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Abstract

This monograph presents the basics of the composite marginal
likelihood (CML) inference approach, discussing the asymptotic
properties of the CML estimator and the advantages and limitations
of the approach. The composite marginal likelihood (CML) inference
approach is a relatively simple approach that can be used when the
full likelihood function is practically infeasible to evaluate due to
underlying complex dependencies. The history of the approach may
be traced back to the pseudo-likelihood approach of Besag (1974)
for modeling spatial data, and has found traction in a variety of
fields since, including genetics, spatial statistics, longitudinal analyses,
and multivariate modeling. However, the CML method has found
little coverage in the econometrics field, especially in discrete choice
modeling. This monograph fills this gap by identifying the value and
potential applications of the method in discrete dependent variable
modeling as well as mixed discrete and continuous dependent variable
model systems. In particular, it develops a blueprint (complete with
matrix notation) to apply the CML estimation technique to a wide
variety of discrete and mixed dependent variable models.

C. R. Bhat. The Composite Marginal Likelihood (CML) Inference Approach with
Applications to Discrete and Mixed Dependent Variable Models. Foundations and
Trends R© in Econometrics, vol. 7, no. 1, pp. 1–117, 2014.
DOI: 10.1561/0800000022.
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1
Introduction

1.1 Background

The need to accommodate underlying complex interdependencies in
decision-making for more accurate policy analysis as well as for good
forecasting, combined with the explosion in the quantity of data avail-
able for the multidimensional modeling of inter-related choices of a
single observational unit and/or inter-related decision-making across
multiple observational units, has resulted in a situation where the tra-
ditional frequentist full likelihood function becomes near impossible or
plain infeasible to evaluate. As a consequence, another approach that
has seen some (though very limited) use recently is the composite likeli-
hood (CL) approach. While the method has been suggested in the past
under various pseudonyms such as quasi-likelihood [Hjort and Omre,
1994, Hjort and Varin, 2008], split likelihood [Vandekerkhove, 2005],
and pseudolikelihood or marginal pseudo-likelihood [Molenberghs and
Verbeke, 2005], Varin [2008] discusses reasons why the term composite
likelihood is less subject to literary confusion.

At a basic level, a composite likelihood (CL) refers to the product
of a set of lower-dimensional component likelihoods, each of which is
a marginal or conditional density function. The maximization of the

2
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1.2. Types of CL methods 3

logarithm of this CL function is achieved by setting the composite score
equations to zero, which are themselves linear combinations of valid
lower-dimensional likelihood score functions. Then, from the theory of
estimating equations, it can be shown that the CL score function (and,
therefore, the CL estimator) is unbiased [see Varin et al., 2011]. In this
monograph, we discuss these theoretical aspects of CL methods, with
an emphasis on an overview of developments and applications of the
CL inference approach in the context of discrete dependent variable
models.

The history of the CL method may be traced back to the pseudo-
likelihood approach of Besag [1974] for modeling spatial data, and has
found traction in a variety of fields since, including genetics, spatial
statistics, longitudinal analyses, and multivariate modeling [see Varin
et al., 2011, Larribe and Fearnhead, 2011, for reviews]. However, the
CL method has found little coverage in the econometrics field, and it is
the hope that this monograph will fill this gap by identifying the value
and potential applications of the method in econometrics.

1.2 Types of CL methods

To present the types of CL methods, assume that the data originate
from a parametric underlying model based on a random (H̃ ×1) vector
Y with density function f(y, θ), where θ is an unknown K̃-dimensional
parameter vector (technically speaking, the density function f(y, θ)
refers to the conditional density function fY |X(y, θ) of the random
variable Y given a set of explanatory variables X , though we will use
the simpler notation f(y, θ) for the conditional density function). Each
element of the random variable vector Y may be observed directly, or
may be observed in a truncated or censored form. Assume that the
actual observation vector corresponding to Y is given by the vector
m = (m1, m2, m3, . . . , mH̃)′, some of which may take a continuous
form and some of which may take a limited-dependent form. Let the
likelihood corresponding to this observed vector be L(θ; m). Now con-
sider the situation where computing L(θ; m) is very difficult. How-
ever, suppose evaluating the likelihood functions of a set of Ẽ observed

Full text available at: http://dx.doi.org/10.1561/0800000022



4 Introduction

marginal or conditional events determined by marginal or conditional
distributions of the sub-vectors of Y is easy and/or computation-
ally expedient. Let these observed marginal events be characterized
by (A1(m), A2(m), . . . , AẼ(m)). Let each event Ae(m) be associated
with a likelihood object Le(θ; m) = L[θ; Ae(m)], which is based on a
lower-dimensional marginal or conditional joint density function cor-
responding to the original high-dimensional joint density of Y . Then,
the general form of the composite likelihood function is as follows:

LCL(θ, m) =
Ẽ∏

e=1
[Le(θ; m)]ωe =

Ẽ∏
e=1

[L(θ; Ae(m)]ωe , (1.1)

where ωe is a power weight to be chosen based on efficiency consid-
erations. If these power weights are the same across events, they may
be dropped. The CL estimator is the one that maximizes the above
function (or equivalently, its logarithmic transformation).

The events Ae(m) can represent a combination of marginal and
conditional events, though composite likelihoods are typically distin-
guished in one of two classes: the composite conditional likelihood
(CCL) or the composite marginal likelihood (CML). In this monograph,
we will focus on the CML method because it has many immediate appli-
cations in the econometrics field, and is generally easier to specify and
estimate. However, the CCL method may also be of value in specific
econometric contexts [see Mardia et al., 2009, Varin et al., 2011, for
additional details].

