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Data Provenance
Boris Glavic1

1Illinois Institute of Technology; bglavic@iit.edu

ABSTRACT

Data provenance has evolved from a niche topic to a main-
stream area of research in databases and other research
communities. This article gives a comprehensive introduc-
tion to data provenance. The main focus is on provenance
in the context of databases. However, it will be insightful to
also consider connections to related research in programming
languages, software engineering, semantic web, formal logic,
and other communities. The target audience are researchers
and practitioners that want to gain a solid understanding
of data provenance and the state-of-the-art in this research
area. The article only assumes that the reader has a basic
understanding of database concepts, but not necessarily any
prior exposure to provenance.

Boris Glavic (2021), “Data Provenance”, Foundations and Trends® in Databases:
Vol. 9, No. 3-4, pp 209–441. DOI: 10.1561/1900000068.

Full text available at: http://dx.doi.org/10.1561/1900000068



1
Introduction

The term provenance is used in the art world to describe a record of
the history of ownership of a piece of art. This term has been adapted
by the database community to describe a record of the origin of a
piece of data. Data provenance has emerged as a research topic in
database community in the late 1990’s with some isolated earlier work,
e.g., Stonebraker et al., 1993. However, as we will discuss in detail in
Chapter 5 other research communities have studied concepts that are
closely related to data provenance much earlier. Data provenance, by
explaining how the result of an operation was derived from its inputs,
has proven to be a useful tool that is applicable in a wide variety of
applications including debugging transformations (queries, updates,
transactions, . . . ) and data, to assess the trustworthiness of data, to aid
users in understanding data-intensive processes, to speed-up incremental
maintenance of query results, for explaining surprising outcomes, and for
reasoning about hypothetical changes to inputs and results of operations.
The purpose of this article is to give a comprehensive introduction to
data provenance concepts, algorithms, and methodology developed by
the database community in the last few decades. The indented audience
are researcher and practitioners unfamiliar with the topic that want to

2
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1.1. What is Data Provenance? 3

develop a basic understanding of provenance techniques and the state-
of-the-art in the field as well as researchers with some prior experience
in provenance that want to broaden their horizon. While also providing
a collection of relevant literature references, this article’s main objective
is to introduce the reader to the formalisms, algorithms, and system’s
developments in this fascinating field. To be able to cover topics in
sufficient depth, we will focus on work on provenance in databases
and closely related areas. Provenance for workflow systems, operating
systems, general purpose programming languages, and other areas that
are not related to databases will not be discussed in depth. That being
said, we will point the reader to important work from outside of the
database community where appropriate.

1.1 What is Data Provenance?

Following common terminology we will use the term data item to refer
to a piece of data, e.g., a relation, a tuple, or JSON document. Data
items may be inputs and/or outputs of transformations, e.g., queries,
updates, transactions, application programs. The provenance of a data
item provides a record of how the data item was derived from other
data items by a set of transformations. We distinguish between data
dependencies which record that a data item was produced from /
depends on another data item, e.g., a tuple in the result of a query
was derived from an input tuple, and transformation dependencies
which record that a data item was directly (or indirectly) produced by a
particular transformation. Some provenance models are only concerned
with data dependencies or transformation dependencies while others
support both types of dependencies. Additional metadata about the
execution of a transformation, e.g., the user that executed a transforma-
tion or the execution environment of a transformation, are sometimes
also considered to be data provenance. However, in this article the main
focus is on data and transformation dependencies.

Data and transformation dependencies can be modeled at different
levels of granularity. For instance, we may track the data dependencies
for a query result at the level of attribute values, tuples, or whole
relations. The same applies to transformation dependencies, e.g., we
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4 Introduction

Query result

name id
Aishe r1
Peter r2
Astrid r3

Qcoffee−drinker

SELECT name FROM student WHERE daily - coffee > 1
UNION
SELECT name FROM teacher WHERE daily - coffee > 1

student

name GPA daily-coffee id
Aishe 3.5 2 s1
James 2.4 0 s2
Peter 3.6 3 s3

teacher

name salary daily-coffee id
Alice 30,000 1 t1
Peter 131,000 2 t2
Astrid 140,000 3 t3

Figure 1.1: Example database

may track them at the level of queries or individual operators within a
query.

