
steepest “descent” direction −f ′(xt).

Minimizing a Model Function. Another perspective from which to
view gradient descent is based on the model function. Since the original
objective function f(x) is usually very complicated, it is very hard to
minimize the objective function directly. A straightforward idea is to
construct a model function to locally approximate (at xt) the original
objective in each iteration. The model function needs to be simple and
to approximate the original function well enough. Therefore, the most
natural idea is to choose a quadratic function (that is usually simple

Full text available at: http://dx.doi.org/10.1561/1900000062



1.1. Gradient Descent 7

to solve)

Mxt,γ(x) := f(xt) + 〈f ′(xt),x− x〉+ 1
2γ ‖x− xt‖2.

This model function is a good approximation in the sense that

• f(xt) = Mxt,γ(xt)

• f ′(xt) = M ′xt,γ(xt)

• f(·) ≤Mxt,γ(·) if the learning rate γ is sufficiently small.

For the first two, it is easy to understand why they are important.
The last one is important to the convergence, which will be seen soon.
Figure 1.1 illustrates the geometry of the model function. One can verify
that the GD algorithm is nothing but iteratively update the optimization
variable x via minimizing the model function at the current point xt:

xt+1 = argmin
x

Mxt,γ(x)

= argmin
x

1
2γ
∥∥x− (xt − γf ′(xt))∥∥2 + constant

= xt − γf ′(xt).

The convergence of GD can also be revealed by this intuition — xt+1
always improves xt unless the gradient is zero

f(xt+1) ≤Mxt,γ(xt+1) ≤Mxt,γ(xt) = f(xt),

where f(xt=1) = f(xt) holds if and only if f ′(xt) = 0.

Figure 1.1: (Left) Illustration of gradient and steepest descent direction. (Right)
Illustration of model function.

Full text available at: http://dx.doi.org/10.1561/1900000062



8 Introduction

1.1.2 Convergence Rate

From the intuition of GD, the convergence of GD is automatically implied.
This subsection provides the convergence rate via rigorous analysis.
To show the convergence rate, let us first make some commonly used
assumptions in the following.

Assumption 1. We assume:

• (Smoothness) All functions Fm(·)’s are differentiable.

• (L-Lipschitz gradient) The objective function is assumed to
have a Lipschitz gradient, that is, there exists a constant L
satisfying ∀x, ∀y

‖f ′(x)− f ′(y)‖ ≤ L‖x− y‖ (1.3)

f(y)− f(x) ≤ 〈f ′(x),y− x〉+ L

2 ‖y− x‖2. (1.4)

The smoothness assumption on Fm(·)’s implies that the overall objec-
tive function f(·) is differentiable or smooth too. The assumption (1.4)
can be deduced from (1.3), and we refer readers to the textbook by
Boyd and Vandenberghe (2004) or their course link.1 The Lipschitz gra-
dient assumption essentially assumes that the curvature of the objective
function is bounded by L. We make the assumption of (1.4) just for
convenience of use later.

We apply the Lipschitz gradient assumption and immediately obtain
the following golden inequality:

f(xt+1)− f(xt) ≤ 〈f ′(xt),xt+1 − xt〉+ L

2 ‖xt+1 − xt‖2

= −γ‖f ′(xt)‖2 + γ2L

2 ‖f
′(xt)‖2

= −γ
(

1− γL

2

)
‖f ′(xt)‖2. (1.5)

We can see that as long as the learning rate γ is small enough such that
1− γL/2 > 0, f(xt+1) can improve f(xt). Therefore, the learning rate

1http://www.seas.ucla.edu/~vandenbe/236C/lectures/gradient.pdf.
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1.1. Gradient Descent 9

cannot be too large to guarantee the progress in each step. However, it
is also a bad idea if the learning rate is too small, since the progress is
proportional to γ(1− γL/2). The optimal learning rate can be obtained
by simply maximizing

γ(1− γL/2)

over γ, which gives the optimal learning rate for the gradient descent
method as γ? = 1/L. Substituting γ = γ? into (1.5) yields

f(xt+1)− f(xt) ≤ −
1

2L‖f
′(xt)‖2

or equivalently

f(xt)− f(xt+1) ≥ 1
2L‖f

′(xt)‖2. (1.6)

Summarizing Eq. (1.6) over t from t = 1 to t = T yields

1
2L

T∑
t=1
‖f ′(xt)‖2 ≤

T∑
t=1

(f(xt)− f(xt+1))

= f(x1)− f(xt+1)
≤ f(x1)− f?.

Rearranging the inequality yields the following convergence rate for
gradient descent.

