Full text available at: http://dx.doi.org/10.1561/1900000090

Modern Techniques For
Querying Graph-structured
Databases

Full text available at: http://dx.doi.org/10.1561/1900000090

Other titles in Foundations and Trends® in Databases

A Systematic Review of Visualization Recommendation Systems: Goals,
Strategies, Interfaces, and Evaluations

Zehua Zeng and Leilani Battle

ISBN: 978-1-63828-402-4

Learned Query Optimizers
Bolin Ding, Rong Zhu and Jingren Zhou
ISBN: 978-1-63828-382-9

More Modern B-Tree Techniques
Goetz Graefe
ISBN: 978-1-63828-372-0

Data Structures for Data-Intensive Applications: Tradeoffs and De-
stgn Guidelines

Manos Athanassoulis, Stratos Idreos and Dennis Shasha

ISBN: 978-1-63828-184-9

Full text available at: http://dx.doi.org/10.1561/1900000090

Modern Techniques For Querying
Graph-structured Databases

Amine Mhedhbi
Polytechnique Montreal
amine.mhedhbi@polymtl.ca

Amol Deshpande
University of Maryland
amol@umd.edu

Semih Salihoglu
University of Waterloo
semih.salihoglu@uwaterloo.ca

now

the essence of knowledge

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/1900000090

Foundations and Trends® in Databases

Published, sold and distributed by:
now Publishers Inc.

PO Box 1024

Hanover, MA 02339

United States

Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.

PO Box 179

2600 AD Delft

The Netherlands

Tel. +31-6-51115274

The preferred citation for this publication is

A. Mhedhbi et al.. Modern Techniques For Querying Graph-structured Databases.
Foundations and Trends® in Databases, vol. 14, no. 2, pp. 72-185, 2024.

ISBN: 978-1-63828-425-3
© 2024 A. Mhedhbi et al.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise,
without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for internal or personal
use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users
registered with the Copyright Clearance Center (CCC). The ‘services’ for users can be found on
the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system of payment
has been arranged. Authorization does not extend to other kinds of copying, such as that for
general distribution, for advertising or promotional purposes, for creating new collective works, or
for resale. In the rest of the world: Permission to photocopy must be obtained from the copyright
owner. Please apply to now Publishers Inc., PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781
871 0245; www.nowpublishers.com; sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/1900000090

Foundations and Trends® in Databases
Volume 14, Issue 2, 2024
Editorial Board

Editor-in-Chief

Joseph M. Hellerstein Surajit Chaudhuri
University of California at Berkeley Microsoft Research, Redmond
United States United States

Editors

Azza Abouzied
NYU-Abu Dhabs

Gustavo Alonso
ETH Zurich

Mike Cafarella
University of Michigan
Alan Fekete
University of Sydney

Thab Ilyas

University of Waterloo
Sanjay Krishnan
University of Chicago
FeiFei Li

Alibaba Group

Sunita Sarawagi
1IT Bombay

Jun Yang
Duke University

Full text available at: http://dx.doi.org/10.1561/1900000090

Editorial Scope

Foundations and Trends® in Databases publishes survey and tutorial articles
in the following topics:

Data Models and Query Lan-
guages

Query Processing and Optimiza-
tion

Storage, Access Methods, and
Indexing

Transaction Management, Con-
currency Control and Recovery

Deductive Databases

Parallel and Distributed
Database Systems

Database Design and Tuning
Metadata Management
Object Management

Trigger Processing and Active
Databases

Data Mining and OLAP

Approximate and Interactive
Query Processing

Data Warehousing

Adaptive Query Processing
Data Stream Management
Search and Query Integration
XML and Semi-Structured Data
Web Services and Middleware
Data Integration and Exchange

Private and Secure Data Man-
agement

Peer-to-Peer, Sensornet and Mo-
bile Data Management

Scientific and Spatial Data Man-
agement

Data Brokering and Publish/-
Subscribe

Data Cleaning and Information
Extraction

Probabilistic Data Management

Information for Librarians

Foundations and Trends® in Databases, 2024, Volume 14, 4 issues. ISSN
paper version 1931-7883. ISSN online version 1931-7891. Also available
as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/1900000090

Contents

Introduction
1.1 Target Audience
1.2 Brief Background

Predefined Joins

2.1 Overview of Joins in SQL and Graph Query Languages . . .
2.2 Value-based Joins
2.3 Predefined Joins and Join Indices

Worst-case Optimal Join Algorithms

3.1 History of the AGM Bound and WCOJ Algorithms
3.2 AGM Bound and WCO “Generic Join" Algorithm
3.3 Worst-case Optimal Join Only Plans
3.4 Mixing With Binary Joins
3.5 FreeJoin: Rule-based Binary Join Plan Modification.
3.6 Other Work and Open Problems

Factorization

4.1 Overview of Factorization
4.2 F-Representations Background
4.3 Approaches to Adopting F-Representations.
4.4 Background on D-Representations