1.1.1 An Example

Consider the database shown in Figure 1.1. The query shown in
this figure returns the names of students and teachers (relations student
and teacher) who consume more than one cup of coffee per day. Note
that this query does not return duplicates (it uses SQL’s UNION which
eliminates duplicates). Let us reason about data dependencies at tuple
granularity. That is, we want to know which of the input tuples were used
to derive an output tuple. Consider the result r1 = (Aishe). Student
Aishe is in the result, because she drinks more than one cup of coffee
per day. The input tuple that justifies the existence of r1 in the query
result is s1 = (Aishe, 3.5, 2). All other input tuples have no bearing on
whether Aishe is in the result or not. Thus, r1 is only data-dependent
on s1, but no other input tuple. Since Aishe is a student and there
is no teacher called Aishe (let alone a teacher drinking a sufficient
amount of coffee), the second part of the query that accesses relation

Full text available at: http://dx.doi.org/10.1561/1900000068



1.2. Why Should I Care? 5

teacher is not needed for producing result tuple r1. Thus, r1 is only
transformation-dependent on the part of the query highlighted in red.1
As another example, consider the second result tuple (r2 = (Peter)).
There exist two coffee drinkers named Peter. One is a student (tuple s3)
and one is a teacher (tuple t2). The result tuple r2 is data-dependent
on both of these inputs. Modeling provenance as data dependencies
only may not provide us with enough information for all use-cases of
data provenance. For example, provenance can help us to determine
the effect of deleting a tuple, say s3, from the input. We can use data
dependencies to determine the subset of the output tuples that may be
affected by the deletion. Only tuples that are data-dependent on deleted
inputs may be affected. However, we need additional information about
how input tuples were combined by the query to know with certainty
whether an output will be deleted or not. For instance, to know whether
the deletion of s3 will cause r2 to be deleted from the query result, it is
not enough to just know the data dependencies of r2 (which are s3 and
t2). Additionally, we need to know that as long as one of s3 or t3 is in
the input, then r2 will be in the query result. So far we have reasoned
intuitively about dependencies. To be able to determine dependencies
automatically, we need a formal model of provenance. In Chapter 2 we
will review such models and discuss which models provide sufficient
information to support particular use-cases in Chapter 3.

1.2 Why Should I Care?

Data provenance has been applied for a diverse set of use cases, many
of which we will discuss in detail in Chapter 3. Here we just provide a
brief overview of some common use cases.

1.2.1 Error Diagnosis and Debugging

By tracking which input data and parts of a transformation are re-
sponsible for producing a suspicious output, provenance information

1We may argue about whether the union operation should be considered as
relevant or not. For now let us just assume that it is relevant. We will discuss
transformation dependencies in detail in Section 2.6.
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6 Introduction

can be used to narrow down the location of an error. Intuitively, data
that was not needed to produce a query result (on which the result
is not data dependent on) cannot effect the correctness of the query
result. The same applies for transformation dependencies: any part of
the transformation that is not a transformation dependency of the result
cannot have affected the result.
Example 1 (Debugging). For instance, continuing with the example
from Figure 1.1, if the user issuing the query knows that Aishe (tuple
r1) is not a coffee drinker and, thus, should not be in the result of
query Qcoffee−drinker, then the user can restrict their search for errors
in the input data to the data dependencies of r1. In this case the
user only needs to inspect s1 to determine that Aishe’s daily-coffee
value should 0 instead of having to inspect all six input tuples. In
addition to errors in the input, errors in the query result may be caused
by bugs in the query. Analog to how data dependencies are used to
trace errors to the input data, transformation dependencies can be
used to focus attention on the parts of the query (transformation)
that could have caused the error. For instance, in our example, only
the highlighted part of Qcoffee−drinker is responsible for producing
result tuple r1. Obviously, the use of provenance is overkill for this toy
example. However, for realistically sized data sets and more complex
queries, data and transformation dependencies can significantly improve
a user’s productivity when debugging data.

1.2.2 Explaining Outcomes

To interpret the result of a complex query, a user may have to under-
stand why and how the result was proved. Data provenance provides
such an explanation. However, for large datasets, the full provenance of
a query result may be too large to be of any use to a human. Summariza-
tion techniques for provenance that produce compact, but semantically
meaningful summaries of provenance can be used to address this prob-
lem.
Example 2 (Explanations). Continuing with our running example, let
us compute the number of non-casual coffee drinkers (more than one
cup per day) using the SQL query shown below.
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1.2. Why Should I Care? 7

SELECT count (*) as num - drinker
FROM ( SELECT name , daily - coffee FROM student

UNION ALL
SELECT name , daily - coffee FROM teacher ) drinkers

WHERE daily - coffee > 1

For our example database instance, we get back r = (4), i.e., there
are 4 non-casual coffee drinkers. We may explain this result by listing all
data dependencies of r: s1, s3, t2, and t3. However, for larger datasets,
the set of data dependencies may be too large to be of any immediate
use. Instead, we can employ summarization techniques to compactly
describe the set of inputs that are data dependencies. A common
summarization technique uses declarative patterns (a limited form of
queries) to describe sets of tuples. For instance, instead of listing all
data dependencies we may describe them as follows: all students with a
GPA higher than 3.4 and all teachers earning more than 100, 000 are
non-casual coffee drinkers.