Theorem 1.1. Under Assumption 1, the gradient descent method
admits the following convergence rate

1
T

T∑
t=1
‖f ′(xt)‖2 .

L

T
(1.7)

by choosing the learning rate γ = 1
L . Here, we treat f(x1)− f?

as a constant.

This result indicates that the averaged gradient norm converges in
the rate of 1/T . It is worth noting that, unlike the convex case, we
are unable to use the commonly used criterion f(xt)− f? to evaluate
the convergence (efficiency). That is to say, the algorithm guarantees

Full text available at: http://dx.doi.org/10.1561/1900000062



10 Introduction

the convergence only to a stationary point (‖f ′(xt)‖2 → 0) because of
the nonconvexity. The connection between two criteria f(xt)− f? and
‖f ′(xt)‖2 can be seen from

1
L
‖f ′(xt)‖2 ≤ f(xt)− f?.

The proof can be found in the standard textbook or the course link.2
There are two major disadvantages for the GD method:

• The computational complexity and system overhead can be too
high in each iteration to compute a single gradient.

• For nonconvex objectives, the gradient descent often sticks on a
bad (shallow) local optimum.

1.1.3 Iteration/Query/Computation Complexity

The convergence rate is the key to analyzing the overall complexity.
People usually consider three types of overall complexity: (1) iteration
complexity, (2) query complexity, and (3) computation complexity.
To evaluate the overall complexity to solve the optimization problem
in (1.1), we need first to specify a precision of our solution, since in
practice it is difficult (also not really necessary) to exactly solve the
optimization problem. In particular, in our case the overall complexity
must take into account how many iterations/queries/computations are
required to ensure the average gradient norm 1

T

∑T
t=1 ‖f ′(xt)‖2 ≤ ε.

Iteration Complexity. From Theorem 1.1, it is straightforward to
verify that the iteration complexity is

O

(
L

ε

)
. (1.8)

Query Complexity. Here “query” refers to the number of queries of
the data samples. GD needs to query all M samples in each iteration.
Therefore, the query complexity can be computed from the iteration

2https://www.cs.rochester.edu/~jliu/CSC-576/class-note-6.pdf.
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1.2. Stochastic Gradient Descent 11

complexity by multiplying the number of queries in each iteration

O

(
LM

ε

)
. (1.9)

Computation Complexity. Similarly, the computation complexity can
be computed from the query complexity by multiplying the complexity
of computing one sample gradient F ′m(x). The typical complexity of
computing one sample gradient is proportional to the dimension of the
variable, which is d in our notation. To see the reason, let us imagine a
naive linear regression with Fm := 1

2(a>mx−b)2 and a sample gradient of
f ′m(x) := am(a>mx− b). Therefore, the computation complexity of GD is

O

(
LMd

ε

)
.

It is worth pointing out that the computation complexity is usually pro-
portional to the query complexity (no matter for what kinds of objective)
if we consider and compare only first-order (or sample-gradient-based)
methods. Therefore, in the remainder of this monograph, we compare
only the query complexity and the iteration complexity.

1.2 Stochastic Gradient Descent

One disadvantage of GD is that it requires one to query all samples in an
iteration, which could be overly expensive. To overcome this shortcoming,
the stochastic gradient method SGD is widely used in machine learning
training. Instead of computing a full gradient in each iteration, it is
usual to compute only the gradient on a batch (or minibatch) of sampled
data. In particular, people randomly sample an mt ∈ [M ] independently
each time and update the model by

(SGD) xt+1 = xt − γF ′mt(xt), (1.10)

wheremt ∈ [M ] denotes the index randomly selected at the tth iteration.
F ′m(x) (or F ′mt(xt)) is called the stochastic gradient (at the tth iteration).
We use g(·) := F ′m(·) (or gt(·) := F ′mt(·)) to denote the stochastic
gradient (or at the tth iteration) for short. An important property
for the stochastic gradient is that its expectation is equal to the true

Full text available at: http://dx.doi.org/10.1561/1900000062
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gradient, that is,

E[g(x)] = Em[F ′m(x)] = f ′(x) ∀x.

An immediate advantage of SGD is that the computational complexity
reduces to O(d) per iteration. It is worth pointing out that the SGD
algorithm is NOT a descent algorithm3 due to the randomness.

1.2.1 Convergence Rate

The next questions are whether it converges and, if it does, how quickly.
We first make a typical assumption.

Assumption 2. We make the following assumption:

• (Unbiased gradient) The stochastic gradient is unbiased,
that is,

Em[F ′m(x)] = f ′(x) ∀x.