10
11
11
13

22
25
27
30
46
50
52

Full text available at: http://dx.doi.org/10.1561/1900000090

4.5 Approach to Adopting D-Representations by Graphflow . .
4.6 Data-dependent Compression
4.7 Other Work and Open Problems

5 Execution of Regular Path Queries

5.1 Background

5.2 Automata-based Techniques
5.3 Relational Algebra-based Techniques
5.4 WaveGuide: Combining the Two Approaches.

5.5 Other Work

6 Conclusions

References

82
85
88

91
93
95
99
101
103

105

107

Full text available at: http://dx.doi.org/10.1561/1900000090

Modern Techniques For Querying

Graph-structured Databases
Amine Mhedhbi', Amol Deshpande? and Semih Salihoglu®

L Polytechnique Montreal, Canada; amine.mhedhbi@polymdtl.ca
2 University of Maryland, USA; amol@cs.umd.edu
3 University of Waterloo, Canada; semih.salihoglu@uuwaterloo.ca

ABSTRACT

In an era of increasingly interconnected information, graph-
structured data has become pervasive across numerous do-
mains from social media platforms and telecommunication
networks to biological systems and knowledge graphs. How-
ever, traditional database management systems often strug-
gle when confronted with the unique challenges posed by
graph-structured data, in large part due to the explosion of
intermediate results, the complexity of join-heavy queries,
and the use of regular path queries.

This survey provides a comprehensive overview of mod-
ern query processing techniques designed to address these
challenges. We focus on four key components that have
emerged as pivotal in optimizing queries on graph-structured
databases: (1) Predefined joins, which leverage precomputed
data structures to accelerate joins; (2) Worst-case optimal
join algorithms, that avoid redundant computations for
queries with cycles; (3) Factorized representations, which
compress intermediate and final query results; and (4) Ad-
vanced techniques for processing recursive queries, essen-
tial for traversing graph structures. For each component,

Amine Mhedhbi, Amol Deshpande and Semih Salihoglu (2024), “Modern Techniques
For Querying Graph-structured Databases”, Foundations and Trends® in Databases:
Vol. 14, No. 2, pp 72-185. DOIL: 10.1561/1900000090.

©2024 A. Mhedhbi et al.

Full text available at: http://dx.doi.org/10.1561/1900000090

we delve into its theoretical underpinnings, explore design
considerations, and discuss the implementation challenges
associated with integrating these techniques into existing
database management systems. This survey aims to serve as
a comprehensive resource for both researchers pushing the
boundaries of query processing and practitioners seeking to
implement state-of-the-art techniques, in addition to offer-
ing insights into future research directions in this rapidly
evolving field.

Full text available at: http://dx.doi.org/10.1561/1900000090

1

Introduction

Graph-structured data is ubiquitous in many real-world domains and
applications. Social networks, financial transactions, telecommunication
networks, and knowledge graphs are just a few examples where data is
naturally represented as a graph with entities as nodes and relationships
as edges. Querying and analyzing these graph-structured datasets is inte-
gral to a wide range of analytical applications such as recommendations
in social networks, fraud detection in financial transaction networks,
threat detection in call networks, and inference over knowledge bases
(Sahu et al., 2020).

As an example application domain, consider financial transaction
networks. These networks model entities like individuals, businesses,
and financial institutions as nodes, with transactions between them as
edges. Analyzing these networks is crucial for tasks like detecting money
laundering, tax evasion, and other financial crimes. Typical queries
involve finding long chains of transactions (acyclic paths) that may
indicate suspicious activity, or identifying tightly connected clusters
(cliques/near-cliques) of entities engaging in coordinated illicit behavior.

Figure 1.1 shows an example graph containing 6 entities (nodes)
and 7 relationships (edges) between them. We assume that the input

Full text available at: http://dx.doi.org/10.1561/1900000090

4 Introduction
{age: 20}
A
Works fage: 50}
Zhang
Follows Follows: Lives A
{year: 2021}
Follows:
{year: 2019}
{age: 30})2
FoIIows—)' Carmen

{year: 2020} (age: 40}

Figure 1.1: An example of a property graph capturing social network data. Name
properties of nodes are written directly inside the rectangles representing nodes.

Person Follows Lives
name age pFrom pTo | year Name | IName
Mahinda 20 Mahinda | Karim |2021 Mahinda | New York
Karim 30 Carmen | Zhang |2019 Carmen | New York
Carmen 40 Mahinda | Carmen | 2021
Zhang 50 Karim | Carmen | 2020 Works
Mahinda | Zhang |2021 Name cName
Mahinda Acme

Locations Companies
name name
New York Acme

Figure 1.2: Representation of the example graph from Figure 1.1 as a collection of
relations.

graphs are directed in this monograph, however, most of the discussion
applies to undirected graphs as well. Further, we logically model these
graphs as a collection of relations as shown in Figure 1.2, where there is
a separate relation for every entity type (label) and every relationship
type (label). We note that this is a logical representation that we adopt
for presentation purposes, and does not necessarily dictate the physical
storage layouts, the data structures and indexes that may be built on top,
or the query processing algorithms. In other words, we use the relational
representation to express the queries to be executed against this graph

Full text available at: http://dx.doi.org/10.1561/1900000090

so that we can more easily contrast and compare with relational query
processing techniques; however, following the principle of physical data
independence, the physical storage representation is not required to
match that logical representation.