1.3 The composite marginal likelihood (CML)
inference approach

In the CML method, the events Ae(m) represent marginal events. The
CML class of estimators subsumes the usual ordinary full-information
likelihood estimator as a special case. For instance, consider the case of
repeated unordered discrete choices from a specific individual. Let the
individual’s discrete choice at time t be denoted by the index dt, and let
this individual be observed to choose alternative mt at choice occasion
t (t = 1, 2, 3, . . . , T ). Then, one may define the observed event for this
individual as the sequence of observed choices across all the T choice

Full text available at: http://dx.doi.org/10.1561/0800000022



1.3. The composite marginal likelihood (CML) inference approach 5

occasions of the individual. Defined this way, the CML function con-
tribution of this individual becomes equivalent to the full-information
maximum likelihood function contribution of the individual1:

L1
CML(θ, m) = L(θ, m)

= Prob(d1 = m1, d2 = m2, d3 = m3, . . . , dT = mT ).
(1.2)

However, one may also define the events as the observed choices at
each choice occasion for the individual. Defined this way, the CML
function is:

L2
CML(θ, m) = Prob(d1 = m1) × Prob(d2 = m2)

× Prob(d3 = m3) × · · · × Prob(dT = mT ). (1.3)

This CML, of course, corresponds to the case of independence between
each pair of observations from the same individual. As we will indi-
cate later, the above CML estimator is consistent even when there is
dependence among the observations of the individual. However, this
approach, in general, does not estimate the parameters representing
the dependence effects across choices of the same individual (i.e., only
a subset of the vector θ is estimable). A third approach to estimat-
ing the parameter vector θ in the repeated unordered choice case is to
define the events in the CML as the pairwise observations across all
or a subset of the choice occasions of the individual. For presentation
ease, assume that all pairs of observations are considered. This leads
to a pairwise CML function contribution of individual q as follows:

L3
CML(θ, m) =

T−1∏
t=1

T∏
t′=t+1

Prob(dt = mt, dt′ = mt′). (1.4)

1In the discussion below, for presentation ease, we will ignore the power weight
term ωe. In some cases, such as in a panel case with varying number of observational
occasions on each observation unit, the choice of ωe can influence estimator asymp-
totic efficiency considerations. But it does not affect other asymptotic properties of
the estimator.
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6 Introduction

Almost all earlier research efforts employing the CML technique have
used the pairwise approach, including Apanasovich et al. [2008], Varin
and Vidoni [2009], Bhat and Sener [2009], Bhat et al. [2010a], Bhat
and Sidharthan [2011], Vasdekis et al. [2012], Ferdous and Bhat [2013],
and Feddag [2013]. Alternatively, the analyst can also consider larger
subsets of observations, such as triplets or quadruplets or even higher
dimensional subsets [see Engler et al., 2006, Caragea and Smith,
2007]. However, the pairwise approach is a good balance between sta-
tistical and computational efficiency (besides, in almost all applica-
tions, the parameters characterizing error dependency are completely
identified based on the pairwise approach). Importantly, the pairwise
approach is able to explicitly recognize dependencies across choice occa-
sions in the repeated choice case through the inter-temporal pairwise
probabilities.

1.4 Asymptotic properties of the CML estimator
with many independent replicates

The asymptotic properties of the CML estimator for the case with many
independent replicates may be derived from the theory of unbiased esti-
mating functions. For ease, we will first consider the case when we have
Q independent observational units (also referred to as individuals) in
a sample Y1, Y2, Y3, . . . , YQ, each Yq (q = 1, 2, . . . , Q) being a H̃ × 1
vector. That is, Yq = (Yq1, Yq2, . . . , YqH̃). H̃ in this context may refer
to multiple observations of the same variable on the same observation
unit (as in the previous section) or a single observation of multiple vari-
ables for the observation unit (for example, expenditures on groceries,
transportation, and leisure activities for an individual). In either case,
Q is large relative to H̃ (the case when Q is small is considered in the
next section). We consider the case when observation is made directly
on each of the continuous variables Yqh, though the discussion in this
section is easily modified to incorporate the case when observation is
made on some truncated or censored form of Yqh (such as in the case
of a discrete choice variable). Let the observation on the random vari-
able Yq be yq = (yq1, yq2, . . . , yqH̃). Define y = (y1, y2, . . . , yQ). Also,
we will consider a pairwise likelihood function as the CML estimator,
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1.4. CML estimator with many independent replicates 7

though again the proof is generalizable in a straightforward manner to
other types of CML estimators (such as using triplets or quadruplets
rather than couplets in the CML). For the pairwise case, the estimator
is obtained by maximizing (with respect to the unknown parameter
vector θ, which is of dimension K̃) the logarithm of the following func-
tion:

LCML(θ, y) =
Q∏

q=1

H̃−1∏
h=1

H̃∏
h′=h+1

Prob(Yqh = yqh, Yqh′ = yqh′)

=
Q∏

q=1

H̃−1∏
h=1

H̃∏
h′=h+1

f(yqh, yqh′)

=
Q∏

q=1

H̃−1∏
h=1

H̃∏
h′=h+1

Lqhh′, where Lqhh′ = f(yqh, yqh′) (1.5)

Under usual regularity conditions (these are the usual conditions
needed for likelihood objects to ensure that the logarithm of the CML
function can be maximized by solving the corresponding score equa-
tions; the conditions are too numerous to mention here, but are listed
in Molenberghs and Verbeke, 2005, p. 191), the maximization of the
logarithm of the CML function in the equation above is achieved by
solving the composite score equations given by:

sCML(θ, y) = ∇ log LCML(θ, y)

=
Q∑

q=1

H̃−1∑
h=1

H̃∑
h′=h+1

sqhh′(θ, yqh, yqh′) = 0, (1.6)

where sqhh′(θ, yqh, yqh′) = ∂ log Lqhh′
∂θ . Since the equations sCML(θ, y) are

linear combinations of valid likelihood score functions sqhh′(θ, yqh, yqh′)
associated with the event probabilities forming the composite log-
likelihood function, they immediately satisfy the requirement of being
unbiased. While this is stated in many papers and should be rather
obvious, we provide a formal proof of the unbiasedness of the CML
score equations [see also Yi et al., 2011]. In particular, we need to
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8 Introduction

prove the following:

