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ABSTRACT

In an era of increasingly interconnected information, graph-
structured data has become pervasive across numerous do-
mains from social media platforms and telecommunication
networks to biological systems and knowledge graphs. How-
ever, traditional database management systems often strug-
gle when confronted with the unique challenges posed by
graph-structured data, in large part due to the explosion of
intermediate results, the complexity of join-heavy queries,
and the use of regular path queries.

This survey provides a comprehensive overview of mod-
ern query processing techniques designed to address these
challenges. We focus on four key components that have
emerged as pivotal in optimizing queries on graph-structured
databases: (1) Predefined joins, which leverage precomputed
data structures to accelerate joins; (2) Worst-case optimal
join algorithms, that avoid redundant computations for
queries with cycles; (3) Factorized representations, which
compress intermediate and final query results; and (4) Ad-
vanced techniques for processing recursive queries, essen-
tial for traversing graph structures. For each component,
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we delve into its theoretical underpinnings, explore design
considerations, and discuss the implementation challenges
associated with integrating these techniques into existing
database management systems. This survey aims to serve as
a comprehensive resource for both researchers pushing the
boundaries of query processing and practitioners seeking to
implement state-of-the-art techniques, in addition to offer-
ing insights into future research directions in this rapidly
evolving field.
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1

Introduction

Graph-structured data is ubiquitous in many real-world domains and
applications. Social networks, financial transactions, telecommunication
networks, and knowledge graphs are just a few examples where data is
naturally represented as a graph with entities as nodes and relationships
as edges. Querying and analyzing these graph-structured datasets is inte-
gral to a wide range of analytical applications such as recommendations
in social networks, fraud detection in financial transaction networks,
threat detection in call networks, and inference over knowledge bases
(Sahu et al., 2020).

As an example application domain, consider financial transaction
networks. These networks model entities like individuals, businesses,
and financial institutions as nodes, with transactions between them as
edges. Analyzing these networks is crucial for tasks like detecting money
laundering, tax evasion, and other financial crimes. Typical queries
involve finding long chains of transactions (acyclic paths) that may
indicate suspicious activity, or identifying tightly connected clusters
(cliques/near-cliques) of entities engaging in coordinated illicit behavior.

Figure 1.1 shows an example graph containing 6 entities (nodes)
and 7 relationships (edges) between them. We assume that the input
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{age: 20}
A
Works fage: 50}
Zhang
Follows Follows: Lives A
{year: 2021}
Follows:
{year: 2019}
{age: 30} )2
FoIIows—)' Carmen

{year: 2020} (age: 40}

Figure 1.1: An example of a property graph capturing social network data. Name
properties of nodes are written directly inside the rectangles representing nodes.

Person Follows Lives
name age pFrom pTo | year Name | IName
Mahinda 20 Mahinda | Karim |2021 Mahinda | New York
Karim 30 Carmen | Zhang |2019 Carmen | New York
Carmen 40 Mahinda | Carmen | 2021
Zhang 50 Karim | Carmen | 2020 Works
Mahinda | Zhang |2021 Name cName
Mahinda Acme

Locations Companies
name name
New York Acme

Figure 1.2: Representation of the example graph from Figure 1.1 as a collection of
relations.

graphs are directed in this monograph, however, most of the discussion
applies to undirected graphs as well. Further, we logically model these
graphs as a collection of relations as shown in Figure 1.2, where there is
a separate relation for every entity type (label) and every relationship
type (label). We note that this is a logical representation that we adopt
for presentation purposes, and does not necessarily dictate the physical
storage layouts, the data structures and indexes that may be built on top,
or the query processing algorithms. In other words, we use the relational
representation to express the queries to be executed against this graph
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so that we can more easily contrast and compare with relational query
processing techniques; however, following the principle of physical data
independence, the physical storage representation is not required to
match that logical representation.

Given the tabular representation of graphs, a large fraction of graph
analysis and querying tasks (collectively referred to as graph workloads)
can be seen as select-project-join-aggregate queries on these tables, po-
tentially with recursion. However, unlike typically relational workloads,
graph-structured datasets and workloads have two primary defining
features:

(i) Prevalence of many-to-many relations across entities:
Unlike typical relational workloads which primarily feature key-
foreign key connections across tables, graph workloads primarily
contain many-to-many relationships (e.g., all the relationships
in the example graph above, i.e., Follows, Works, and Lives, are
many-to-many relationships).