Given the tabular representation of graphs, a large fraction of graph
analysis and querying tasks (collectively referred to as graph workloads)
can be seen as select-project-join-aggregate queries on these tables, po-
tentially with recursion. However, unlike typically relational workloads,
graph-structured datasets and workloads have two primary defining
features:

(i) Prevalence of many-to-many relations across entities:
Unlike typical relational workloads which primarily feature key-
foreign key connections across tables, graph workloads primarily
contain many-to-many relationships (e.g., all the relationships
in the example graph above, i.e., Follows, Works, and Lives, are
many-to-many relationships).

(ii) Prevalence of complex join-heavy queries over these rela-
tions: The prevalent tasks in graph workloads translate to queries
with many joins across these many-to-many relationships. The
joins in these queries can have several different structures:

(i) cyclic, such as when finding cliques of phone calls;

(ii) acyclic, such as when finding long chains of financial trans-
actions; or

(iii) recursive, such as when finding shortest connections between
users in social networks.

This contrasts with traditional relational workloads, such as those found
in the popular TPC benchmarks, that contain many primary-foreign
key (PK-FK) joins. The combination of complex join structures in the
graph workloads and the many-to-many cardinality of relations in these
datasets pose serious challenges for traditional query processors. For
example, queries can generate large intermediate relations that often
cannot be handled by traditional techniques.

Full text available at: http://dx.doi.org/10.1561/1900000090

6 Introduction

The last decade has seen the emergence of numerous prototype
and commercial DBMSs that are optimized for graph workloads. These
include specialized systems such as graph DBMSs (GDBMSs) that
adopt the property graph data model, e.g., Neo4j (Neodj, Inc, 2023a),
TigerGraph (Tigergraph, 2023), GraphflowDB (Kankanamge et al.,
2017), Kuzu (Feng et al., 2023), Avantgraph (Leeuwen et al., 2022);
earlier RDF systems, e.g., RDF-3x (Neumann and Weikum, 2010);
and graph-optimized extensions of RDBMSs, e.g., GR-Fusion (Hassan
et al., 2018), GRainDB (Jin and Salihoglu, 2022), and GQ-Fast (Lin
et al., 2016). The goal of this monograph is to survey a set of modern
query processing techniques that have been integrated into the query
processors of these systems. These include:

(i) Pointer-based joins (Section 2) that rely on system-level dense
IDs in contrast to traditional value-based joins in RDBMSs.

(ii) Worst-case optimal join (WCOJ) algorithms (Section 3), which
are a new class of join algorithms that address the problem of
large intermediate size generation for cyclic many-to-many join
queries. Compared to traditional plans that use a tree of binary
join algorithms and perform the joins in a query pairs of table
at a time, WCOJs algorithms perform the joins one column at a
time.

(iii) Factorization (Section 4), a class of techniques to compress inter-
mediate relations that exhibit multi-valued dependencies generated
when performing many-to-many joins, specifically in the acyclic
parts of queries. The theory of factorization represents such inter-
mediate relations in different factorized representations as unions
of Cartesian products instead of flat tuples. The theory of factor-
ization explains when query processors can exploit such factorized
representations by analyzing the join conditions between variables
during query compilation time.

(iv) Techniques for regular path queries (Section 5), a popular class
of recursive graph queries. Amongst recursive queries, most prior
work focuses on regular path queries. We cover the traditional

Full text available at: http://dx.doi.org/10.1561/1900000090

automata-based plans of Mendelzon and Wood (1989) and a-join
plans based on « relational algebra introduced by Agrawal (1988),
and the more recent WaveGuide plans of Yakovets et al. (2016a)
that mix both of these approaches.

We overview: (i) the foundations of these techniques when appro-
priate; (ii) the current design choices different DBMSs have made to
integrate these techniques; and (iii) the challenges for existing implemen-
tation approaches, which provide promising avenues for further research.
Our goal is to bring a structure to this vast theory and systems-oriented
literature. We focus on the application of these techniques for join
processing over static databases though we briefly mention works that
apply these techniques to the problem of incrementally maintaining
query results when the underlying databases are dynamic.