E[sCML(θ, y)] = E


 Q∑

q=1

H̃−1∑
h=1

H̃∑
h′=h+1

sqhh′(θ, yqh, yqh′)




=
Q∑

q=1

H̃−1∑
h=1

H̃∑
h′=h+1

E[sqhh′(θ, yqh, yqh′)] = 0, (1.7)

where the expectation above is taken with respect to the full dis-
tribution of Y = (Y1, Y2, . . . , YH̃). The above equality will hold if
E[sqhh′(θ, yqh, yqh′)] = 0 for all pairwise combinations h and h′ for
each q. To see that this is the case, we write:

E[sqhh′(θ, yqh, yqh′)] =
∫

yq

∂ log Lqhh′

∂θ
f(yq)dyq

=
∫

yqd

∫
yqd′

∫
y−qdd′

∂ log Lqhh′

∂θ

× f(yqh, yqh′ , y−qhh′)dyqhdyqh′dy−qhh′ , (1.8)

where y−qhh′ represents the subvector of yq with the elements yqh and
yqh′ excluded. Continuing,

E[sqhh′(θ, yqh, yqh′)]

=
∫

yqh

∫
yqh′

∂ log Lqhh′

∂θ

×
∫

y−qhh′
f(yqh, yqh′ , y−qhh′)dyqhdyqh′dy−qhh′

=
∫

yqh

∫
yqh′

∂ log Lqhh′

∂θ
f(yqh, yqh′)dyqhdyqh′

=
∫

yqh

∫
yqh′

∂ log Lqhh′

∂θ
Lqhh′dyqhdyqh′

=
∫

yqh

∫
yqh′

1
Lqhh′

∂Lqhh′

∂θ
Lqhh′dyqhdyqh′

Full text available at: http://dx.doi.org/10.1561/0800000022



1.4. CML estimator with many independent replicates 9

=
∫

yqh

∫
yqh′

∂Lqhh′

∂θ
dyqhdyqh′

=
∂

∂θ

∫
yqh

∫
yqh′

Lqhh′dyqhdyqh′ =
∂

∂θ
(1) = 0. (1.9)

Next, consider the asymptotic properties of the CML estimator. To
derive these, define the mean composite score function across observa-
tion units in the sample as follows:

s(θ, y) =
1
Q

Q∑
q=1

sq(θ, yq),

where

sq(θ, yq) =
H̃−1∑
h=1

H̃∑
h′=h+1

sqhh′(θ, yqh, yqh′).

Then,

E[sq(θ, yq)] =
H̃−1∑
h=1

H̃∑
h′=h+1

E[sqhh′(θ, yqh, yqh′)] = 0

for all values of θ. Let θ0 be the true unknown parameter vector
value, and consider the score function at this vector value and label
it as sq(θ0, yq). Then, when drawing a sample from the population,
the analyst is essentially drawing values of sq(θ0, yq) from its dis-
tribution in the population with zero mean and variance given by
J = Var[sq(θ0, yq)], and taking the mean across the sampled values
of sq(θ0, yq) to obtain s(θ0, y). Invoking the Central Limit Theorem
(CLT), we have √

Qs(θ0, y) d−→ MVNK̃(0, J ), (1.10)

where MVNK̃(., .) stands for the multivariate normal distribution of K̃

dimensions. Next, let θ̂CML be the CML estimator, so that, by design
of the CML estimator, s(θ̂CML, y) = 0. Expanding s(θ̂CML, y) around
s(θ0, y) in a first-order Taylor series, we obtain s(θ̂CML, y) = 0 =
s(θ0, y) + ∇s(θ0, y)[θ̂CML − θ0], or equivalently,√

Q[θ̂CML − θ0] =
√

Q[−∇s(θ0, y)]−1s(θ0, y). (1.11)
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10 Introduction

From the law of large numbers (LLN), we also have that ∇s(θ0, y),
which is the sample mean of ∇sq(θ0, yq), converges to the population
mean for the quantity. That is,

[−∇s(θ0, y)] d−→ H = E[−∇s(θ0, y)] (1.12)

Using Equations (1.10) and (1.12) in Equation (1.11), applying Slut-
sky’s theorem, and assuming non-singularity of J and H, we finally
arrive at the following limiting distribution:√

Q[θ̂CML − θ0] d−→ MVN K̃(0, G−1), where G = HJ−1H , (1.13)

where G is the Godambe [1960] information matrix. Thus, the asymp-
totic distribution of θ̂CML is centered on the true parameter vector θ0.
Further, the variance of θ̂CML reduces as the number of sample points
Q increases. The net result is that θ̂CML converges in probability to θ0
as Q → ∞ (with H̃ fixed), leading to the consistency of the estimator.
In addition, θ̂CML is normally distributed, with its covariance matrix
being G−1/Q. However, both J and H , and therefore G, are functions
of the unknown parameter vector θ0. But J and H may be estimated
in a straightforward manner at the CML estimate θ̂CML as follows:

Ĵ = 1
Q

Q∑
q=1

[(
∂ log LCML,q

∂θ

)(
∂ log LCML,q

∂θ′

)]
θ̂CML

,

where log LCML,q =
H̃−1∑
h=1

H̃∑
h′=h+1

log Lqhh′ , (1.14)

and

Ĥ = − 1
Q

Q∑
q=1

[∇sq(θ, yq)]θ̂CML

= − 1
Q

Q∑
q=1

H̃−1∑
h=1

H̃∑
h′=1

[∇sqdd′(θ, yqh, yqh′)]θ̂CML

= − 1
Q


 Q∑

q=1

H̃−1∑
h=1

H̃∑
h′=1

∂2 log Lqhh′

∂θ∂θ′




θ̂CML

(1.15)
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1.4. CML estimator with many independent replicates 11

If computation of the second derivative is time consuming, one can
exploit the second Bartlett identity [Ferguson, 1996, p. 120], which
is valid for each observation unit’s likelihood term in the composite
likelihood. That is, using the condition that