We will discuss summarization techniques for provenance in Sec-
tion 4.1.

1.2.3 Security and Auditing

Provenance has also been studied extensively by the security community.
The record of the operations of a system provided by provenance can
be used during the forensic analysis of an attack to understand how a
system was breached (Bates and Hassan, 2019). For example, assuming
that we collect provenance for every SQL operation executed by a
database, then when a user account is compromised this enables us
to answer important questions such as “Which data was accessed or
modified by the compromised account?”. A significant amount of work
from the system’s security community has investigated how to collect
provenance information at the operating system level (Bates et al., 2015;
Pasquier et al., 2017). Another security application of data provenance
is detection of advanced persistent threads (APTs). It was conjectured
it is possible to detect APTs by mining unusual patterns from the
provenance of a system. Another security application of provenance
is auditing. Many organization have to comply with laws that require
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8 Introduction

them to report how they processed their data. To support auditing,
database systems maintain a record of SQL operations executed in the
past available as a so-called audit-log (Kaushik et al., 2013; Fabbri and
LeFevre, 2011; Kaushik and Ramamurthy, 2011; Agrawal et al., 2004).
One disadvantage of audit logs is that they do not record which data
was affected / accessed by which operation in the audit log. Provenance
information can complement audit logs with data and transformation
dependencies to provide this information. Provenance has also been
used for access control, e.g., to restrict access to data based on which
other data it was derived from (Park et al., 2012).

Example 3 (Enhancing Auditing with Provenance). Consider the scenario
shown in Figure 1.2. Bob, a DBA for a bank, has abused his privileges
to fix the negative balance of the accounts he has with his employer.
Bob has issued two statements (with ids 1432 and 1433) which add
$10,000 to both his checkings and savings accounts. The bank identifies
account owners by their SSN. Bob’s SSN is 333-233-4534. Bob’s second
statement then reduces the balance of all accounts to compensate for
the $20,000 he added to his accounts. To obfuscate his activity, Bob
did not select his accounts using his social security number, but instead
identified an alternative way to uniquely identify his accounts using
their balance, his state, and his age.

The bank maintains an audit log to have a record of all data modi-
fications in case of a security breach or to investigate illegal data access
by employees. Bob’s illegal operations are recorded in the audit log.
However, without knowing the data dependencies and transformation
dependencies (the provenance) of these operations, it is not obvious
what the purpose and effect of the illegal operations were. Transforma-
tion dependencies would unearth that the first statement only affected
Bob’s account. Data dependencies between tuples in the database state
before the updates and after the updates can be used to determine how
Bob’s changes can be undone.

Of course, Example 3 is too simple to be realistic. Nonetheless, it
illustrates how provenance can complement audit logging. In Section 2.7
we will introduce provenance models for update operations and transac-
tions. One major challenges with supporting provenance for updates
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1.2. Why Should I Care? 9

Database state before statement 1432

Owner State Age Balance Type
333-233-4534 IL 36 -3,030 Checking
333-233-4534 IL 36 -1,000 Savings
111-232-2323 IL 34 100,004 Checking

. . . . . . . . . . . . . . .

Database state after statement 1432

Owner State Age Balance Type
333-233-4534 IL 36 6,970 Checking
333-233-4534 IL 36 9,000 Savings
111-232-2323 IL 34 100,004 Checking

. . . . . . . . . . . . . . .

Database state after statement 1433

Owner State Age Balance Type
333-233-4534 IL 36 6,969.99 Checking
333-233-4534 IL 36 8,999.99 Savings
111-232-2323 IL 34 100,003.99 Checking

. . . . . . . . . . . . . . .

Audit log
id acc timestamp statement
. . . . . . . . . . . .
1432 Bob 01-01 8:34 UPDATE accounts

SET Balance = Balance + 10,000
WHERE state = ’IL’AND Age = 36

AND balance IN (-3,030, -1,000)

1433 Bob 01-01 8:35 UPDATE accounts
SET Balance = Balance

- (20000.0 / (SELECT count(*)))
FROM accounts))

. . . . . . . . . . . .

Figure 1.2: Example audit log and database states
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10 Introduction

is that it requires access to past database versions, i.e., tuples in the
database state after the update are data-dependent on tuples in the
database state before the update. We will discuss provenance models for
updates in Section 2.7 and methods for capturing update provenance
in Section 4.3.