We primarily cover these techniques in the context of a centralized,
sequential computation model, which has been the focus of most of the
work on these techniques so far, including WCOJ algorithms, factoriza-
tion, and RPQs. There is a vast body of work on building on parallel
and distributed graph analytics platforms (Yan et al., 2017), primarily
based on the so-called vertez-centric programming framework (Malewicz
et al., 2010). This framework has also been incorporated into several re-
lational database systems (Fan et al., 2015; Jindal et al., 2014). However,
the target workload for those systems is very different from the types
of queries that we focus on in this monograph. Some of the example
graph analysis tasks include: finding most central or influential nodes
in the graph (e.g., by calculating metrics such page rank or betweenness
centrality), identifying communities in the graph, understanding influ-
ence propagation, etc. Although there is some overlap, the algorithmic
techniques discussed in this monograph are not applicable to executing
those types of tasks; instead, specialized parallel systems (Shun and
Blelloch, 2013; Wang et al., 2016) are typically used given the scale
of the graphs involved in the application domains like social media,
finance, disease transmission, etc. On the flip side, it has been shown
how to implement multi-way joins efficiently on top of the vertex-centric
framework (Smagulova and Deutsch, 2021) and other distributed pro-
gramming paradigms (Afrati and Ullman, 2011); we discuss some of
that work briefly where appropriate.

Full text available at: http://dx.doi.org/10.1561/1900000090

8 Introduction

The techniques we discuss in this monograph are generally applicable
to any database system where the workload maps to multi-way join
queries over relations. This includes RDF databases that store the RDF
data as a collection of tables and map queries over the data (typically
in SPARQL) to multi-way join queries over those tables (Neumann and
Weikum, 2010; Abadi et al., 2007; Erling and Mikhailov, 2009). It also
includes document databases that adopt XML or JSON data model,
but “shred” the data into a collection of tables and translate the queries
to join queries (Tatarinov et al., 2002). However, they do not apply
directly to systems that use specialized storage schemes or index data
structures to execute queries (e.g., gStore, Zou et al., 2014a). We note
that there are a number of similarities between WCOJ algorithms and
traversal-based techniques for subgraph pattern matching (Sun et al.,
2020), but more work is needed to unify these somewhat disparate lines
of work.

Finally, we focus exclusively on read queries in this monograph. In
most cases, updates to the graph can be directly mapped to updates
to the underlying tables, and can benefit from the mature and efficient
support for transactions and ACID properties in relational databases.
This is, in fact, a key motivation behind using a relational database as
the backend storage for a graph database. However, the specific mix
of queries and updates may influence the decisions about how many
and which tables to use. We don’t discuss these issues further in this
monograph.

1.1 Target Audience

This monograph is intended for readers who are familiar with basic
concepts of internals of databases, such as the general paradigm of
compiling high-level queries into executable query plans and core query
processing operators, such as scans and joins. Beyond that we cover the
necessary background in each section. We are particularly interested
in making the monograph accessible to readers with graph analytics or
graph processing systems backgrounds. However, we adopt a relational
view of query evaluation even if logically the datasets in our examples
are often modeled as graphs. This is because the foundations of many of
the techniques we cover were developed in the context of join processing

Full text available at: http://dx.doi.org/10.1561/1900000090

1.2. Brief Background 9

over sets of records. At parts, we cover some advanced material on
database theory. We accompany these parts with suggestions to skip for
readers who may be more interested in understanding the core query
processing techniques and how they are integrated into systems.

1.2 Brief Background

We end this introductory section with a brief overview of some back-
ground on the formal notation we use for describing join queries and
databases. The necessary notation for regular path queries is covered in
Section 5. Background for each of the techniques we cover is provided
in detail in each section.

Unless otherwise stated, we assume that input graphs are directed
and modeled as binary relations, that are denoted with capital letters
R and FE or variants such as R or Ey. The attributes of relations are
generally denoted with lowercase letters that start with a, such as a; or
as. In some figures, we use attributes ‘from’ and ‘to’, ‘src’ or ‘dst’, or a
similar variant of these words to denote the sources and destinations of
the edges.

We consider natural join queries over these binary relations that we
denote by @ (or a variant @);). We generally assume full join queries,
i.e., where no projections occur. We denote queries in Datalog syntax,
where we generally omit the attributes in the head of the rules. The
following is an example showing how we denote the “triangle” query:

Qa = Ri(ay1,a2), Ra(az,a3)R3(as, ar)

Sometimes, we write a predicate next to a variable in the head or
body of these rules to indicate filters. For example, Q(a1=1,as,a3) :=
Ri(ay =1,a2),R2(asz,as), Rs(as,ay = 1) represents the query that finds
all triangles where a; has value 1.

In a few parts of the monograph, we also use example queries from
SQL and the Cypher query language (Francis et al., 2018). Cypher is the
query language of the Neo4j system that is also adopted by several other
GDBMSs, such as MemGraph (Memgraph Ltd, 2023) and Kuzu (Feng
et al., 2023). The meanings of Cypher queries is explained in the parts
of text when they are used.

Full text available at: http://dx.doi.org/10.1561/1900000090

References

Abadi, D. J., A. Marcus, S. R. Madden, and K. Hollenbach. (2007).
“Scalable semantic web data management using vertical partitioning”.
In: Proceedings of the 33rd international conference on Very large
data bases. 411-422.