• (Bounded stochastic variance) The stochastic gradient
is with bounded variance, that is, there exists a constant σ
satisfying

Em[‖F ′m(x)− f ′(x)‖2] ≤ σ2 ∀x.

We first apply the Lipschitzian gradient property in Assumption 1:

f(xt+1)− f(xt) ≤ 〈f ′(xt),xt+1 − xt〉+ L

2 ‖xt+1 − xt‖2

= −γ〈f ′(xt),gt(xt)〉+ Lγ2

2 ‖gt(xt)‖
2. (1.11)

Note two important properties:

• E[〈f ′(xt),gt(xt)〉] = 〈f ′(xt),E[gt(xt)]〉 = ‖f ′(xt)‖2

• E[‖gt(xt)‖2] = ‖f ′(xt)‖2 + E[‖gt(xt)− f ′(xt)‖2] ≤ ‖f ′(xt)‖2 +σ2,

3A descent algorithm means f(xt+1) ≤ f(xt), that is, xt+1 is not always worse
than xt for any iterate t.
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1.2. Stochastic Gradient Descent 13

where the second property uses the property of variance, that is, any
random variable vector ξ satisfies

E[‖ξ‖2] = ‖E[ξ]‖2 + E[‖ξ − E[ξ]‖]2. (1.12)

Apply these two properties to (1.11) and take expectation on both sides:

E[f(xt+1)]− E[f(xt)]

≤ −γE[‖f ′(xt)‖2] + Lγ2

2 (E[‖f ′(xt)‖2] + σ2) (1.13)

≤ −γ
(

1− γL

2

)
E[‖f ′(xt)‖2] + γ2

2 Lσ
2. (1.14)

From (1.13), we can see that SGD does not guarantee “descent” in each
iteration, unlike GD, but it does guarantee “descent” in the expectation
sense in each iteration as long as γ is small enough and ‖f ′(xt)‖2 > 0.
This is because the first term in (1.13) is in the order of O(γ) while the
second term is in the order of O(γ2).

Next we summarize (1.13) from t = 1 to t = T and obtain

E[f(xT+1)]− f(x1) ≤ −γ
(

1− γL

2

) T∑
t=1

E[‖f ′(xt)‖2] + γ2

2 TLσ
2.

(1.15)

We choose the learning rate γ = 1
L+σ

√
TL

which implies that (1−γL/2) >
1/2. It follows

1
T

T∑
t=1

E[‖f ′(xt)‖2]

.
f(x1)− E[f(xT+1)]

Tγ
+ γLσ2

.
f(x1)− f?

Tγ
+ γLσ2

.
(f(x1)− f?)L

T
+ (f(x1)− f?)

√
Lσ√

T
.

Full text available at: http://dx.doi.org/10.1561/1900000062



14 Introduction

Therefore the convergence rate of SGD can be summarized into the
following theorem.

Theorem 1.2. Under Assumptions 1 and 2, the SGD method
admits the following convergence rate

1
T

T∑
t=1

E[‖f ′(xt)‖2] .
L

T
+
√
Lσ√
T

by choosing the learning rate γ = 1
L+σ

√
TL

. Here we treat f(x1)−
f? as a constant.

We highlight the following observations from Theorem 1.2.

• (Consistent with GD) If σ = 0, the SGD algorithm reduces to
GD and the convergence rate becomes L(f(x1)− f?)/L, which is
consistent with the convergence rate for GD proven in Theorem 1.1.

• (Asymptotic convergence rate) The convergence rate of SGD
achieves O(1/

√
T ).

1.2.2 Iteration/Query Complexity

Using a similar analysis as Subsection 1.1.3, we can obtain the iteration
complexity of SGD, which is also the query complexity (since there is
only one query per one sample gradient)

O

(
L

ε
+ Lσ2

ε2

)
.

It is worse than GD in terms of the iteration complexity in (1.8), which
is not a surprising result. The comparison of query complexity makes
more sense since it is more related to the physical running time or the
computation complexity. From the detailed comparison in Table 1.2, we
can see that

• SGD is superior to GD, if σ2

M � ε;

• SGD is inferior to GD, if σ2

M � ε.
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1.2. Stochastic Gradient Descent 15

Table 1.2: Complexity comparison among GD, SGD, and mb-SGD

Algorithms Iteration Complexity Query Complexity

GD O
(
L
ε

)
O
(
ML
ε

)
SGD O

(
L
ε + Lσ2

ε2

)
O
(
L
ε + Lσ2

ε2

)
mb-SGD O

(
L
ε + Lσ2

Bε2

)
O
(
LB
ε + Lσ2

ε2

)

It is worth pointing out that when the number of samples M is huge
and a low precision solution is satisfactory,4 σ

M
√
L
� ε usually holds.