Jq = Var[sqhh′(θ0, yqh, yqh′ ] = −H q = −E[−∇sqhh′(θ0, yqh, yqh′ ]

= E[∇sqhh′(θ0, yqh, yqh′ ], (1.16)

an alternative estimate for Ĥ is as below:

Ĥ =
1
Q

Q∑
q=1

H̃−1∑
h=1

H̃∑
h′=1

Var[sqhh′(θ0, yqh, yqh′ ]θ̂CML

= 1
Q

Q∑
q=1

H̃−1∑
h=1

H̃∑
h′=1

([sqhh′(θ0, yqh, yqh′ ][sqhh′(θ0, yqh, yqh′ ]′)θ̂CML

=
1
Q

Q∑
q=1

H̃−1∑
h=1

H̃∑
h′=1

([
∂ log Lqhh′

∂θ

] [
∂ log Lqhh′

∂θ′

])
θ̂CML

(1.17)

Finally, the covariance matrix of the CML estimator is given by Ĝ
Q

−1
=

[Ĥ −1][Ĵ ][Ĥ −1]′
Q .′

The empirical estimates above can be imprecise when Q is not large
enough. An alternative procedure to obtain the covariance matrix of
the CML estimator is to use a jackknife approach as follows [see Zhao
and Joe, 2005]:

Cov(θ̂CML) =
Q − 1

Q

Q∑
q=1

(θ̂(−q)
CML − θ̂CML)(θ̂(−q)

CML − θ̂CML)′, (1.18)

where θ̂
(−q)
CML is the CML estimator with the qth observational unit

dropped from the data. However, this can get time-consuming, and so
an alternative would be to use a first-order approximation for θ̂

(−q)
CML

with a single step of the Newton–Raphson algorithm with θ̂CML as the
starting point.
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1.5 Asymptotic properties of the CML estimator for the case
of very few or no independent replicates

Even in the case when the data include very few or no independent
replicates (as would be the case with global social or spatial interac-
tions across all observational units in a cross-sectional data in which
the dimension of H̃ is equal to the number of observational units and
Q = 1), the CML estimator will retain the good properties of being
consistent and asymptotically normal as long as the data is formed
by pseudo-independent and overlapping subsets of observations (such
as would be the case when the social interactions taper off relatively
quickly with the social separation distance between observational units,
or when spatial interactions rapidly fade with geographic distance
based on an autocorrelation function decaying toward zero; see Cox
and Reid, 2004 for a technical discussion).2 The same situation holds
in cases with temporal processes; the CML estimator will retain good
properties as long as we are dealing with a stationary time series with
short-range dependence (the reader is referred to Davis and Yau, 2011
and Wang et al., 2013 for additional discussions of the asymptotic prop-
erties of the CML estimator for the case of time-series and spatial
models, respectively).

The covariance matrix of the CML estimator needs estimates of J
and H . The “bread” matrix H can be estimated in a straightforward
manner using the Hessian of the negative of log LCML(θ), evaluated at
the CML estimate θ̂. This is because the information identity remains
valid for each pairwise term forming the composite marginal likelihood.
But the estimation of the “vegetable” matrix J is more involved. Fur-
ther details of the estimation of the CML estimator’s covariance matrix
for the case with spatial data are discussed in Section 2.3.

1.6 Relative efficiency of the CML estimator

The CML estimator loses some asymptotic efficiency from a theoretical
perspective relative to a full likelihood estimator, because information

2Otherwise, there may be no real solution to the CML function maximization
and the usual asymptotic results will not hold.
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embedded in the higher dimension components of the full information
estimator are ignored by the CML estimator. This can also be for-
mally shown by starting from the CML unbiased estimating functions
E[sCML(θ0, y)] = 0, which can be written as follows (we will continue
to assume continuous observation on the variable vector of interest,
so that Y is a continuous variable, though the presentation is equally
valid for censored and truncated observations on Y ):

E[sCML(θ0, y)] = 0 =
∫

y

∂ log LCML
∂θ

f(y)dy
∣∣∣∣
θ=θ0

=
∫

y

∂ log LCML
∂θ

LMLdy

∣∣∣∣
θ=θ0

. (1.19)

Take the derivative of the above function with respect to θ to obtain
the following:

0 =
∫

y

∂2 log LCML
∂θ∂θ′ LMLdy

∣∣∣∣∣
θ=θ0

+
∫

y

∂ log LCML
∂θ

∂ log LML
∂θ

LMLdy
∣∣∣∣
θ=θ0

= E[∇sCML(θ0, y)] + E[sCML(θ0, y)sML(θ0, y)], (1.20)

where sML(θ0, y) is the score function of the full likelihood. From above,
we get the following:

H = −E[∇sCML(θ0, y)] = Cov[sML(θ0, y), s′
CML(θ0, y)]|,

and

G = Cov[sML(θ0, y), s′
CML(θ0, y)]|[Var(sCML(θ0, y))]−1]

×Cov[sCML(θ0, y), s′
ML(θ0, y), ] (1.21)

Then, using the multivariate version of the Cauchy–Schwartz inequality
[Lindsay, 1988], we obtain the following:

IFISHER = Var[sML(θ0, y)] ≥ G. (1.22)

Thus, from a theoretical standpoint, the difference between the
regular ML information matrix (i.e., IFISHER) and the Godambe
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information matrix (i.e., G) is positive definite, which implies that the
difference between the asymptotic variances of the CML estimator and
the ML estimator is positive semi-definite [see also Cox and Reid, 2004].
However, many studies have found that the efficiency loss of the CML
estimator (relative to the maximum likelihood (ML) estimator) is negli-
gible to small in applications. These studies are either based on precise
analytic computations of the information matrix IFISHER and the
Godambe matrix G to compare the asymptotic efficiencies from the ML
and the CML methods, or based on empirical efficiency comparisons
between the ML and CML methods for specific contexts by employing
a simulation design with finite sample sizes. A brief overview of these
studies is presented in the next section.