Aberger, C. R., A. Lamb, S. Tu, A. Noétzli, K. Olukotun, and C. Ré.
(2017). “EmptyHeaded: A Relational Engine for Graph Processing”.
TODS. 42(4).

Abo Khamis, M., H. Q. Ngo, and D. Suciu. (2016). “Computing Join
Queries with Functional Dependencies”. In: ACM PODS.

Abul-Basher, Z., N. Yakovets, P. Godfrey, S. Clark, and M. H. Chignell.
(2021). “Answer Graph: Factorization Matters in Large Graphs”. In:
EDBT. Ed. by Y. Velegrakis, D. Zeinalipour-Yazti, P. K. Chrysanthis,
and F. Guerra. OpenProceedings.org.

Afrati, F. N. and J. D. Ullman. (2011). “Optimizing Multiway Joins
in a Map-Reduce Environment”. IEEE Transactions on Knowledge
and Data Engineering. 23(9).

Agrawal, R. (1988). “Alpha: an extension of relational algebra to ex-
press a class of recursive queries”. IEEE Transactions on Software
Engineering. 14(7).

Ahmad, Y., O. Kennedy, C. Koch, and M. Nikolic. (2012). “DBToaster:
Higher-order Delta Processing for Dynamic, Frequently Fresh Views”.
PVLDB. 5(10).

107

Full text available at: http://dx.doi.org/10.1561/1900000090

108 References

Ammar, K., F. McSherry, S. Salihoglu, and M. Joglekar. (2018). “Dis-
tributed Evaluation of Subgraph Queries Using Worst-case Optimal
Low-memory Dataflows”. PVLDB. 11(6).

Aref, M., B. ten Cate, T. J. Green, B. Kimelfeld, D. Olteanu, E. Pasalic,
T. L. Veldhuizen, and G. Washburn. (2015). “Design and Implemen-
tation of the LogicBlox System”. In: ACM SIGMOD.

Arroyuelo, D., A. Hogan, G. Navarro, and J. Rojas-Ledesma. (2022).
“Time-and space-efficient regular path queries”. In: ICDE.

Atserias, A., M. Grohe, and D. Marx. (2008). “Size Bounds and Query
Plans for Relational Joins”. In: FOCS.

Bachman, C. W. (2009). “The Origin of the Integrated Data Store
(IDS): The First Direct-Access DBMS”. IEEE Annals of the History
of Computing. 31(4).

Bakibayev, N., T. Kocisky, D. Olteanu, and J. Zavodny. (2013). “Ag-
gregation and Ordering in Factorised Databases”. PVLDB. 6(14).

Bakibayev, N., D. Olteanu, and J. Zavodny. (2012). “FDB: A Query
Engine for Factorised Relational Databases”. PVLDB. 5(11).

Beame, P., P. Koutris, and D. Suciu. (2017). “Communication Steps
for Parallel Query Processing”. Journal of the ACM. 64(6). DOL:
10.1145/3125644.

Bhattarai, B., H. Liu, and H. H. Huang. (2019). “CECI: Compact
Embedding Cluster Index for Scalable Subgraph Matching”. In:
SIGMOD.

Bi, F., L. Chang, X. Lin, L. Qin, and W. Zhang. (2016). “Efficient Sub-
graph Matching by Postponing Cartesian Products”. In: SIGMOD.

Blakeley, J. A., P.-A. Larson, and F. W. Tompa. (1986). “Efficiently
Updating Materialized Views”. SIGMOD Record. 15(2).

Boncz, P. A., M. Zukowski, and N. Nes. (2005). “MonetDB/X100:
Hyper-Pipelining Query Execution”. In: CIDR.

Bonifati, A., G. Fletcher, H. Voigt, N. Yakovets, and H. V. Jagadish.
(2018). Querying Graphs. Morgan & Claypool Publishers.

Cai, W., M. Balazinska, and D. Suciu. (2019). “Pessimistic Cardinality
Estimation: Tighter Upper Bounds for Intermediate Join Cardinali-
ties”. In: SIGMOD.

https://doi.org/10.1145/3125644

Full text available at: http://dx.doi.org/10.1561/1900000090

References 109

Chen, J., Y. Huang, M. Wang, S. Salihoglu, and K. Salem. (2022).
“Accurate Summary-Based Cardinality Estimation through the Lens
of Cardinality Estimation Graphs”. PVLDB. 15(8).

Codd, E. F. (1982). “Relational Database: A Practical Foundation for
Productivity”. CACM. 25(2).

Delobel, C. (1978). “Normalization and hierarchical dependencies in
the relational data model”. TODS. 3(3).

Dey, S., V. Cuevas-Vicenttin, S. Kohler, E. Gribkoff, M. Wang, and B.
Ludéscher. (2013). “On implementing provenance-aware regular path
queries with relational query engines”. In: EDBT/ICDT Workshops.

Erling, O. and I. Mikhailov. (2009). “Virtuoso: RDF support in a native
RDBMS”. In: Semantic web information management: a model-based
perspective. Springer. 501-519.