(ii) Prevalence of complex join-heavy queries over these rela-
tions: The prevalent tasks in graph workloads translate to queries
with many joins across these many-to-many relationships. The
joins in these queries can have several different structures:

(i) cyclic, such as when finding cliques of phone calls;

(ii) acyclic, such as when finding long chains of financial trans-
actions; or

(iii) recursive, such as when finding shortest connections between
users in social networks.

This contrasts with traditional relational workloads, such as those found
in the popular TPC benchmarks, that contain many primary-foreign
key (PK-FK) joins. The combination of complex join structures in the
graph workloads and the many-to-many cardinality of relations in these
datasets pose serious challenges for traditional query processors. For
example, queries can generate large intermediate relations that often
cannot be handled by traditional techniques.
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6 Introduction

The last decade has seen the emergence of numerous prototype
and commercial DBMSs that are optimized for graph workloads. These
include specialized systems such as graph DBMSs (GDBMSs) that
adopt the property graph data model, e.g., Neo4j (Neodj, Inc, 2023a),
TigerGraph (Tigergraph, 2023), GraphflowDB (Kankanamge et al.,
2017), Kuzu (Feng et al., 2023), Avantgraph (Leeuwen et al., 2022);
earlier RDF systems, e.g., RDF-3x (Neumann and Weikum, 2010);
and graph-optimized extensions of RDBMSs, e.g., GR-Fusion (Hassan
et al., 2018), GRainDB (Jin and Salihoglu, 2022), and GQ-Fast (Lin
et al., 2016). The goal of this monograph is to survey a set of modern
query processing techniques that have been integrated into the query
processors of these systems. These include:

(i) Pointer-based joins (Section 2) that rely on system-level dense
IDs in contrast to traditional value-based joins in RDBMSs.

(ii) Worst-case optimal join (WCOJ) algorithms (Section 3), which
are a new class of join algorithms that address the problem of
large intermediate size generation for cyclic many-to-many join
queries. Compared to traditional plans that use a tree of binary
join algorithms and perform the joins in a query pairs of table
at a time, WCOJs algorithms perform the joins one column at a
time.

(iii) Factorization (Section 4), a class of techniques to compress inter-
mediate relations that exhibit multi-valued dependencies generated
when performing many-to-many joins, specifically in the acyclic
parts of queries. The theory of factorization represents such inter-
mediate relations in different factorized representations as unions
of Cartesian products instead of flat tuples. The theory of factor-
ization explains when query processors can exploit such factorized
representations by analyzing the join conditions between variables
during query compilation time.

(iv) Techniques for regular path queries (Section 5), a popular class
of recursive graph queries. Amongst recursive queries, most prior
work focuses on regular path queries. We cover the traditional
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automata-based plans of Mendelzon and Wood (1989) and a-join
plans based on « relational algebra introduced by Agrawal (1988),
and the more recent WaveGuide plans of Yakovets et al. (2016a)
that mix both of these approaches.

We overview: (i) the foundations of these techniques when appro-
priate; (ii) the current design choices different DBMSs have made to
integrate these techniques; and (iii) the challenges for existing implemen-
tation approaches, which provide promising avenues for further research.
Our goal is to bring a structure to this vast theory and systems-oriented
literature. We focus on the application of these techniques for join
processing over static databases though we briefly mention works that
apply these techniques to the problem of incrementally maintaining
query results when the underlying databases are dynamic.