1.2.4 View Maintenance and Provisioning

Many provenance models use a symbolic representation of a computation
to record how inputs have been combined by a transformation. Such
representations are often invariant under certain changes to the input
(and/or the transformation). That is, it is possible to use the provenance
of a query result to determine how this result would be affected when
the input or transformation is changed in a certain way. A reader
familiar with the literature may recognize this is as the well-known
view maintenance problem (Gupta, Mumick, et al., 1995): given a
database D, a query Q, the query’s result Q(D) and an update ∆D,
compute Q(D∪∆D). Let use consider deletion propagation for a simple
projection query as an example of how to exploit provenance information
for view maintenance. For sake of the example, we will use a simple
provenance model that records the data dependencies for a query result
tuple at tuple-granularity. That is, the provenance for each output tuple
of the query is the set of input tuples it depends on.

Example 4 (View Maintenance). Consider the SQL query shown below
which returns customers which have ordered at least one item. This query
returns two tuples: (Peter) whose provenance consists of the three tuples
{t1, t2, t3} (all the orders from Peter) and (Alice) whose provenance is
{t4} (all of her orders). To determine the effect of deleting some of the
input tuples, we can simply remove them from the provenance of the
result tuples. Any tuple whose provenance is empty will no longer be in
the result. For example, if we delete t1 and t2 then tuple (Peter) is still
in result, because its provenance is not empty ({t3}), because one of
Peter’s order is still present in the input.
SELECT DISTINCT customer FROM orders

Full text available at: http://dx.doi.org/10.1561/1900000068



1.2. Why Should I Care? 11

customer item id
Peter Umbrella t1
Peter Raincoat t2
Peter Gumboots t3
Alice Umbrella t4

We will see in Chapter 2 and Section 3.1 that in general we will
need provenance models that record how input data was combined
by a computation to be able to use provenance effectively for view
maintenance. A specific type of view maintenance is what-if analysis
where a user wants to evaluate the effect a hypothetical change to their
data has on a query result. Provenance information can be used to
provision for what-if analysis if the what-if analysis is restricted to set
of scenarios that are known upfront (Assadi et al., 2016).

1.2.5 View Update and How-to Analysis

In the view update problem we are given a query Q and database D
and an update ∆Q(D) to the query’s result Q(D) as input and have to
translated this update into an update ∆D of the database such that
Q(D ∪∆D) = Q(D) ∪∆Q(D). Since such a ∆D may not exist for all
inputs, the problem is often relaxed to allow for side-effects, i.e., the
query result over D ∪ ∆D is not exactly Q(D) ∪ ∆Q(D). The view
update problem is typically stated as an optimization problem where
the goal is to find a delta ∆D that minimizes side-effects on the input
database and/or query result. Provenance information aids in view
update by identifying which inputs needs to be modified to achieve a
desired update to a query’s result.

Example 5 (View Update). Continuing with Example 4, assume we
would like to delete Peter from the query result. This can be achieved
by deleting all of the tuples from the input database that the result
tuple (Peter) depends on (his orders). In this example, these are input
tuples t1, t2, and t3.

Closely related to the view update problem are how-to queries (Me-
liou and Suciu, 2012) where constraints on what is a desired query
result are specified declaratively and the goal is to produce an update
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12 Introduction

Loan applications

name loanamount income assets criminalrecord
Peter 10,000 15,000 500 1
Alice 50,000 135,000 10,000 0
Bob 35,000 20,000 200,000 0

Normalized data
name loanamount income assets criminalrecord
Peter 0.1 0.05 0.002 1.0
Alice 0.5 0.45 0.04 0.0
Bob 0.35 0.06 0.8 0.0

Linear classifier

C(t) = −0.2 · t.loanamount+ 0.6 · t.assets− 0.3 · t.criminalrecord

Figure 1.3: Explaining classification with provenance

to the input database such that the user’s constraints are fulfilled and
a used-specified optimization goal is met. We will discuss applications
of provenance to view update problems in Section 3.2.

1.2.6 Explaining Machine Learning Models and Outcomes

Transparency, fairness, and explainability in machine learning are of
immense importance, because decisions that have significant real world
impact, e.g., whether to accept or reject loan applications or whether
to hire an applicant, are often delegated to machine learning models.
Provenance information, while not a magical solution for explainability,
is certainly relevant for explaining the outcome of applying an ML model
to classify an input as well as for explaining how the training data and
algorithm used to train the model affected the outcome indirectly by
determining the model.