Fagin, R. (1977). “Multivalued dependencies and a new normal form
for relational databases”. TODS. 2(3).

Fan, J., A. G. S. Raj, and J. M. Patel. (2015). “The Case Against
Specialized Graph Analytics Engines.” In: CIDR.

Farias, B., C. Rojas, and D. Vrgoc. (2023). “Evaluating Regular Path
Queries in GQL and SQL/PGQ: How Far Can The Classical Algo-
rithms Take Us?” CoRR. abs/2306.02194.

Feng, X., G. Jin, Z. Chen, C. Liu, and S. Salihoglu. (2022). “Kuzu
Database Management System Source Code”. URL: https://github.
com/kuzudb/kuzu.

Feng, X., G. Jin, Z. Chen, C. Liu, and S. Salihoglu. (2023). “Kuzu
Graph Database Management System”. In: CIDR.

Francis, N., A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V.
Marsault, S. Plantikow, M. Rydberg, P. Selmer, and A. Taylor.
(2018). “Cypher: An Evolving Query Language for Property Graphs”.
In: ACM SIGMOD.

Freitag, M., M. Bandle, T. Schmidt, A. Kemper, and T. Neumann.
(2020). “Adopting Worst-Case Optimal Joins in Relational Database
Systems”. PVLDB. 13(12).

Graefe, G. (1994). “Volcano - An Extensible and Parallel Query Evalu-
ation System”. TKDE. 6(1).

https://github.com/kuzudb/kuzu
https://github.com/kuzudb/kuzu

Full text available at: http://dx.doi.org/10.1561/1900000090

110 References

Gupta, P.; A. Mhedhbi, and S. Salihoglu. (2021). “Columnar Storage and
List-based Processing for Graph Database Management Systems”.
PVLDB. 14(11).

Han, M., H. Kim, G. Gu, K. Park, and W. Han. (2019). “Efficient
Subgraph Matching: Harmonizing Dynamic Programming, Adaptive
Matching Order, and Failing Set Together”. In: SIGMOD.

Hassan, M. S., T. Kuznetsova, H. C. Jeong, W. G. Aref, and M. Sadoghi.
(2018). “Extending In-Memory Relational Database Engines with
Native Graph Support”. In: EDBT.

Huang, Z. and E. Wu. (2023). “Lightweight Materialization for Fast
Dashboards Over Joins”. SIGMOD. 1(4).

Idreos, S., M. L. Kersten, and S. Manegold. (2007). “Database Cracking”.
In: Conference on Innovative Data Systems Research.

ISO/IEC JTC 1/SC 32. (2024). “SQL/PGQ Standard”. URL: https:
//www.iso.org/standard/79473.html.

JCC Consulting, Inc. (2024). “GQL Standard”. URL: https://www.
gqlstandards.org/.

Jin, G. and S. Salihoglu. (2022). “Making RDBMSs Efficient on Graph
Workloads Through Predefined Joins”. PVLDB. 15(5).

Jindal, A., P. Rawlani, E. Wu, S. Madden, A. Deshpande, and M.
Stonebraker. (2014). “Vertexica: your relational friend for graph
analytics!” Proceedings of the VLDB Endowment. 7(13): 1669-1672.

Joglekar, M. and C. Ré. (2018). “It’s All a Matter of Degree - Us-
ing Degree Information to Optimize Multiway Joins”. Theory of
Computing Systems. 62(4).

Kalinsky, O., Y. Etsion, and B. Kimelfeld. (2017). “Flexible Caching in
Trie Joins”. In: EDBT. Ed. by V. Markl, S. Orlando, B. Mitschang,
P. Andritsos, K. Sattler, and S. Bref.

Kankanamge, C., S. Sahu, A. Mhedhbi, J. Chen, and S. Salihoglu.
(2017). “Graphflow: An Active Graph Database”. In: SIGMOD.
Kara, A., M. Nikolic, D. Olteanu, and H. Zhang. (2023). “F-IVM:
Analytics over Relational Databases under Updates”. CoRR.

abs/2303.08583.

Khamis, M. A., H. Q. Ngo, C. Ré, and A. Rudra. (2016). “Joins via
Geometric Resolutions: Worst Case and Beyond”. TODS. 41(4).

https://www.iso.org/standard/79473.html
https://www.iso.org/standard/79473.html
https://www.gqlstandards.org/
https://www.gqlstandards.org/

Full text available at: http://dx.doi.org/10.1561/1900000090

References 111

Koschmieder, A. and U. Leser. (2012). “Regular path queries on large
graphs”. In: SSDBM. Springer.

Koutris, P., S. Salihoglu, and D. Suciu. (2018). “Algorithmic Aspects of
Parallel Data Processing”. Foundations and Trends® in Databases.
8(4).

Lapaugh, A. and C. Papadimitriou. (1984). “The even-path problem
for graphs and digraphs”. Networks. 14.