1.6.1 Comparison of ML and CML estimator efficiencies

Examples of studies that have used precise analytic computations to
compare the asymptotic efficiency of the ML and CML estimators
include Cox and Reid [2004], Hjort and Varin [2008], and Mardia et al.
[2009]. Cox and Reid [2004] derive IFISHER and G for some specific
situations, including the case of a sample of independent and identically
distributed vectors, each of which is multivariate normally distributed
with an equi-correlated structure between elements. In the simple cases
they examine, they show that the loss of efficiency between IFISHER
and G is of the order of 15%. They also indicate that in the specific case
of Cox’s (1972) quadratic exponential distribution-based multivariate
binary data model, the full likelihood function and a pairwise likeli-
hood function for binary data generated using a probit link are equiv-
alent, showing that the composite likelihood estimator can achieve the
same efficiency as that of a full maximum likelihood estimator. Hjort
and Varin [2008] also study the relationship between the IFISHER
and G matrices, but for Markov chain models, while Mardia et al.
[2007] and Mardia et al. [2009] examine efficiency considerations in the
context of multivariate vectors with a distribution drawn from closed
exponential families. These studies note special cases when the compos-
ite likelihood estimator is fully efficient, though all of these are rather
simplified model settings.
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Several papers have also analytically studied efficiency considera-
tions in clustered data, especially the case when each cluster is of a dif-
ferent size (such as in the case of spatially clustered data from different
spatial regions with different numbers of observational units within each
spatial cluster, or longitudinal data on observational units with each
observational unit contributing a different number of sample observa-
tions). In such situations, the unweighted CML function will give more
weight to clusters that contribute more sample observations than those
with fewer observations. To address this situation, a weighted CML
function may be used. Thus, Le Cessie and Van Houwelingen [1994]
suggest, in their binary data model context, that each cluster should
contribute about equally to the CML function. This may be achieved
by power-weighting each cluster’s CML contribution by a factor that
is the inverse of the number of choice occasions minus one. The net
result is that the composite likelihood contribution of each cluster col-
lapses to the likelihood contribution of the cluster under the case of
independence within a cluster. In a general correlated panel binary
data context, Kuk and Nott [2000] confirmed the above result for effi-
ciently estimating parameters not associated with dependence within
clusters for the case when the correlation is close to zero. However,
their analysis suggested that the unweighted CML function remains
superior for estimating the correlation (within cluster) parameter. In a
relatively more recent paper, Joe and Lee [2009] theoretically studied
the issue of efficiency in the context of a simple random effect binary
choice model. They indicate that the weights suggested by Le Cessie
and Van Houwelingen [1994] and Kuk and Nott [2000] can provide
poor efficiency even for non-dependence parameters when the correla-
tion between pairs of the underlying latent variables for the “repeated
binary choices over time” case they studied is moderate to high. Based
on analytic and numeric analyses using a longitudinal binary choice
model with an autoregressive correlation structure, they suggest that
using a weight of (Tq − 1)−1[1 + 0.5(Tq − 1)]−1 for a cluster appears
to do well in terms of efficiency for all parameters and across varying
dependency levels (Tq is the number of observations contributed by
unit or individual q). Further, the studies by Joe and Lee [2009] and
Varin and Vidoni [2006], also in the context of clustered data, suggest
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that the inclusion of too distant pairings in the CML function can lead
to a loss of efficiency.

A precise analytic computation of the asymptotic efficiencies of the
CML and full maximum likelihood approaches, as just discussed, is
possible only for relatively simple models with or without clustering.
This, in turn, has led to the examination of the empirical efficiency of
the CML approach using simulated data sets for more realistic model
contexts. Examples include Renard et al. [2004], Fieuws and Verbeke
[2006], and Eidsvik et al. [2014]. These studies indicate that the CML
estimator performs well relative to the ML estimator. For instance,
Renard et al. [2004] examined the performance of CML and ML esti-
mators in the context of a random coefficients binary choice model, and
found an average loss of efficiency of about 20% in the CML parameter
estimates relative to the ML parameter estimates. Fieuws and Verbeke
[2006] examined the performance of the CML and ML estimators in the
context of a multivariate linear model based on mixing, where the mix-
ing along each dimension involves a random coefficient vector followed
by a specification of a general covariance structure across the random
coefficients of different dimensions. They found that the average effi-
ciency loss across all parameters was less than 1%, and the highest
efficiency loss for any single parameter was of the order of only 5%.
Similarly, in simulated experiments with a spatial Gaussian process
model, Eidsvik et al. [2014] used a spatial blocking strategy to parti-
tion a large spatially correlated space of a Gaussian response variable
to estimate the model using a CML technique. They too found rather
small efficiency losses because of the use of the CML as opposed to the
ML estimator. However, this is an area that needs much more attention
both empirically and theoretically. Are there situations when the CML
estimator’s loss is less or high relative to the ML estimator, and are
we able to come up with some generalizable results from a theoretical
standpoint that apply not just to simple models but also more real-
istic models used in the field? In this regard, is there a “file drawer”
problem where results are not being reported when the CML estima-
tor in fact loses a lot of efficiency? Or is the current state of reporting
among scholars in the field a true reflection of the CML estimator’s
loss in efficiency relative to the ML? So far, the CML appears to be
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remarkable in its ability to pin down parameters, but there needs to
be much more exploration in this important area. This opens up an
exciting new direction of research and experimentation.