As a result, SGD is favored for solving big data problems.

1.2.3 Minibatch Stochastic Gradient Descent (mb-SGD)

A straightforward variant of the GD algorithm is to compute the gradient
of a minibatch of samples (instead of a single sample) in each iteration,
that is,

gB(x) = 1
B

∑
m∈B

F ′m(x), (1.16)

where B := |B|. The minibatch B is obtained by using i.i.d. samples
with (or without) replacement. One can easily verify that

E[gB(x)] = f ′(x).

Sample “With” Replacement. The stochastic variance (for the “with”
replacement case) can be bounded by

E[‖gB(x)− f ′(x)]‖2]

= E

∥∥∥∥∥ 1
B

∑
m∈B

(
F ′m(x)− f ′(x)

)∥∥∥∥∥
2
 (1.17)

4A low precision solution is satisfactory in many application scenarios, since a
high precision solution may cause an unwanted overfitting issue.
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= 1
B

∑
m∈B

E
[∥∥F ′m(x)− f ′(x)

∥∥2
]

≤ σ2

B
(from Assumption 2) .

Sample “Without” Replacement. The stochastic variance for the
“without” replacement is even smaller, but it involves a bit more com-
plicated derivation. We essentially need the following key lemma.

Lemma 1.3. Give a set including M ≥ 2 real numbers
{a1, a2, . . . , aM}. Define a random variable

ξ̄[B] := 1
B

B∑
m=1

ξm,

where ξ1, . . . , ξB are uniformly randomly sampled from the set
“without” replacement, and B(1 ≤ B ≤ M) is the batch size.
Then the following equality holds

Var[ξ̄] =
(
M −B
M − 1

) Var[ξ1]
B

.

Proof. First, it is not hard to see that the marginal distributions of
ξm’s are identical. For simplicity of notation, we assume that E[ξm] = 0
without the loss of generality. Therefore, we have Var[ξm] = E[ξ2

m] for
all k.

Next we have the following derivation:

Var[Bξ̄[B]] = E[(Bξ̄[B])2] (due to E[ξ̄[B]] = 0)

=
B∑

m=1
E[ξ2

m] +
∑
k 6=l

E[ξmξl]

= BVar[ξ1] +B(B − 1)E[ξ1ξ2], (1.18)

where the last equality uses the fact E[ξ2
m] = Var[ξk] = Var[ξ1] for any

k and E[ξkξl] = E[ξ1ξ2] for any k 6= l. Note that Var[Mξ̄[M ]] = 0, since
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it has only one possible combination for {ξ1, ξ2, . . . , ξM}. Then letting
B = M obtains the following dependence from (1.18)

E[ξ1ξ2] = −1
M − 1Var[ξ1].

Plug this result into (1.18)

Var[Bξ̄[B]] = B

(
M −B
M − 1

)
Var[ξ1],

which implies the claimed result.

If am’s are vectors and satisfy 1
M

∑M
m=1 ξm = 0, from Lemma 1.3

one can easily verify

E[‖ξ̄‖2] = B

(
M −B
M − 1

)
E[‖ξ1‖2]. (1.19)

Now we are ready to compute the stochastic variance for the “with-
out” replacement sampling strategy. Let B be a batch of samples “with-
out” replacement. Then we let ξm := F ′m(x) − f ′(x) and from (1.19)
obtain

E[‖gB(x)− f ′(x)]‖2] = E[‖ξ̄‖2]

=
(
M −B
M − 1

) E[‖ξ1‖2]
B

≤
(
M −B
M − 1

)
σ2

B

≤ σ2

B
.

To sum up, we have the stochastic variance bounded by σ2

B no matter
“with” or “without” replacement sampling.

We can observe that the effect of using a minibatch stochastic
gradient is nothing but reduced variance. All remaining analysis for the
convergence rate remains the same. Therefore, it is quite easy to obtain
the convergence rate of mb-SGD

1
T

T∑
t=1

E[‖f ′(xt)‖2] .
L

T
+
√
Lσ√
TB

. (1.20)

The iteration complexity and the query complexity are reported in
Table 1.2.
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1.3 A Simplified Distributed Communication Model

When scaling up the stochastic gradient descent (SGD) algorithm to
a distributed setting, one often needs to develop system relaxations
techniques to achieve better performance and scalability. In this mono-
graph, we describe multiple popular system relaxation techniques that
have been developed in recent years. In this subsection, we introduce a
simple performance model of a distributed system, which will be used
in later sections to reason about the performance impact of different
relaxation techniques.