Leeuwen, W. v., T. Mulder, B. van de Wall, G. Fletcher, and N. Yakovets.
(2022). “AvantGraph Query Processing Engine”. PVLDB. 15(12).

Leis, V., B. Radke, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and
T. Neumann. (2018). “Query Optimization through the Looking
Glass, and What We Found Running the Join Order Benchmark”.
VLDBJ. 27(5).

Lin, C., B. Mandel, Y. Papakonstantinou, and M. Springer. (2016).
“Fast In-Memory SQL Analytics on Typed Graphs”. In: ICDE.
Losemann, K. and W. Martens. (2013). “The complexity of regular

expressions and property paths in SPARQL”. TODS. 38(4).

Malewicz, G., M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N.
Leiser, and G. Czajkowski. (2010). “Pregel: a system for large-
scale graph processing”. In: Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data. 135-146.

Memgraph Ltd. (2023). “MemGraph”. URL: https://memgraph.com/.

Mendelzon, A. O. and P. T. Wood. (1995). “Finding regular simple
paths in graph databases”. SIAM J. Comput. 24(6).

Mendelzon, A. O. and P. T. Wood. (1989). “Finding Regular Simple
Paths in Graph Databases”. SIAM J. Comput. 24: 1235-1258.
Mhedhbi, A. (2023). “GraphflowDB: Scalable Query Processing on
Graph-Structured Relations”. PhD thesis. URL: http://hdl.handle.

net/10012,/19981.

Mhedhbi, A., C. Kankanamge, and S. Salihoglu. (2021). “Optimiz-
ing One-time and Continuous Subgraph Queries using Worst-case
Optimal Joins”. TODS. 46(2).

Mhedhbi, A. and S. Salihoglu. (2019). “Optimizing Subgraph Queries
by Combining Binary and Worst-Case Optimal Joins”. PVLDB.
12(11).

Neodj, Inc. (2023a). “Neo4j”. URL: https://neodj.com/.

https://memgraph.com/
http://hdl.handle.net/10012/19981
http://hdl.handle.net/10012/19981
https://neo4j.com/

Full text available at: http://dx.doi.org/10.1561/1900000090

112 References

Neodj, Inc. (2023b). “Neo4j Record Design”. URL: https://neodj.com/
developer /kb/understanding-data-on-disk/.

Neumann, T. and M. J. Freitag. (2020). “Umbra: A Disk-Based System
with In-Memory Performance”. In: CIDR.

Neumann, T. and G. Weikum. (2010). “The RDF-3X engine for scalable
management of RDF data”. In: VLDB/J.

Ngo, H. Q., D. T. Nguyen, C. Re, and A. Rudra. (2014). “Beyond
Worst-Case Analysis for Joins with Minesweeper”. In: PODS.

Ngo, H. Q., E. Porat, C. Ré, and A. Rudra. (2012). “Worst-case Optimal
Join Algorithms: [Extended Abstract]”. In: PODS.

Ngo, H. Q., C. Ré, and A. Rudra. (2013). “Skew strikes back: new
developments in the theory of join algorithms”. In: SIGMOD Rec.

Nguyen, V.-Q. and K. Kim. (2017). “Efficient regular path query evalu-
ation by splitting with unit-subquery cost matrix”. IEICE Transac-
tions on Information and Systems. 100(10).

Nikolic, M., H. Zhang, A. Kara, and D. Olteanu. (2020). “F-IVM:
Learning over Fast-Evolving Relational Data”. In: ACM SIGMOD.

Olteanu, D. and M. Schleich. (2016). “Factorized Databases”. SIGMOD
Rec. 45(2).

Olteanu, D. and J. Zavodny. (2015). “Size Bounds for Factorised Repre-
sentations of Query Results”. TODS. 40(1).

Peng, Y., Y. Zhang, X. Lin, L. Qin, and W. Zhang. (2020). “Answering
billion-scale label-constrained reachability queries within microsec-
ond”. PVLDB. 13(6).

Raasveldt, M. and H. Miihleisen. (2019a). “DuckDB: An Embeddable
Analytical Database”. In: SIGMOD.

Raasveldt, M. and H. Miihleisen. (2019b). “DuckDB: an Embeddable
Analytical Database”. In: SIGMOD.

Sahu, S., A. Mhedhbi, S. Salihoglu, J. Lin, and M. T. Ozsu. (2020).
“The Ubiquity of Large Graphs and Surprising Challenges of Graph
Processing: Extended Survey”. 13(12).

Schleich, M. and D. Olteanu. (2020). “LMFAO: An Engine for Batches
of Group-by Aggregates: Layered Multiple Functional Aggregate
Optimization”. 13(12).

https://neo4j.com/developer/kb/understanding-data-on-disk/
https://neo4j.com/developer/kb/understanding-data-on-disk/

Full text available at: http://dx.doi.org/10.1561/1900000090

References 113

Shun, J. and G. E. Blelloch. (2013). “Ligra: a lightweight graph pro-
cessing framework for shared memory”. In: Proceedings of the 18th
ACM SIGPLAN symposium on Principles and practice of parallel
programming. 135-146.