Example 6 (Explaining ML outcomes). Consider a bank that has uses a
linear classifier to decide loan applications. An example relation and the
model are shown in Figure 1.3. Loan applications for which the model C
returns a negative number are denied and loan applications where C is
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positive are granted. Note that the income of a person is not considered
when making loan decisions. Data dependencies at the granularity of
attribute values can help us identify which features of a loan application
are considered in the loan application decision process. However, the the
degree to which a feature affects the result depends on the feature. Note
that this is common for machine learning models to have all (or most)
features affect the classification outcome, but not all to the same degree.
Data dependencies only record the existence of an a dependency, but
do not measure the amount of influence. For instance, in our example
linear model, features assets and criminal-record have large weights, i.e.,
have larger impact on the result in general than loan-amount and income.
However, whether a feature can be held responsible for the classification
of an input o also depends on o’s features. This is less of a concern
with simple models (like our linear classifier), but can be significant for
models where features are not treated independently.

In Section 2.1.5 we will review the notion of responsibility which mea-
sures the degree of impact an input has on the output of a query. We will
discuss the relationship of provenance and other types of explanations
for ML models and outcomes in Section 1.2.6.

1.3 Background and Notation

We now introduce notational conventions used in this article and briefly
review the relational data model and some relational query languages.
Readers familiar with these concepts may skip this section.

1.3.1 The Relational Model

A relation schema R is a list of attribute names (A1, . . . , An). The arity
arity(R) of a relation schema R is the number of attributes in the
schema. Consider a universal domain U of values. Under the named
perspective a tuple over a relation schema R is a function that maps
attributes from R to values from U . Under the unnamed perspective
a tuple with arity n is an element from Un. We will opportunistically
switch between these perspectives to simplify the exposition. A re-
lation R of schema R = (A1, . . . , An) under set semantics is a set
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of tuples over schema R. A database schema D is a set of relation
schema {R1, . . . ,Rm}. A database D over a schema D is set of relations
{R1, . . . , Rn}, one for each relation schema in D. If R is a relation
(D is a database) then we use R (D) to denote its schema. We will
sometimes consider a slightly different definition of relations where each
attribute Ai is associated with a domain Di. Under this model, Relation
schemas are lists (A1 : D1, . . . , An : Dn) and a set relation of schema
(A1 : D1, . . . , An : Dn) is a subset of D1 × . . .×Dn.

A bag semantics (or multiset) relation R of arity n is a multiset of
tuples from Un. That is, in R each tuple is associated with a multiplicity
(the number of duplicates of the tuple that are in the relation). Formally,
a bag relation is a function R : Un → N that associates each tuple t ∈ Un
with natural number R(t) (its multiplicity). Note that here we consider
bag relations to be total functions. Tuples that do not exist in the
relation are assigned multiplicity 0. If U is infinite, then we require
that there exist only finitely many t such that R(t) 6= 0. That is, we
only consider finite relations. The use of total functions may seem to
complicate matters unnecessarily, but will be beneficial when we discuss
provenance models in Chapter 2.

As we use the two query languages, relational algebra and Datalog,
extensively throughout this work, we briefly review them below.

1.3.2 Relational Algebra

Given a query Q, we use Sch(Q) to denote the schema of the result of Q.
We use JQKD to denote the result of evaluating query Q over database
D. The arity arity(Q) of a query Q is the arity of Sch(Q). Sometimes
we will use Q(D) instead of JQKD. For set semantics relations we will
use the relational algebra shown in Figure 1.4.

As is customary, we define the semantics of algebra operators using
set compressions. We use ◦ to denot concatenation of tuples (and
other types of sequences). For a tuple t, t.A denotes the projection of
the tuple onto a list of expressions. A relation access R returns the
instance of this relation in database D. Selection returns all input tuples
t that fulfill a condition θ, written as t |= θ. Projection projects all
input tuples onto a list of expressions A. We typically will assume that
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JRKD = R (Relation access)
Jσθ(Q)KD = {t | t ∈ JQKD ∧ t |= θ} (Selection)

JΠA(Q)KD = {t.A | t ∈ JQKD} (Projection)
JρA→B(Q)KD = {t[A→ B] | t ∈ JQKD} (Renaming)
JQ1 ×Q2KD = {t1 ◦ t2 | t1 ∈ JQ1KD ∧ t2 ∈ JQ2KD}

(Crossproduct)

JQ1 ∪Q2KD = JQ1KD ∪ JQ2KD (Union)
JQ1 ∩Q2KD = JQ1KD ∩ JQ2KD (Intersection)
JQ1 −Q2KD = JQ1KD − JQ2KD (Difference)

Jγf(A)→B(Q)KD = {(f(JΠA(Q)KD)} (Aggregation)
Jγf(A)→B;G(Q)KD = {f(JΠA(σG=t.G(Q))KD) ◦ g | g ∈ JΠG(Q)KD}

