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Abstract

This survey gives a brief overview of the literature on the difference-in-
difference (DiD) estimation strategy and discusses major issues using
a treatment effects perspective. In this sense, this survey gives a some-
what different view on DiD than the standard textbook discussion of
the DiD model, but it will not be as complete as the latter. It contains
some extensions of the literature, for example, a discussion of, and sug-
gestions for nonlinear DiD estimators as well as DiD estimators based
on propensity-score type matching methods.
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1

Introduction

The Difference-in-Difference (DiD) approach is a research design for
estimating causal effects. It is popular in empirical economics, for exam-
ple, to estimate the effects of certain policy interventions and policy
changes that do not affect everybody at the same time and in the
same way. It is used in other social sciences as well.1 DiD could be
an attractive choice when using research designs based on controlling
for confounding variables or using instrumental variables is deemed
unsuitable, and at the same time, pre-treatment information is avail-
able.2 The DiD design is usually based on comparing de facto four
different groups of objects. Three of these groups are not affected by
the treatment. In many applications, “time” is an important variable to

1 In other social sciences the DiD approach is also denoted as “untreated control group

design with independent pretest and posttest samples” or “control group design with
pretest and posttest.” See, for example, Cook and Campbell (1979), Rosenbaum (2001),

and Shadish et al. (2002) for further references.
2 Following the literature, the event for which we want to estimate the causal effect is called

the treatment. The outcome denotes the variable that will be used to measure the effect
of the treatment. Outcomes that would be realised if a specific treatment has, or would
have been applied, are called potential outcomes. A variable is called confounding if it is

related to the treatment and the potential outcomes. A variable is called an instrument if
it influences the treatment but not the potential outcomes.

1
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2 Introduction

distinguish the groups.3 Besides the group which already received the
treatment (post-treatment treated), these groups are the treated prior
to their treatment (pre-treatment treated), the nontreated in the period
before the treatment occurs to the treated (pre-treatment nontreated),
and the nontreated in the current period (post-treatment nontreated).4

The idea of this empirical strategy is that if the two treated and the
two nontreated groups are subject to the same time trends, and if the
treatment has had no effect in the pre-treatment period, then an esti-
mate of the “effect” of the treatment in a period in which it is known
to have none, can be used to remove the effect of confounding factors
to which a comparison of post-treatment outcomes of treated and non-
treated may be subject to. This is to say that we use the mean changes
of the outcome variables for the nontreated over time and add them to
the mean level of the outcome variable for the treated prior to treat-
ment to obtain the mean outcome the treated would have experienced
if they had not been subjected to the treatment.

This survey presents a brief overview of the literature on the
difference-in-difference estimation strategy and discusses major issues
mainly using a treatment effect perspective (and language) that allows,
in our opinion, more general considerations than the classical regression
formulation that still dominates the applied work. In this sense, this
survey might give a somewhat different perspective than the standard
text book discussion of the DiD design, but it will not be as complete
as the latter. Thus, this review is more of a complement than a sub-
stitute to the excellent text type discussions of the DiD approach that
are already available in the literature (e.g., Angrist and Pischke, 2009;
Blundell and Costa Dias, 2009; Imbens and Wooldridge, 2009).

This review focuses on the case of only two differences although
the basic ideas of DiD estimation could be extended to more than

3 As the concept of time is only used to define a group that is similar to the treated group
with respect to relevant unobservable variables and whose members have not (yet) partic-

ipated, any other characteristic may be used instead of time as well, as long as the formal

conditions given below are fulfilled.
4 When a data set is available in which everybody is observed in all periods, there will be

just two groups with outcomes measured before and after the treatment.
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3

two dimensions to create difference-in-difference-in-difference-in- . . .
estimators.5 However, the basic ideas of the approach of taking mul-
tiple differences are already apparent with two dimensions. Thus, we
refrain from addressing these higher dimensions to keep the discussion
as focused as possible.

The outline of this survey is as follows: The next section gives a
historical perspective and discusses some interesting applications. Sec-
tion 3, which is the main part of this survey, discusses identification
issues at length. Section 4 concerns DiD specific issues related to esti-
mation, including a discussion of propensity score matching estimation
of DiD models. Section 5 discusses some specific issues related to infer-
ence, and Section 6 considers important practical extensions to the
basic approach. Section 7 concludes. Some short proofs are relegated
to a technical appendix.

5 For example, Yelowitz (1995) analyzes the effects of losing public health insurance on labor
market decisions in the United States by using Medicaid eligibility that varies over time,
state and age (of the child in the household). Another example for a triple difference is

the paper by Ravallion et al. (2005) who analyze the effects of a social programme based
on a comparison of participants with nonparticipants and ex-participants.
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