From a mathematical optimization perspective, all of the system
relaxations that we will describe do not make the convergence (loss vs.
# iterations/epochs) faster.5 Then why do we even want to introduce
these relaxations into our system in the first place?

One common theme of the techniques we cover in this monograph
is that their goal is not to improve the convergence rate in terms
of # iterations/epochs; rather, their goal is to make each iteration
finish faster in terms of wall-clock time. As a result, to reason about
each system relaxation technique in this monograph, we need to first
agree on a performance model of the underlying distributed system. In
this subsection, we introduce a very simple performance model — it
ignores many (if not most) important system characteristics, but it is
just informative enough for readers to understand why each system
relaxation technique in this monograph actually makes a system faster.

1.3.1 Assumptions

In practice, it is often the case that the bandwidth or latency of
each worker’s network connection is the dominating bottleneck in the
communication cost. As a result, in this monograph we focus on the
following simplified communication model.

Figure 1.2 illustrates our communication model. Each worker (blue
rectangle) corresponds to one computation device (worker), and all

5The reason that we emphasize the “mathematical optimization” perspective is
that some researchers find that certain system relaxations can actually lead to better
generalization performance. We do not consider generalization in this monograph.

Full text available at: http://dx.doi.org/10.1561/1900000062



1.3. A Simplified Distributed Communication Model 19

Figure 1.2: An illustration of the distributed communication model we use in
this monograph. We assume that all devices (worker, machine) are connected via a
“logical switch” whose property is defined in Subsection 1.3.

workers are connected via a “logical switch” that has the following
property.

1. The switch has infinitely large bandwidth. We make this simpli-
fying assumption to reflect the observation that, in practice, the
bottleneck is often the bandwidth or latency of each worker’s
network connection.

2. For each message that “passes through” the switch (sent by worker
wi and received by worker wj), the switch adds a constant delay
tlatency independently of the number of concurrent messages that
this switch is serving. This delay is the timestamp difference
between the sender sending out the first bit and the receiver
receiving the first bit.

For each worker, we also assume the following properties.

1. Each worker can only send one message at the same time.

2. Each worker can only receive one message at the same time.

3. Each worker can concurrently receive one message and send one
message at the same time.

4. Each worker has a fixed bandwidth, i.e., to send/receive one unit
(e.g., MB) amount of data, it requires ttransfer1MB seconds.
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M1

M2

M3

Send to M2

Send to M1

Send to M1

Receive from M2 Receive from M3

Receive from M1

Wait transfer to finish

Figure 1.3: Illustration of the communication pattern of Example 1.2.

Example 1.1. Under the above communication model, consider the
following three events:

time event
0:05 M1 send 1MB to M2
0:06 M2 send 1MB to M1
0:06 M3 send 1MB to M2

We assume that the latency added by the switch tlatency is 1.5 units of
time and it took 5 units of time to transfer 1 MB of data. Figure 1.3
illustrates the timeline on three machines under our communication
model. The yellow block corresponds to the latency added by the “logical
switch”. We also see that the machine M1 can concurrently send (blue
block) and receive (orange block) data at the same time; however,
when the machine M3 tries to send data to M1, because the machine
M2 is already sending data to M1, M3 needs to wait (the shallow blue
block of M3).

Example 1.2. Figure 1.4 illustrates a hypothetical scenario in which
all data sent in Example 1.2 are “magically” compressed by 2× at the
sender. As we will see in later sections, this is similar to what would
happen if one were to compress the gradient by 2× during training.

We make multiple observations from Figure 1.4.

1. First, compressing data does make the “system” faster. Without
compression, all three events finish in 14 units of time (Figure 1.3)
whereas it finishes in 9 units of time after compression. This is
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M1

M2

M3

Figure 1.4: Illustration of the communication pattern of Example 1.2, with 2×
data compression.

because the time used to transfer the data is decreased by half in
our communication model.

2. Second, even if the data are compressed by 2×, the speedup of
the system is smaller than that; in fact, it is only 14/9 = 1.55×.
This is because, even though the transfer time is cut by half, the
communication latency does not decrease as a result of the data
compression.

We now use the above communication model to describe the com-
munication patterns of three popular ways to implement distributed
stochastic gradient descent. These implementations will often serve
as the baseline from which we apply different system relaxations to
remove certain system bottlenecks that arise in different configurations
of (tlatency, ttransfer) together with the relative computational cost on
each machine.

Workloads. We focus on one of the core building blocks to implement
a distributed SGD system — each worker Mi holds a parameter vector
wi, and they communicate to compute the sum of all parameter vectors:
S =

∑
iwi. At the end of communication, each worker holds one copy

of S.