Figure 1.4: Set semantics relational algebra

such expressions can consist of references to attributes, constants, and
arithmetic operations, e.g., (A+3)∗C. This variant of projection if often
referred to as generalized projection. In contexts where A is subject to
restrictions, we will explicitly mention that. For convenience, we will
also allow projection to rename the results of expression, e.g. ,ΠA+B→C
projects the input on A+B and the attribute storing the result of this
expression is named C. Renaming ρA1→B1,...,An→Bn renames attribute
Ai as Bi. As a notational shortcut we will write A → B were both
A = (A1, . . . An) and B = (B1, . . . , Bn) are lists of attributes to denote
A1 → B1, . . . , An → Bn. Here, t[A→ B] denotes renaming attributes
in the schema of tuple t (assuming the named perspective). Cross
product is the set-theoretical cross product of the two input relations.
Join Q1 ./ Q2 (not shown in the figure) is syntatic sugar for a cross
product followed by a selection. Set operations (union, intersection, and
difference) are defined as in set theory. These operations are only defined
for inputs of the same arity (with the same data types if we consider
typed relations). We consider two variants of aggregation: aggregation
with group-by and aggregration without group-by. Aggregation without
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group-by applies an aggregation function f : {U} → U to all values
from an attribute A. The result is a relation with a single tuple and
single attribute named B. Note that this operator returns a single
result tuple, even if the input is empty. Aggregation with group-by,
partitions the input relation into groups (subsets) such that each group
consists of precisely the set of tuples that have a particular value in
the group-by attributes G. The aggregation function f is then applied
to each group. The operator returns a tuple for each group consisting
of the aggregation function result for that group and the group-by
attribute values. Throughout this paper we will also allow aggregation
to apply a (possibly empty) list of aggregation functions instead of a
single aggregation, e.g., γcount(∗),sum(salary);dept(employee).

Example 7 (Relational algebra (set semantics)). The SQL queries from
Figure 1.1 and Example 2 can be written relational algebra as:

Πname(student) ∪Πname(teaching) (Figure 1.1)
γcount(∗)(σdaily−coffee>1(Πname,daily−coffee(student)

∪Πname,daily−coffee(teaching))) (Example 2)

To be able to reason about SQL databases which use the bag
semantics version of the relational model, we also introduce a bag
semantics version of relational algebra. The semantics of the operators
of this algebra is defined in Figure 1.5. Recall that we model bag
relations as functions from tuples to the set of natural numbers N.
Thus, a query result is a function that maps result tuples to their
multiplicity. In Figure 1.5 we define these functions pointwise, i.e., we
define how to calculate the multiplicity of a query result tuple t (the
result of applying function JQKD to t) based on the multiplicities of
input tuples.2 For instance, the number of duplicates of a tuple t in the
result of Q1∪Q2 is the sum of the number of duplicates of t in the result
of Q1 and in the result of Q2. Projection sums up the multiplicities of
all input tuples that are projected onto the result tuple t. For a cross
product we have to multiply the multiplities of input tuples. The set

2A reader familiar with K-relations may recognize that for positive relational
algbra we have defined the semantics of operators as is done for K-relations. This is
deliberate and will come in handy when we discuss K-relations in Chapter 2.
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JRKD(t) = R(t) (Relation access)

Jσθ(Q)KD(t) =


JQKD(t) if t |= θ

0 otherwise
(Selection)

JΠA(Q)KD(t) =
∑
t′.A=t

JQKD(t′) (Projection)

JρA→B(Q)KD(t) = JQKD(t[B → A]) (Renaming)

JQ1 ×Q2KD(t) = JQ1KD(t[Sch(Q1)]) · JQ2KD(t[Sch(Q2)])
(Crossproduct)

JQ1 ∪Q2KD(t) = JQ1KD(t) + JQ2KD(t) (Union)

JQ1 ∩Q2KD(t) = min(JQ1KD(t), JQ2KD(t)) (Intersection)

JQ1 −Q2KD(t) = max(0, JQ1KD(t)− JQ2KD(t)) (Difference)

Jγf(A)→B(Q)KD(t) =

1 if t = (f(JΠA(Q)KD)
0 otherwise

(Aggregation)

Jγf(A)→B;G(Q)KD(t) =


1 if t.G ∈ {t.G | JQKD(t) > 0}

∧t.B = f(JΠA(σG=t.G(Q))KD)
0 otherwise

Figure 1.5: Bag semantics relational algebra
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operations, as expected, correspond to SQL’s UNION ALL, INTERSECT ALL,
and EXCEPT ALL. As syntactic sugar, we will use δ to denote duplicate
elimination which can be expressed as group-by aggregation without an
aggregation function.

