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ABSTRACT

The problem of distributed consensus has played a major
role in the development of distributed data management sys-
tems. This includes the development of distributed atomic
commit and replication protocols. In this monograph, we
present foundations of consensus protocols and the ways
they were utilized to solve distributed data management
problems. Also, we discuss how distributed consensus con-
tributes to the development of emerging blockchain systems.
This includes an exploration of consensus protocols and their
use in systems with malicious actors and arbitrary faults.

Our approach is to start with the basics of representative
consensus protocols where we start from classic consensus
protocols and show how they can be extended to support
better performance, extended features, and/or adapt to dif-
ferent system models. Then, we show how consensus can be
utilized as a tool in the development of distributed data man-
agement. For each data management problem, we start by
showing a basic solution to the problem and highlighting its
shortcomings that invites the utilization of consensus. Then,

Faisal Nawab and Mohammad Sadoghi (2023), “Consensus in Data Management:
From Distributed Commit to Blockchain”, Foundations and Trends® in Databases:
Vol. 12, No. 4, pp 221–364. DOI: 10.1561/1900000075.
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we demonstrate the integration of consensus to overcome
these shortcomings and provide desired design features. We
provide examples of each type of integration of consensus in
distributed data management as well as an analysis of the
integration and its implications.
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1
Introduction

Consensus [49], [132]—which is the problem of making distributed
nodes reach agreement—has influenced data management systems and
research for many decades. This influence is due to consensus being a
basic building block that can be used in more complex distributed data
management systems while retaining correctness guarantees of the state
of the data and its recovery.

Consensus becomes relevant to data management systems when data
is distributed across multiple nodes. When multiple nodes are working
together, many complexities arise due to communication uncertainties
and the possibility of machine failures. This is the case in fundamental
data management problems such as distributed atomic commitment and
database replication [21], [56], [108], [129], [146]. Solving the intricacies
of distributed coordination, network uncertainties, and failures in such
complex data management problems is a daunting challenge. This has
led many systems designers to utilize consensus as a tool to build more
complex distributed protocols.

Consensus is solved in different ways depending on the system model
and assumptions. One major factor in the design of consensus protocols
is the failure model. The failure model can be a benign model—such as

3
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4 Introduction

crash fault-tolerance—where a node fails by stopping to engage in the
protocol. Also, it can be a byzantine failure model [106], [132]—where
a failed node can act in arbitrary ways including acting maliciously
to influence the system negatively. In addition to the failure model,
the network communication model also has an influence on the design
and practicality of the proposed protocol. Communication models vary
in a spectrum between a synchronous model—where time bounds on
message reception are assumed—and an asynchronous model—where
messages can be delayed indefinitely.

Variants of consensus algorithms are designed to answer unique
challenges in different environments. Protocols that work best in a
tightly-connected cluster might not be suitable for a distributed net-
work separated by wide-area latency. Similarly, the workload plays an
influence on whether to optimize for reaching consensus or learning
about prior consensus outcomes. The goals of the protocol also play a
part in how consensus algorithms are designed. Many protocols focus
on achieving higher performance. However, some might optimize for
lower latency while others optimize for higher throughput. Other than
performance, a consensus algorithm might optimize for load balancing,
faster recovery, or ease of understanding and implementation.

Consensus has renewed interest in the data management community
in response to new problems. This interest started when consensus
algorithms were utilized in replication and atomic commit protocols
in distributed data management systems. With the growing interest
in cloud computing in the 2000s, consensus has been explored as a
means to design highly-available systems that are replicated across
commodity machines. As cloud computing continued growing, consen-
sus has also been explored in disaster recovery and multi-data center
environments where data is copied and distributed across large geo-
graphic locations. More recently, cryptocurrency and blockchain-based
applications reignited the interest in consensus and introduced a new
breed of consensus algorithms that allow unique properties such as open
membership to anonymous nodes [124], [155]. Data management systems
has explored the use of such blockchain-based systems and consensus
for applications spanning supply-chain management and decentralized
finance, among others.