1.3.2 Synchronous Parameter Server

The parameter server is not only one of the most popular system
architectures for distributed stochastic gradient descent; it is also one
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Parameter Server Workers

Figure 1.5: Illustration of the parameter server architecture with a single dedicated
parameter server.

of the most popular communication models that researchers have in
mind when they conduct theoretical analysis. In a parameter server
architecture, one or more machines serve as the parameter server(s)
and other machines serve as the workers processing data. Periodically,
workers send updates to the parameters to the parameter servers and
the parameter servers send back the updated parameters. Figure 1.5
illustrates this architecture: the orange machine is the parameter server
and the blue machines are the workers.

A real-world implementation of a parameter server architecture
usually involves many system optimizations to speed up the communi-
cation. In this subsection, we build our abstraction using the simplest
implementation with only a single machine serving as the parameter
server. We also scope ourselves and only focus on the synchronous
communication case.

When using this simplified parameter server architecture to calculate
the sum S, each worker Mi sends their local parameter vector wi to the
parameter server, and the parameter server collects all these local copies,
sums them up, and sends back to each worker. In a simple example with
three workers and one parameter server, the series of communication
events looks like this:

Time=0 Worker1 send w1 to PS
Time=0 Worker2 send w2 to PS
Time=0 Worker3 send w3 to PS
Time=T PS send S to Worker1
Time=T PS send S to Worker2
Time=T PS send S to Worker3
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Server

Worker1

Worker2

Worker3 

Figure 1.6: Illustration of the communication pattern of the parameter server
architecture with a single dedicated parameter server.

Figure 1.6 illustrates the communication timeline of these events.
We see that, in the first phase, all workers send their local parameter
vectors to the parameter server at the same time. Because, in our
communication model, the parameter server can receive data from only
one worker at a time, it took 3(tlatency + ttransfer) for the aggregation
phase to finish. In the broadcast phase, because, in our communication
model, the parameter server can send data to only one worker at a time,
it took 3(tlatency + ttransfer) for the broadcast phase to finish.

In general, when there are N workers and 1 parameter server, as
under our communication model, a parameter server architecture in
which all workers are perfectly synchronized takes

2n(tlatency + ttransfer)

to compute and broadcast the sum S over all local copies {wi}.

Discussions. As we see, the communication cost of the parameter
server architecture grows linearly with respect to the total number of
workers we have in the system. As a result, this architecture could be
sensitive to both latency and transfer time. This motivates some system
relaxations that could alleviate potential system bottlenecks.

1. When the network has small latency tlatency compared with the
transfer time ttransfer, one could conduct lossy compression (e.g.,
via quantization, sparsification, or both) to decrease the transfer
time. Usually, this approach can lead to a linear speedup with

Full text available at: http://dx.doi.org/10.1561/1900000062



24 Introduction

respect to the compression rate, up to a point that tlatency starts
to dominate.

2. When the network has large latency tlatency, compression on its
own won’t be the solution. In this case, one could adopt a decen-
tralized communication pattern, as we will discuss later in this
monograph.

1.3.3 AllReduce

Calculating the sum over distributed workers is a very common oper-
ator used in distributed computing and high performance computing
systems. In many communication frameworks, it can be achieved using
the AllReduce operator. Optimizing and implementing the AllReduce
operator has been studied by the HPC community for decades, and
the implementation is usually different for different numbers of ma-
chines, different sizes of messages, and different physical communication
topologies.

In this monograph, we focus on the simplest case, in which all workers
form a logical ring and communicate only to their neighbors (all com-
munications still go through the single switch all workers are connected
to). We also assume that the local parameter vector is large enough.

Under these assumptions, we can implement an AllReduce operator
in the following way. Each worker wn partitions their local parameter
vectors into N partitions (N is the number of workers): wkn is the kth
partition of the local model wn. The communication happens in two
phases.

1. Phase 1. At the first iteration of Phase 1, each machine n sends
wnn to its “next” worker in the logical ring, i.e., wj where j =
n + 1 mod N . Once machine j receives a partition k, it sums
up the received partition with its local partition, and sends the
aggregated partition to the next worker in the next iteration. After
N − 1 communication iterations, different workers now have the
sum of different partitions.

2. Phase 2. Phase 2 is similar to Phase 1, with the difference that
when machine n receives a partition k, it replaces its local copy
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with the received partition, and passes it onto the next machine
in the next iteration.

At the end of communication, all workers have the sum S of all
partitions.

Example 1.3. We walk through an example with four workers M1, . . . ,

M4. The communication pattern of the above implementation is as
follows. We use w{Mi,j} to denote the jth partition on machine Mi.