1.6.2 Comparison of maximum simulated likelihood (MSL)
and CML estimator efficiencies

The use of the maximum likelihood estimator is feasible for many types
of models. But the estimation of many other models that incorporate
analytically intractable expressions in the likelihood function in the
form of integrals, such as in mixed multinomial logit models or multi-
nomial probit models or count models with certain forms of heterogene-
ity or large-dimensional multivariate dependency patterns (just to list
a few), require an approach to empirically approximate the intractable
expression. This is usually done using simulation techniques, leading to
the MSL inference approach [see Train, 2009], though quadrature tech-
niques are also sometimes used for cases with 1–3 dimensions of inte-
grals in the likelihood function expression. When simulation methods
have to be used to evaluate the likelihood function, there is also a loss
in asymptotic efficiency in the maximum simulated likelihood (MSL)
estimator relative to a full likelihood estimator. Specifically, McFadden
and Train [2000] indicate, in their use of independent number of random
draws across observations, that the difference between the asymptotic
covariance matrix of the MSL estimator obtained as the inverse of the
sandwich information matrix and the asymptotic covariance matrix of
the ML estimator obtained as the inverse of the cross-product of first
derivatives is theoretically positive semi-definite for finite number of
draws per observation. Consequently, given that we also know that
the difference between the asymptotic covariance matrices of the CML
and ML estimators is theoretically positive semi-definite, it is diffi-
cult to state from a theoretical standpoint whether the CML estimator
efficiency will be higher or lower than the MSL estimator efficiency.
However, in a simulation comparison of the CML and MSL methods
for multivariate ordered response systems, Bhat et al. [2010b] found
that the CML estimator’s efficiency was almost as good as that of the
MSL estimator, but with the benefits of a very substantial reduction
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in computational time and much superior convergence properties. As
they state “. . . any reduction in the efficiency of the CML approach
relative to the MSL approach is in the range of non-existent to small.”
Paleti and Bhat [2013] examined the case of panel ordered-response
structures, including the pure random coefficients (RC) model with
no autoregressive error component, as well as the more general case
of random coefficients combined with an autoregressive error compo-
nent. The ability of the MSL and CML approaches to recover the true
parameters is examined using simulated datasets. The results indicated
that the performances of the MSL approach (with 150 scrambled and
randomized Halton draws) and the simulation-free CML approach were
of about the same order in all panel structures in terms of the abso-
lute percentage bias (APB) of the parameters and empirical efficiency.
However, the simulation-free CML approach exhibited no convergence
problems of the type that affected the MSL approach. At the same
time, the CML approach was about 5–12 times faster than the MSL
approach for the simple random coefficients panel structure, and about
100 times faster than the MSL approach when an autoregressive error
component was added. Thus, the CML appears to lose relatively lit-
tle by way of efficiency, while also offering a more stable and much
faster estimation approach in the panel ordered-ordered-response con-
text. Similar results of substantial computational efficiency and little
to no finite sample efficiency loss (and sometimes even efficiency gains)
have been reported by Bhat and Sidharthan [2011] for cross-sectional
and panel unordered-response multinomial probit models with random
coefficients (though the Bhat and Sidharthan paper actually combines
the CML method with a specific analytic approximation method to
evaluate the multivariate normal cumulative distribution function).

Finally, the reader will note that there is always some simulation
bias in the MSL method for finite number of simulation draws, and the
consistency of the MSL method is guaranteed only when the number
of simulation draws rises faster than the square root of the sample
size (Bhat, 2001, McFadden and Train, 2000). The CML estimator, on
the other hand, is unbiased and consistent under the usual regularity
conditions, as discussed earlier in Section 1.4.
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1.7 Robustness of consistency of the CML estimator

As indicated by Varin and Vidoni [2009], it is possible that the
“maximum CML estimator can be consistent when the ordinary full
likelihood estimator is not.” This is because the CML procedures are
typically more robust and can represent the underlying low-dimensional
process of interest more accurately than the low dimensional process
implied by an assumed (and imperfect) high-dimensional multivariate
model. Another way to look at this is that the consistency of the CML
approach is predicated only on the correctness of the assumed lower
dimensional distribution, and not on the correctness of the entire mul-
tivariate distribution. On the other hand, the consistency of the full
likelihood estimator is predicated on the correctness of the assumed
full multivariate distribution. Thus, for example, Yi et al. [2011] exam-
ined the performance of the CML (pairwise) approach in the case of
clustered longitudinal binary data with non-randomly missing data,
and found that the approach appears quite robust to various alterna-
tive specifications for the missing data mechanism. Xu and Reid [2011]
provided several specific examples of cases where the CML is consistent,
while the full likelihood inference approach is not.

1.8 Model selection in the CML inference approach

Procedures similar to those available with the maximum likelihood
approach are also available for model selection with the CML approach.
The statistical test for a single parameter may be pursued using the
usual t-statistic based on the inverse of the Godambe information
matrix. When the statistical test involves multiple parameters between
two nested models, an appealing statistic, which is also similar to
the likelihood ratio test in ordinary maximum likelihood estimation,
is the composite likelihood ratio test (CLRT) statistic. Consider the
null hypothesis H0: τ = τ0 against H1: τ �= τ0, where τ is a subvector
of θ of dimension d̃; i.e., θ = (τ ′, α′)′. The statistic takes the familiar
form shown below:

CLRT = 2[log LCML(θ̂) − log LCML(θ̂R)], (1.23)
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where θ̂R is the composite marginal likelihood estimator under the null
hypothesis (τ ′

0, α̂′
CML(τ0)). More informally speaking, θ̂ is the CML

estimator of the unrestricted model, and θ̂R is the CML estimator for
the restricted model. The CLRT statistic does not have a standard chi-
squared asymptotic distribution. This is because the CML function that
is maximized does not correspond to the parametric model from which
the data originates; rather, the CML may be viewed in this regard as a
“mis-specification” of the true likelihood function because of the inde-
pendence assumption among the likelihood objects forming the CML
function [see Kent, 1982, Section 3]. To write the asymptotic distribu-
tion of the CLRT statistic, first define [Gτ (θ)]−1 and [H τ (θ)]−1 as the
d̃ × d̃ submatrices of [G(θ)]−1 and [H (θ)]−1, respectively, which corre-
spond to the vector τ . Then, the CLRT has the following asymptotic
distribution:

CLRT ∼
d̃∑

i=1
λiW̃

2
i , (1.24)

where W̃ 2
i for i = 1, 2, . . . , d̃ are independent χ2

1 variates and λ1 ≥
λ2 ≥ · · · λd are the eigenvalues of the matrix [H τ (θ)][Gτ (θ)]−1 eval-
uated under the null hypothesis (this result may be obtained based
on the (profile) likelihood ratio test for a mis-specified model; see
Kent, [1982], Theorem 3.1 and the proof therein). Unfortunately, the
departure from the familiar asymptotic chi-squared distribution with d̃

degrees of freedom for the traditional maximum likelihood procedure is
annoying. Pace et al. [2011] have recently proposed a way out, indicat-
ing that the following adjusted CLRT statistic, ADCLRT, may be con-
sidered to be asymptotically chi-squared distributed with d̃ degrees of
freedom:

ADCLRT =
[Sτ (θ)]′[H τ (θ)]−1[Gτ (θ)][H τ (θ)]−1Sτ (θ)

[Sτ (θ)]′[H τ (θ)]−1Sτ (θ)
× CLRT,

(1.25)

where Sτ (θ) is the d̃ × 1 submatrix of S(θ) = (∂ log LCML(θ)
∂θ ) corre-

sponding to the vector τ , and all the matrices above are computed at
θ̂R. The denominator of the above expression is a quadratic approxi-
mation to CLRT, while the numerator is a score-type statistic with an
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asymptotic χ2
d̃

null distribution. Thus, ADCLRT is also very close to
being an asymptotic χ2

d̃
distribution under the null.

Alternatively, one can resort to parametric bootstrapping to obtain
the precise distribution of the CLRT statistic for any null hypothesis
situation. Such a bootstrapping procedure is rendered simple in the
CML approach, and can be used to compute the p-value of the null
hypothesis test. The procedure is as follows:

1. Compute the observed CLRT value as in Equation (1.23) from
the estimation sample. Let the estimation sample be denoted as
ỹobs, and the observed CLRT value as CLRT (ỹobs).

2. Generate C sample data sets ỹ1, ỹ2, ỹ3, . . . , ỹC using the CML
convergent values under the null hypothesis

3. Compute the CLRT statistic of Equation (1.23) for each gener-
ated data set, and label it as CLRT (ỹc).

4. Calculate the p-value of the test using the following expression:

p =
1 +

∑C
c=1 I{CLRT(ỹc) ≥ CLRT(ỹobs)}

C + 1
,

where I{A} = 1if A is true. (1.26)

The above bootstrapping approach has been used for model testing
between nested models in Varin and Czado [2010], Bhat et al. [2010b],
and Ferdous et al. [2010].

When the null hypothesis entails model selection between two com-
peting non-nested models, the composite likelihood information crite-
rion (CLIC) introduced by Varin and Vidoni [2005] may be used. The
CLIC takes the following form3:

log L∗
CML(θ̂) = log LCML(θ̂) − tr[Ĵ(θ̂)Ĥ(θ̂)−1]. (1.27)

The model that provides a higher value of CLIC is preferred.
3This penalized log-composite likelihood is nothing but the generalization of the

usual Akaike’s Information Criterion (AIC). In fact, when the candidate model
includes the true model in the usual maximum likelihood inference procedure, the
information identity holds (i.e., H (θ) = J(θ)) and the CLIC in this case is exactly
the AIC [= log LML(θ̂) — (# of model parameters)].
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1.9 Positive-definiteness of the implied multivariate
covariance matrix

In cases where the CML approach is used as a vehicle to estimate
the parameters in a higher dimensional multivariate covariance matrix,
one has to ensure that the implied multivariate covariance matrix in
the higher dimensional context is positive definite. For example, con-
sider a multivariate ordered-response model context, and let the latent
variables underlying the multivariate ordered-response model be multi-
variate normally distributed. This symmetric covariance (correlation)
matrix Σ has to be positive definite (that is, all the eigenvalues of
the matrix should be positive, or, equivalently, the determinant of the
entire matrix and every principal submatrix of Σ should be positive).
But the CML approach does not estimate the entire correlation matrix
as one single entity. However, there are three ways that one can ensure
the positive-definiteness of the Σ matrix. The first technique is to use
Bhat and Srinivasan’s (2005) strategy of reparameterizing the corre-
lation matrix Σ through the Cholesky matrix, and then using these
Cholesky-decomposed parameters as the ones to be estimated. That is,
the Cholesky of an initial positive-definite specification of the correla-
tion matrix is taken before starting the optimization routine to maxi-
mize the CML function. Then, within the optimization procedure, one
can reconstruct the Σ matrix, and then pick off the appropriate ele-
ments of this matrix to construct the CML function at each iteration.
This is probably the most straightforward and clean technique. The
second technique is to undertake the estimation with a constrained
optimization routine by requiring that the implied multivariate corre-
lation matrix for any set of pairwise correlation estimates be positive
definite. However, such a constrained routine can be extremely cum-
bersome. The third technique is to use an unconstrained optimization
routine, but check for positive-definiteness of the implied multivari-
ate correlation matrix. The easiest method within this third technique
is to allow the estimation to proceed without checking for positive-
definiteness at intermediate iterations, but check that the implied mul-
tivariate correlation matrix at the final converged pairwise marginal
likelihood estimates is positive-definite. This will typically work for the
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case of a multivariate ordered-response model if one specifies exclusion
restrictions (i.e., zero correlations between some error terms) or corre-
lation patterns that involve a lower dimension of effective parameters.
However, if the above simple method of allowing the pairwise marginal
estimation approach to proceed without checking for positive definite-
ness at intermediate iterations does not work, then one can check the
implied multivariate correlation matrix for positive definiteness at each
and every iteration. If the matrix is not positive-definite during a direc-
tion search at a given iteration, one can construct a “nearest” valid
correlation matrix (for example, by replacing the negative eigenvalue
components in the matrix with a small positive value, or by adding a
sufficiently high positive value to the diagonals of a matrix and normal-
izing to obtain a correlation matrix; see Rebonato and Jaeckel, 1999;
Higham, 2002; and Schoettle and Werner, 2004 for detailed discussions
of these and other adjusting schemes; a review of these techniques is
beyond the scope of this monograph). The values of this “nearest”
valid correlation matrix can be translated to the pairwise correlation
estimates, and the analyst can allow the iterations to proceed and hope
that the final implied convergent correlation matrix is positive-definite.