Full text available at: http://dx.doi.org/10.1561/1900000075
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This monograph presents consensus as well as how it has been used
to solve various distributed data management problems. The goal of
this monograph is to provide a foundation for the reader to understand
the landscape of using consensus protocols in data management systems
as well as empower data management researchers and practitioners
to pursue work that utilizes and innovates in consensus for their data
management applications. This monograph is not meant to be a survey
of consensus protocols nor it is a survey of data management systems
that uses consensus. Rather, it presents the foundations of consensus
and consensus in data management by presenting in more detail work
that has been influential or representative of the data management
areas we explore.

The monograph starts with a section to introduce the principles
of consensus (Section 2). This section builds the foundation needed
for the rest of the monograph to understand the consensus problem
as well as the core consensus protocols that are widely-used in data
management systems. Specifically, we will formally present the consensus
problem and its guarantees as well as the space of system model and
assumptions used by different protocols. Then, we present the paxos
protocol in detail. Paxos [98], [99] is one of the most influential consensus
algorithms that has been used—along with its variants—in many data
management systems. We then present other consensus algorithms in
different levels of detail to provide an intuition of the space of consensus
algorithms including variants of the paxos protocol. Finally, we present
how consensus is typically used in real systems using the abstraction
of state-machine replication and what are other distributed systems
problems that share properties with the consensus problem.

Section 3 presents background on the use of consensus in data
management which provides an intuition of why and how consensus
influences data management systems and the types of data management
problems that invite the use of consensus protocols. This is done by
providing a historical perspective of the development of distributed data
management systems and how consensus has played a role in the various
steps of this development. This section also presents background on
data management systems that is needed for the rest of this monograph.
It presents the system and data model of data management systems

Full text available at: http://dx.doi.org/10.1561/1900000075
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that we utilize for the rest of the monograph. Also, it introduces the
problems of transaction processing, concurrency control and recovery,
as they are typically concerns that are involved while using consensus
algorithms in distributed data management systems.

Section 4 presents how consensus is used for the distributed atomic
commit problem, which is one of the most important problems in
distributed data management systems. The section begins with an
overview of the problem of atomic commitment and the significance of
this problem in distributed and partitioned databases. This includes a
detailed description of seminal protocols such as Two-Phase Commit
(2PC) [9], [56], [108]. Then, we present more details about distributed
atomic commit protocols that use consensus as a foundation. We present
in more detail the paxos commit protocol [58] to represent a class of
atomic commit protocols using consensus. We start from that description
to discuss other atomic commit protocols that use consensus in different
ways. We conclude the section with a discussion on the relation between
the atomic commit and consensus problems. This relation stems from
both protocols aiming to reach agreement across distributed nodes and
show how many elements of atomic commit protocols and consensus
protocols overlap and aim to provide similar properties.

Section 5 presents how consensus is used in replication protocols
where data copies are distributed across different nodes. This section
begins with an introduction to the problem of data replication and its
significance in data management systems for performance and fault-
tolerance. This includes presenting some early work on data replication
and the ensuing concurrency control concerns. Then, we discuss how
consensus can be used to solve the replication problem. In particular,
we show how the state-machine replication abstraction has been used to
enable multiple nodes to maintain copies of data that are consistent and
recoverable. We also discuss how replication of individual participants in
atomic commit protocols can be used as an alternative to the approaches
we have shown in Section 4. We also present different variations of how
consensus is used in different environments. In particular, we discuss
the use of consensus in replicating for highly-available systems that
gained popularity in cloud computing. Also, we present how consensus is
adapted and used in environments that span large geographic locations
such as multi-data center and geo-replicated systems.
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Section 6 expands the scope of the crash-tolerant commit protocols
to handle arbitrary failures. To this end, we explore in-depth the seminal
fault-tolerant consensus protocol known as Pbft (Practical Byzantine
Fault Tolerance) [34]. We present Pbft as the foundation for navigating
and examining the consensus landscape. We further explore speculative,
optimistic, linearized, and concurrent consensus designs. We conclude
this section by examining the topology of consensus in the context of
cross-shard and cross-chain designs. Our ultimate aim is to simplify and
make the design of these intricate protocols accessible to a wide range
of audiences, a stepping stone to further advancing this field.

Section 7 concludes the monograph with a summary and a discussion
of future directions. We discuss the potential impact of utilizing and
extending consensus in the areas of serverless computing, decentralized
applications, and edge-cloud systems.
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