# For the first partition w{M1 (worker id), 1 (partition id)}
Time= 0 M1 sends w{M1,1} to M2
Time= t M2 sends w{M1,1} + w{M2,1} to M3
Time=2t M3 sends w{M1,1} + w{M2,1} + w{M3,1} to M4
Time=3t M4 sends w{M1,1} + w{M2,1} + w{M3,1} + w{M4,1} to M1
Time=4t M1 sends w{M1,1} + w{M2,1} + w{M3,1} + w{M4,1} to M2
Time=5t M2 sends w{M1,1} + w{M2,1} + w{M3,1} + w{M4,1} to M3

# For the second partition w{M2 (worker id), 2 (partition id)}
Time= 0 M2 sends w{M2,2} to M3
Time= t M3 sends w{M2,2} + w{M3,2} to M4
Time=2t M4 sends w{M2,2} + w{M3,2} + w{M4,2} to M1
Time=3t M1 sends w{M2,2} + w{M3,2} + w{M4,2} + w{M1,2} to M2
Time=4t M2 sends w{M2,2} + w{M3,2} + w{M4,2} + w{M1,2} to M3
Time=5t M3 sends w{M2,2} + w{M3,2} + w{M4,2} + w{M1,2} to M4

# For the third partition w{M3 (worker id), 3 (partition id)}
Time= 0 M3 sends w{M3,3} to M4
Time= t M4 sends w{M3,3} + w{M4,3} to M1
Time=2t M1 sends w{M3,3} + w{M4,3} + w{M1,3} to M2
Time=3t M2 sends w{M3,3} + w{M4,3} + w{M1,3} + w{M2,3} to M3
Time=4t M3 sends w{M3,3} + w{M4,3} + w{M1,3} + w{M2,3} to M4
Time=5t M4 sends w{M3,3} + w{M4,3} + w{M1,3} + w{M2,3} to M1

# For the fourth partition w{M4 (worker id), 4 (partition id)}
Time= 0 M4 sends w{M4,4} to M1
Time= t M1 sends w{M4,4} + w{M1,4} to M2
Time=2t M2 sends w{M4,4} + w{M1,4} + w{M2,4} to M3
Time=3t M3 sends w{M4,4} + w{M1,4} + w{M2,4} + w{M3,4} to M4
Time=4t M4 sends w{M4,4} + w{M1,4} + w{M2,4} + w{M3,4} to M1
Time=5t M1 sends w{M4,4} + w{M1,4} + w{M2,4} + w{M3,4} to M2
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Worker0

Worker1

Worker2

Worker3 

Figure 1.7: Illustration of the communication pattern of the AllReduce architecture
with ring topology.

From the above pattern, it is not hard to see why, at the end, each
worker has a copy of S =

∑N
n=1wn.

One interesting property of the above way of implementing the
AllReduce operator is that, at any timestep, each machine concur-
rently sends and receives one partition of the data, which is possible
in our communication model. Figure 1.7 illustrates the communication
timeline.

We make multiple observations.

1. Compared with a parameter server architecture with a single
parameter server (Figure 1.6), the total amount of data that each
worker sends and receives is the same in both cases — in both
cases, the amount of data sent and received by each machine is
equal to the size of the parameter vector.

2. At any given time, each worker sends and receives data concur-
rently. At any given time, only the left neighbor wn sends data to
wn+1 mod N and wn+1 mod N only sends data to wn+2 mod N . This
allows the system to take advantage of the aggregated bandwidth
of N machines (which grows linearly with respect to N) instead
of being bounded by the bandwidth of a single central parameter
server.

In general, when there are N + 1 workers, as under our commu-
nication model and assuming that the computation cost to sum up

Full text available at: http://dx.doi.org/10.1561/1900000062



1.3. A Simplified Distributed Communication Model 27

parameter vectors is negligible, an AllReduce operator in which all
workers are perfectly synchronized took

2Ntlatency + 2ttransfer

to compute and broadcast the sum S over all local copies {wn}.

Discussions. As we see, the latency of an AllReduce operator grows
linearly with respect to the total number of workers we have in the
system. As a result, this architecture could be sensitive to network
latency. This motivates some system relaxations that could alleviate
potential system bottlenecks.

1. When the network has large latency tlatency, compression on its
own won’t be the solution. In this case, one could adopt a decen-
tralized communication pattern, as we will discuss later in this
monograph.

2. When the network has small latency tlatency and the parameter
vector is very large, the transfer time ttransfer can still become the
bottleneck. In this case, one could conduct lossy compression (e.g.,
via quantization, sparsification, or both) to decrease the transfer
time. Usually, this approach can lead to a linear speedup with
respect to the compression rate, up to a point that tlatency starts
to dominate.