Example 8 (Relational algebra (bag semantics)). For instance, below we
show the query from Example 4 expressed in bag semantics relational
algebra using duplicate elimination and using group-by aggregation.

δ(Πcustomer(orders))
γcustomer(orders)

1.3.3 Datalog

Datalog is a query language based on formal logic. A Datalog program
consists of a set of rules of the form

r : Q(X)︸ ︷︷ ︸
head

:− R1(X1), . . . ,Rn(Xn)︸ ︷︷ ︸
body

where Q is a predicate (q relation) and all Ri are predicates or their
negation and each Xi is a list of variables from an infinite set of variable
symbols V and constants from a domain U . We use vars(r) to denote
the set variables that occur in rule r. Each Ri(Xi) is called a goal. The
left-hand side (LHS) of a Datalog rule r is called its head head(r) and
the right-hand side (RHS) is its body body(r). A Datalog rule represents
a logical implication:

R1(X1) ∧ . . . ∧ Rn(Xn)→ Q(X)

A Datalog rule is safe if all the variables in the head occur in
at least one positive (non-negated) body goal. A Datalog program P

consists of a set of Datalog rules. The relations occurring in a Datalog
are partitioned into two sets. The extensional database (or edb) are
relations that do not occur in the head of rules in P , i.e., these are the
relations in the database. The intentional database (or idb) are relations
that occur in the head of rules (the relations computed by the program).
The set of edb and idb relations are required to be disjoint. Note that
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in contrast to a relational algebra expression, Datalog programs may
compute multiple result relations. A Datalog query Q is a Datalog
program with a distinguished idb relation Q called the answer relation.
Note that Datalog programs can be recursive, e.g., the head predicate of
a rule may appear in the rule’s body. A canonical example of recursion
is the computation of the transitive closure of the edge relation of a
graph.

The semantics of a Datalog program can be defined in several
equivalent ways. Discussing these different semantics in detail is beyond
the scope of this paper. We refer the interested reader to Abiteboul et al.
(1995) and Ceri et al. (1989). For example, the model-theoretic semantics
of Datalog treats the Datalog program and extensional database as a
set of sentences in first-order logic and defines the result of the program
to be the smallest model for this set of sentences.

Here we will use the fixed points semantics of Datalog. A valuation
ϕ : vars(r) → adom(D) assigns variables from a rule r to constants
from the active domain adom(D) of a database D (which we refer to
as an edb instance in the context of Datalog). The active domain of a
database is the set of constants that occur in D. A valuation is applied
to a Datalog rule r by replacing each variable X in r with ϕ(X). We
refer to ϕ(r) as a grounded rule. The semantics of evaluating program
P over an edb database instance D is the least fix point, denoted as
T ∗P (D), of the immediate consequences operator TP over D. Intuitively,
the immediate consequence operator takes as input an instance I and
returns all new facts that can be derived based on the facts in I using
the rules of P , i.e., that are the heads of grounded rules where the
body evaluates too true in I. Note that as mentioned above the body
of a Datalog rule is interpreted as a conjunction of its goal. A positive
grounded goal R(c) evaluates to true over an instance I if R(c) exists
in I. A negated goal ¬R(c) evaluates to true over I if R(c) 6∈ I. The
immediate consequence operator and its fixed point T ∗P are defined
below.
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TP (I) = {ϕ(head(r)) | r ∈ P ∧ I |= ϕ(body(r))}
T 0
P (D) = D

Tn+1
P (D) = TnP (D) ∪ TP (TnP (D))
T ∗P (D) = TmP (D) where m = argmin

i∈N
(T iP (D) = T i+1

P (D))

Note that the least fixed point T ∗P (D) is guaranteed to exist and to
be unique for all positive Datalog programs.

Example 9 (Transitive Closure). The transitive closure of the edge rela-
tion of a directed graph contains all pairs of nodes (a, b) such that there
exists a path from a to b. Below we show a recursive Datalog program
Ptc that computes the transitive closure over a relation edge(in, out)
storing the edges of the input graph. Rule r1 initializes the transitive
closure with the end points of all paths of length 1 (the edges of the
graph). Rule r2 takes the end points of a path of length n (a pair of
nodes that we already have established to be in the transitive closure)
and returns the end points of an extension of such a path by one addi-
tional edge. Figure 1.6 shows an example graph and the evaluation of
Ptc over this graph using the immediate consequence operator.

r1 : tc(X,Y ) :− edge(X,Y )
r2 : tc(X,Y ) :− tc(X,Z), edge(Z, Y )

1.3.4 Query Classes

Many provenance models are limited to certain classes of queries, e.g.,
positive relational algebra. Here we review commonly used classes of
queries.

