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Abstract

Macroeconomic practitioners frequently work with multivariate time
series models such as VARs, factor augmented VARs as well as time-
varying parameter versions of these models (including variants with
multivariate stochastic volatility). These models have a large number
of parameters and, thus, over-parameterization problems may arise.
Bayesian methods have become increasingly popular as a way of over-
coming these problems. In this monograph, we discuss VARs, factor
augmented VARs and time-varying parameter extensions and show
how Bayesian inference proceeds. Apart from the simplest of VARs,
Bayesian inference requires the use of Markov chain Monte Carlo meth-
ods developed for state space models and we describe these algorithms.
The focus is on the empirical macroeconomist and we offer advice on
how to use these models and methods in practice and include empirical
illustrations. A website provides Matlab code for carrying out Bayesian
inference in these models.
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1

Introduction

The purpose of this monograph is to offer a survey of the Bayesian
methods used with many of the models used in modern empirical
macroeconomics. These models have been developed to address the fact
that most questions of interest to empirical macroeconomists involve
several variables and, thus, must be addressed using multivariate time
series methods. Many different multivariate time series models have
been used in macroeconomics, but since the pioneering work of [Sims
(1980), Vector Autoregressive (VAR) models have been among the
most popular. It soon became apparent that, in many applications, the
assumption that the VAR coefficients were constant over time might be
a poor one. For instance, in practice, it is often found that the macro-
economy of the 1960s and 1970s was different from the 1980s and 1990s.
This led to an interest in models which allowed for time variation in
the VAR coefficients and time-varying parameter VARs (TVP-VARs)
arose. In addition, in the 1980s many industrialized economies experi-
enced a reduction in the volatility of many macroeconomic variables.
This Great Moderation of the business cycle led to an increasing focus
on appropriate modelling of the error covariance matrix in multivari-
ate time series models and this led to the incorporation of multivariate
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stochastic volatility in many empirical papers. In 2008 many economies
went into recession and many of the associated policy discussions sug-
gest that the parameters in VARs may be changing again.
Macroeconomic data sets typically involve monthly, quarterly or
annual observations and, thus are only of moderate size. But VARs have
a great number of parameters to estimate. This is particularly true if the
number of dependent variables is more than two or three (as is required
for an appropriate modelling of many macroeconomic relationships).
Allowing for time-variation in VAR coefficients causes the number of
parameters to proliferate. Allowing for the error covariance matrix to
change over time only increases worries about over-parameterization.
The research challenge facing macroeconomists is how to build models
that are flexible enough to be empirically relevant, capturing key data
features such as the Great Moderation, but not so flexible as to be
seriously over-parameterized. Many approaches have been suggested,
but a common theme in most of these is shrinkage. Whether for fore-
casting or estimation, it has been found that shrinkage can be of great
benefit in reducing over-parameterization problems. This shrinkage can
take the form of imposing restrictions on parameters or shrinking them
towards zero. This has initiated a large increase in the use of Bayesian
methods since prior information provides a logical and formally con-
sistent way of introducing shrinkageE Furthermore, the computational
tools necessary to carry out Bayesian estimation of high dimensional
multivariate time series models have become well-developed and, thus,
models which may have been difficult or impossible to estimate 10 or 20
years ago can now be routinely used by macroeconomic practitioners.
A related class of models, and associated worries about over-
parameterization, has arisen due to the increase in data availability.
Macroeconomists are able to work with hundreds of different time
series variables collected by government statistical agencies and other