Caveats. We will discuss the case of asynchronous communication
later in this monograph. Although it is quite natural to come up with
an asynchronous parameter server architecture, making the AllReduce
operator run in an asynchronous fashion is less natural. As a result,
when there are stragglers in the system (e.g., one worker is significantly
slower than all other workers), AllReduce can make it more difficult
to implement a straggler avoidance strategy if one simply uses the
off-the-shelf implementation.

Why Do We Partition the Parameter Vector? One interesting design
choice in implementing the AllReduce operator is setting each local
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parameter vector to be partitioned into N partitions. This decision
is important if you want to fully take advantage of the aggregated
bandwidth of all workers. Take the same four-worker example and
assume that we do not partition the model. In this case, the series of
communication events will look like this:

Time= 0 M1 sends w{M1} to M2
Time= t M2 sends w{M1} + w{M2} to M3
Time=2t M3 sends w{M1} + w{M2} + w{M3} to M4
Time=3t M4 sends w{M1} + w{M2} + w{M3} + w{M4} to M1
Time=4t M1 sends w{M1} + w{M2} + w{M3} + w{M4} to M2
Time=5t M2 sends w{M1} + w{M2} + w{M3} + w{M4} to M3

In general, with N + 1 workers, the communication cost without parti-
tioning becomes

2N(tlatency + ttransfer).

Comparing this with the 2Ntlatency + 2ttransfer cost of AllReduce with
model partition, we see that model partition is the key reason for taking
advantage of the full aggregated bandwidth provided by all machines.

1.3.4 Multi-Machine Parameter Server

One can extend the single-server parameter server architecture and
use multiple machines serving as parameter servers instead. In this
monograph, we focus on the scenario in which each worker also serves
as a parameter server.

Under this assumption, we can implement a multi-server parameter
server architecture in the following way. Each worker wn partitions
their local parameter vectors into N partitions (N is the number of
workers): wkn. The communication happens in two phases.

1. Phase 1. All workers send their nth partition to worker wn. Worker
wn aggregates all messages and calculates the nth partition of the
sum S.

2. Phase 2. Worker wn sends the nth partition of the sum S to all
other workers.
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With careful arrangement of communication events, we can also
take advantage of the full aggregated bandwidth in this architecture, as
illustrated in the following example.

Example 1.4. We walk through an example with four workers
M1, . . . ,M4. The communication pattern of the above implementation
is as follows:

# First partition: w{M1 (worker id), 1 (partition id)}
# First partition of the result: S{1}
Time= 0 M2 sends w{M2,1} to M1
Time= t M3 sends w{M3,1} to M1
Time=2t M4 sends w{M4,1} to M1
Time=3t M1 sends S{1} to M2
Time=4t M1 sends S{1} to M3
Time=5t M1 sends S{1} to M4

# Second partition: w{M2 (worker id), 2 (partition id)}
# Second partition of the result: S{2}
Time= 0 M1 sends w{M1,2} to M2
Time= t M4 sends w{M4,2} to M2
Time=2t M3 sends w{M3,2} to M2
Time=3t M2 sends S{2} to M3
Time=4t M2 sends S{2} to M4
Time=5t M2 sends S{2} to M1

# Third partition w{M3 (worker id), 3 (partition id)}
# Third partition of the result: S{3}
Time= 0 M4 sends w{M4,3} to M3
Time= t M1 sends w{M1,3} to M3
Time=2t M2 sends w{M2,3} to M3
Time=3t M3 sends S{3} to M4
Time=4t M3 sends S{3} to M1
Time=5t M3 sends S{3} to M2

# Fourth partition w{M4 (worker id), 4 (partition id)}
# Fourth partition of the result: S{4}
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Time= 0 M3 sends w{M3,4} to M4
Time= t M2 sends w{M2,4} to M4
Time=2t M1 sends w{M1,4} to M4
Time=3t M4 sends S{4} to M1
Time=4t M4 sends S{4} to M2
Time=5t M4 sends S{4} to M3

For the above communication events, it is not hard to see that, at
the end, each machine has access to the sum S =

∑N
n=1wn. In terms

of the communication pattern, under our communication model, the
multi-server parameter server architecture has the same pattern as
AllReduce, illustrated in Figure 1.7.

In general, when there are N + 1 workers, as under our communica-
tion model and assuming that the computation cost to sum up parameter
vectors is negligible, a multi-server parameter server architecture in
which all workers are perfectly synchronized took

2Ntlatency + 2ttransfer

to compute and broadcast the sum S over all local copies {wn}.
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