Relational Algebra

The full relational algebra RA consists of operators projection, union,
selection, cross product, and difference. Positive relational algebra RA+
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Figure 1.6: Computing the transitive closure of a graph with Datalog

consists of all monotone operators of relational algebra, i.e., all operators
of RA expect difference. The name stems from the fact that if expressed
in formal logic, queries of RA+ do not contain negation.3. Adding
aggregation to full relational algebra, we get the class RAagg.

Datalog and First-Order Logic

Many fundamental classes of queries have a natural representation
in Datalog. Conjunctive queries (CQ) are queries that consist of a
single Datalog rule without negation and comparison predicates and
where all body atoms edb relations. By allowing certain comparison
predicates in conjunctive queries we get the classes of conjunctive
queries with inequalities CQ 6= and conjunctive queries with ordering
CQ<. A union of conjunctive queries (UCQ) is a Datalog query with
one or more rules that are each conjunctive queries. Non-recursive
positive Datalog programs may reference idb relations in rule bodys,

3Assuming that comparison operators such as 6= are “build-in” and not considered
as negation, e.g., a 6= b instead of ¬(a = b).
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but no direct or indirect recursion or negated atoms are allowed. This
class of queries is equivalent in terms of expressive power to the class
UCQ, but queries in this class can be exponentially more concise than
the corresponding queries from UCQ. First-order queries FO are non-
recursive Datalog programs with negated atoms. The class Datalog
consists of, possibly recursive, rules without negated atoms. Datalog¬
is the class of Datalog programs with recursion and negation. Note that
the fixed point semantics for Datalog we have introduced is no longer
sufficient for dealing with programs that contain both recursion and
negation, because such programs may not have a unique smallest model.
Several alternative semantics have been proposed in the literature to
deal with this, e.g., the well-founded semantics (Van Gelder et al.,
1991), the stratified semantics (Chandra and Harel, 1985) which is only
applicable to stratified programs (a subclass of Datalog¬), and the
inflationary semantics (Kolaitis and Papadimitriou, 1988). However, the
discussion of these semantics is beyond the scope of this paper.

1.3.5 Query Equivalence and Containment

Semantically, queries can be viewed as functions that map databases
(their input) to relations (the query result). It is often important to be
able to identify two queries which differ in syntax, but have the same
semantics, i.e., produce the same result over all databases. Such queries
are called equivalent. For certain applications it is useful to generalize
this notion and reason about whether one query Q provides strictly
more information than another query Q′, i.e., for any database query
Q′ returns a subset of Q’s result.

Definition 1 (Query Equivalence and Containment). Given two queries
Q and Q′ over the same database schema, we say that Q is equivalent
to Q′, written as Q ≡ Q′ if:

∀D : Q(D) = Q′(D)

Query Q is contained in query Q′, written as Q v Q′ if:

∀D : Q(D) ⊆ Q′(D)

Note that Q ≡ Q′ if and only if Q v Q′ ∧Q′ v Q.
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1.4 Organization of this Monograph

The chapters of this article were written to be mostly self-contained.
That being said, a basic understanding of provenance models is necessary
for following the discussion in Chapter 3 and Chapter 4. Thus, we
recommend readers without background in formal provenance models to
read the beginning of Chapter 2 first before moving on to later chapters.

Chapter 2 introduces the reader to models that define a formal
semantics for provenance. We will introduce well-established models and
will compare them with respect to their expressive power, correctness
guarantees, and supported transformation languages. Furthermore, we
will shine light on the relationship between provenance for non-monotone
queries and why-not provenance which explains missing answers.

In Chapter 3 we will discuss several applications that benefit from or
are enabled by data provenance. As we already hinted at in Section 1.2,
provenance can aide in a variety of view maintenance and update
problems, is used to debug transformations and data, can serve as
the foundation for explanations of outcomes, and is applied to explain
predictions and models in machine learning.

In Chapter 4 we will discuss algorithms, techniques, and systems
that manage provenance information. Our main focus will be on how
to represent and store provenance information, how to automatically
capture provenance information, and how to query data provenance.

We will cover research from other communities that is closely to
related to data provenance in Chapter 5. These include data- and con-
trolflow analysis, program slicing, and other related program analysis
techniques that have been developed by the software engineering, pro-
gramming languages, and compiler communities; taint analysis that
has been used extensively by the security community; justifications and
debugging for logic programming; symbolic program execution; and
explainability in machine learning.
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