L Prior information can be purely subjective. However, as will be discussed below, often
empirical Bayesian or hierarchical priors are used by macroeconomists. For instance, the
state equation in a state space model can be interpreted as a hierarchical prior. But, when
we have limited data information relative to the number of parameters, the role of the
prior becomes increasingly influential. In such cases, great care must to taken with prior
elicitation.
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policy institutes. Building a model with hundreds of time series vari-
ables (with at most a few hundred observations on each) is a daunting
task, raising the issue of a potential proliferation of parameters and a
need for shrinkage or other methods for reducing the dimensionality
of the model. Factor methods, where the information in the hundreds
of variables is distilled into a few factors, are a popular way of deal-
ing with this problem. Combining factor methods with VARs results
in Factor-augmented VARs or FAVARs. However, just as with VARs,
there is a need to allow for time-variation in parameters, which leads to
an interest in TVP-FAVARs. Here, too, Bayesian methods are popular
and for the same reason as with TVP—VARs: Bayesian priors provide a
sensible way of avoiding over-parameterization problems and Bayesian
computational tools are well-designed for dealing with such models.

In this monograph, we survey, discuss and extend the Bayesian
literature on VARs, TVP-VARs and TVP-FAVARs with a focus on
the practitioner. That is, we go beyond simply defining each model,
but specify how to use them in practice, discuss the advantages and
disadvantages of each and offer some tips on when and why each
model can be used. In addition to this, we discuss some new mod-
elling approaches for TVP-VARs. A website contains Matlab code
which allows for Bayesian estimation of the models discussed in this
monograph. Bayesian inference often involves the use of Markov chain
Monte Carlo (MCMC) posterior simulation methods such as the Gibbs
sampler. For many of the models, we provide complete details in this
monograph. However, in some cases we only provide an outline of the
MCMC algorithm. Complete details of all algorithms are given in a
manual on the website.

Empirical macroeconomics is a very wide field and VARs, TVP—-
VARs and factor models, although important, are only some of the
tools used in the field. It is worthwhile briefly mentioning what we are
not covering in this monograph. There is virtually nothing in this mono-
graph about macroeconomic theory and how it might infuse economet-
ric modelling. For instance, Bayesian estimation of dynamic stochastic
general equilibrium (DSGE) models is very popular. There will be no
discussion of DSGE models in this monograph (see An and Schorfheide,
2007] or Del Negro and Schorfheide, |2010| for excellent treatments of
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Bayesian DSGE methods with Chib and Ramamurthy, 2010, provid-
ing a recent important advance in computation). Also, macroeconomic
theory is often used to provide identifying restrictions to turn reduced
form VARs into structural VARs suitable for policy analysis. We will
not discuss structural VARs, although some of our empirical examples
will provide impulse responses from structural VARs using standard
identifying assumptions.

There is also a large literature on what might, in general, be called
regime-switching models. Examples include Markov switching VARs,
threshold VARs, smooth transition VARs, floor and ceiling VARs, etc.
These, although important, are not discussed here.

The remainder of this monograph is organized as follows. Section
provides discussion of VARs to develop some basic insights into the
sorts of shrinkage priors (e.g., the Minnesota prior) and methods of
finding empirically-sensible restrictions (e.g., stochastic search variable
selection, or SSVS) that are used in empirical macroeconomics. Our
goal is to extend these basic methods and priors used with VARs, to
TVP variants. However, before considering these extensions, Section
discusses Bayesian inference in state space models using MCMC meth-
ods. We do this since TVP-VARs (including variants with multivari-
ate stochastic volatility) are state space models and it is important
that the practitioner knows the Bayesian tools associated with state
space models before proceeding to TVP—VARs. Section 4| discusses
Bayesian inference in TVP-VARs, including variants which combine
the Minnesota prior or SSVS with the standard TVP-VAR. Section
discusses factor methods, beginning with the dynamic factor model,
before proceeding to the factor augmented VAR (FAVAR) and TVP-
FAVAR. Empirical illustrations are used throughout and Matlab code
for implementing these illustrations (or, more generally, doing Bayesian
inference in VARs, TVP-VARs and TVP-FAVARs) is available on the
website associated with this monograph ]

2The website address is: http://personal.strath.ac.uk/gary.koop/bayes_matlab_code_by_
koop_-and_korobilis.html.
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