We primarily cover these techniques in the context of a centralized,
sequential computation model, which has been the focus of most of the
work on these techniques so far, including WCOJ algorithms, factoriza-
tion, and RPQs. There is a vast body of work on building on parallel
and distributed graph analytics platforms (Yan et al., 2017), primarily
based on the so-called vertez-centric programming framework (Malewicz
et al., 2010). This framework has also been incorporated into several re-
lational database systems (Fan et al., 2015; Jindal et al., 2014). However,
the target workload for those systems is very different from the types
of queries that we focus on in this monograph. Some of the example
graph analysis tasks include: finding most central or influential nodes
in the graph (e.g., by calculating metrics such page rank or betweenness
centrality), identifying communities in the graph, understanding influ-
ence propagation, etc. Although there is some overlap, the algorithmic
techniques discussed in this monograph are not applicable to executing
those types of tasks; instead, specialized parallel systems (Shun and
Blelloch, 2013; Wang et al., 2016) are typically used given the scale
of the graphs involved in the application domains like social media,
finance, disease transmission, etc. On the flip side, it has been shown
how to implement multi-way joins efficiently on top of the vertex-centric
framework (Smagulova and Deutsch, 2021) and other distributed pro-
gramming paradigms (Afrati and Ullman, 2011); we discuss some of
that work briefly where appropriate.
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The techniques we discuss in this monograph are generally applicable
to any database system where the workload maps to multi-way join
queries over relations. This includes RDF databases that store the RDF
data as a collection of tables and map queries over the data (typically
in SPARQL) to multi-way join queries over those tables (Neumann and
Weikum, 2010; Abadi et al., 2007; Erling and Mikhailov, 2009). It also
includes document databases that adopt XML or JSON data model,
but “shred” the data into a collection of tables and translate the queries
to join queries (Tatarinov et al., 2002). However, they do not apply
directly to systems that use specialized storage schemes or index data
structures to execute queries (e.g., gStore, Zou et al., 2014a). We note
that there are a number of similarities between WCOJ algorithms and
traversal-based techniques for subgraph pattern matching (Sun et al.,
2020), but more work is needed to unify these somewhat disparate lines
of work.

Finally, we focus exclusively on read queries in this monograph. In
most cases, updates to the graph can be directly mapped to updates
to the underlying tables, and can benefit from the mature and efficient
support for transactions and ACID properties in relational databases.
This is, in fact, a key motivation behind using a relational database as
the backend storage for a graph database. However, the specific mix
of queries and updates may influence the decisions about how many
and which tables to use. We don’t discuss these issues further in this
monograph.

1.1 Target Audience

This monograph is intended for readers who are familiar with basic
concepts of internals of databases, such as the general paradigm of
compiling high-level queries into executable query plans and core query
processing operators, such as scans and joins. Beyond that we cover the
necessary background in each section. We are particularly interested
in making the monograph accessible to readers with graph analytics or
graph processing systems backgrounds. However, we adopt a relational
view of query evaluation even if logically the datasets in our examples
are often modeled as graphs. This is because the foundations of many of
the techniques we cover were developed in the context of join processing
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1.2. Brief Background 9

over sets of records. At parts, we cover some advanced material on
database theory. We accompany these parts with suggestions to skip for
readers who may be more interested in understanding the core query
processing techniques and how they are integrated into systems.

1.2 Brief Background

We end this introductory section with a brief overview of some back-
ground on the formal notation we use for describing join queries and
databases. The necessary notation for regular path queries is covered in
Section 5. Background for each of the techniques we cover is provided
in detail in each section.

Unless otherwise stated, we assume that input graphs are directed
and modeled as binary relations, that are denoted with capital letters
R and FE or variants such as R or Ey. The attributes of relations are
generally denoted with lowercase letters that start with a, such as a; or
as. In some figures, we use attributes ‘from’ and ‘to’, ‘src’ or ‘dst’, or a
similar variant of these words to denote the sources and destinations of
the edges.

We consider natural join queries over these binary relations that we
denote by @ (or a variant @);). We generally assume full join queries,
i.e., where no projections occur. We denote queries in Datalog syntax,
where we generally omit the attributes in the head of the rules. The
following is an example showing how we denote the “triangle” query:

Qa = Ri(ay1,a2), Ra(az,a3)R3(as, ar)

Sometimes, we write a predicate next to a variable in the head or
body of these rules to indicate filters. For example, Q(a1=1,as,a3) :=
Ri(ay =1,a2),R2(asz,as), Rs(as,ay = 1) represents the query that finds
all triangles where a; has value 1.

In a few parts of the monograph, we also use example queries from
SQL and the Cypher query language (Francis et al., 2018). Cypher is the
query language of the Neo4j system that is also adopted by several other
GDBMSs, such as MemGraph (Memgraph Ltd, 2023) and Kuzu (Feng
et al., 2023). The meanings of Cypher queries is explained in the parts
of text when they are used.
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