Silberschatz, A., H. Korth, and S. Sudarshan. (2005). Database Systems
Concepts. 5th ed. McGraw-Hill, Inc.

Smagulova, A. and A. Deutsch. (2021). “Vertex-centric Parallel Compu-
tation of SQL Queries”. In: Proceedings of the 2021 International
Conference on Management of Data. 1664-1677.

Sun, S., X. Sun, Y. Che, Q. Luo, and B. He. (2020). “Rapidmatch: A
holistic approach to subgraph query processing”. Proceedings of the
VLDB Endowment. 14(2): 176-188.

Tatarinov, 1., S. D. Viglas, K. Beyer, J. Shanmugasundaram, E. Shekita,
and C. Zhang. (2002). “Storing and querying ordered XML using
a relational database system”. In: Proceedings of the 2002 ACM
SIGMOD international conference on Management of data. 204-215.

Then, M., M. Kaufmann, F. Chirigati, T.-A. Hoang-Vu, K. Pham, A.
Kemper, T. Neumann, and H. T. Vo. (2014). “The More the Merrier:
Efficient Multi-source Graph Traversal”. PVLDB. 8(4).

Tigergraph. (2023). “TigerGraph”. URL: https://www.tigergraph.com/.

Valduriez, P. (1987). “Join Indices”. ACM TODS. 12(2).

Valstar, L. D., G. H. Fletcher, and Y. Yoshida. (2017). “Landmark
Indexing for Evaluation of Label-Constrained Reachability Queries”.
In: SIGMOD.

Veldhuizen, T. L. (2012). “Leapfrog Triejoin: a worst-case optimal join
algorithm”. CoRR. abs/1210.0481.

Veldhuizen, T. L. (2013). “Incremental Maintenance for Leapfrog
Triejoin”. CoRR. abs/1303.5313.

W3C. (2024). “SPARQL Standard”. URL: https://www.w3.org/ TR/
sparqlll-query/.

Wang, Y., A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens.
(2016). “Gunrock: A high-performance graph processing library on
the GPU”. In: Proceedings of the 21st ACM SIGPLAN symposium
on principles and practice of parallel programming. 1-12.

Wang, Y. R., M. Willsey, and D. Suciu. (2023). “Free Join: Unifying
Worst-Case Optimal and Traditional Joins”. In: SIGMOD.

https://www.tigergraph.com/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/

Full text available at: http://dx.doi.org/10.1561/1900000090

114 References

Wolde, D. ten, T. Singh, G. Szarnyas, and P. Boncz. (2023). “DuckPGQ:
Efficient Property Graph Queries in an analytical RDBMS”. In:
CIDR.

Xirogiannopoulos, K. and A. Deshpande. (2017). “Extracting and ana-
lyzing hidden graphs from relational databases”. In: SIGMOD.
Xirogiannopoulos, K., V. Srinivas, and A. Deshpande. (2017). “Graph-
gen: Adaptive graph processing using relational databases”. In:

GRADES-NDA.

Yakovets, N., P. Godfrey, and J. Gryz. (2013). “Evaluation of SPARQL
Property Paths via Recursive SQL”. In: Alberto Mendelzon Workshop
on Foundations of Data Management.

Yakovets, N., P. Godfrey, and J. Gryz. (2016a). “Query Planning for
Evaluating SPARQL Property Paths”. In: SIGMOD.

Yakovets, N., P. Godfrey, and J. Gryz. (2016b). “Query planning for
evaluating SPARQL property paths”. In: SIGMOD.

Yan, D., Y. Bu, Y. Tian, A. Deshpande, et al. (2017). “Big graph
analytics platforms”. Foundations and Trends® in Databases. 7(1-2):
1-195.

Yannakakis, M. (1981). “Algorithms for Acyclic Database Schemes”. In:
PVLDB.

Yu, J. X. and J. Cheng. (2010). “Graph Reachability Queries: A Survey”.
In: Managing and Mining Graph Data. Springer US.

Zhu, J., N. Potti, S. Saurabh, and J. M. Patel. (2017). “Looking ahead
makes query plans robust: Making the initial case with in-memory
star schema data warehouse workloads”. PVLDB. 10(8).

Zou, L., M. T. Ozsu, L. Chen, X. Shen, R. Huang, and D. Zhao. (2014a).
“gStore: a graph-based SPARQL query engine”. The VLDB journal.
23: 565-590.

Zou, L., K. Xu, J. X. Yu, L. Chen, Y. Xiao, and D. Zhao. (2014b).
“Efficient Processing of Label-constraint Reachability Queries in
Large Graphs”. Information Systems. 40.

Zukowski, M., M. van de Wiel, and P. A. Boncz. (2012). “Vectorwise:
A Vectorized Analytical DBMS”. In: ICDE.