1.10 The maximum approximate composite marginal
likelihood approach

In many application cases, the probability of observing the lower
dimensional event itself in a CML approach may entail multiple
dimensions of integration. For instance, in the case of a multinomial
probit model with I choice alternatives per individual (assume for
ease in presentation that all individuals have all I choice alternatives),
and a spatial dependence structure (across individuals) in the utilities
of each alternative, the CML approach involves compounding the
likelihood of the joint probability of the observed outcomes of pairs of
individuals. However, this joint probability itself entails the integration
of a multivariate normal cumulative distribution (MVNCD) function
of dimension equal to 2× (I −1). The evaluation of such an integration
function cannot be pursued using quadrature techniques due to the
curse of dimensionality when the dimension of integration exceeds two
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[see Bhat, 2003]. In this case, the MVNCD function evaluation for each
agent has to be evaluated using simulation or other analytic approxima-
tion techniques. Typically, the MVNCD function is approximated using
simulation techniques through the use of the Geweke–Hajivassiliou–
Keane (GHK) simulator or the Genz–Bretz (GB) simulator, which
are among the most effective simulators for evaluating the MVNCD
function [see Bhat et al., 2010b, for a detailed description of these
simulators]. Some other sparse grid-based techniques for simulating
the multivariate normal probabilities have also been proposed by
Heiss and Winschel [2008], Huguenin et al. [2009], and Heiss [2010].
In addition, Bayesian simulation using Markov Chain Monte Carlo
(MCMC) techniques (instead of MSL techniques) have been used in
the literature [see Albert and Chib, 1993, McCulloch and Rossi, 2000,
Train, 2009]. However, all these MSL and Bayesian techniques require
extensive simulation, are time-consuming, are not very straightforward
to implement, and create convergence assessment problems as the num-
ber of dimensions of integration increases. Besides, they do not possess
the simulation-free appeal of the CML function in the first place.

To accommodate the situation when the CML function itself may
involve the evaluation of MVNCD functions, Bhat [2011] proposed
a combination of an analytic approximation method to evaluate the
MVNCD function with the CML function, and labeled this as the
Maximum Approximate Composite Marginal Likelihood (MACML)
approach. While several analytic approximations have been reported
in the literature for MVNCD functions [see, for example, Solow, 1990,
Joe, 1995, Gassmann et al., 2002, Joe, 2008], the one Bhat proposes
for his MACML approach is based on decomposition into a product
of conditional probabilities. Similar to the CML approach that decom-
poses a large multidimensional problem into lower level dimensional
components, the analytic approximation method also decomposes the
MVNCD function to involve only the evaluation of lower dimen-
sional univariate and bivariate normal cumulative distribution func-
tions. Thus, there is a type of conceptual consistency in Bhat’s proposal
of combining the CML method with the MVNCD analytic approxima-
tion. The net result is that the approximation approach is fast and
lends itself nicely to combination with the CML approach. Further,
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unlike Monte–Carlo simulation approaches, even two to three decimal
places of accuracy in the analytic approximation is generally adequate
to accurately and precisely recover the parameters and their covariance
matrix estimates because of the smooth nature of the first and second
derivatives of the approximated analytic log-likelihood function. The
MVNCD approximation used by Bhat for discrete choice mode estima-
tion itself appears to have been first proposed by Solow [1990] based on
Switzer [1977], and then refined by Joe [1995]. However, the focus of
the earlier studies was on computing a single MVNCD function accu-
rately rather than Bhat’s use of the approximation for choice model
estimation where multiple MVNCD function evaluations are needed.

To describe the MVNCD approximation, let (W1, W2, W3, . . . , WI)
be a multivariate normally distributed random vector with zero means,
variances of 1, and a correlation matrix Σ. Then, interest centers on
approximating the following orthant probability:

Pr(W < w) = Pr(W1 < w1, W2 < w2, W3 < w3, . . . , WI < wI). (1.28)

The above joint probability may be written as the product of a bivari-
ate marginal probability and univariate conditional probabilities as fol-
lows (I ≥ 3):

Pr(W < w) = Pr(W1 < w1, W2 < w2)

×
I∏

i=3
Pr(Wi < wi|W1 < w1, W2 < w2,

W3 < w3, . . . , Wi−1 < wi−1). (1.29)

Next, define the binary indicator Ĩi that takes the value 1 if Wi < wi

and zero otherwise. Then E(Ĩi) = Φ(wi), where Φ(.) is the univariate
normal standard cumulative distribution function. Also, we may write
the following:

Cov(Ĩi, Ĩj) = E(ĨiĨj) − E(Ĩi)E(Ĩj)

= Φ2(wi, wj , ρij) − Φ(wi)Φ(wj), i �= j

Cov(Ĩi, Ĩi) = Var(Ĩi) = Φ(wi) − Φ2(wi)

= Φ(wi)[1 − Φ(wi)], (1.30)
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where ρij is the ijth element of the correlation matrix Σ. With the
above preliminaries, consider the following conditional probability:

Pr(Wi < wi|W1 < w1, W2 < w2, W3 < w3, . . . , Wi−1 < wi−1)

= E(Ĩi|Ĩ1 = 1, Ĩ2 = 1, Ĩ3 = 1, . . . , Ĩi−1 = 1). (1.31)

The right side of the expression may be approximated by a linear
regression model, with Ĩi being the “dependent” random variable and
Ĩ <i = (Ĩ1, Ĩ2, . . . Ĩi−1) being the independent random variable vector.4
In deviation form, the linear regression for approximating Equation
(1.31) may be written as:

Ĩi − E(Ĩi) = α′[Ĩ <i − E(Ĩ <i)] + η̃, (1.32)

where α is the least squares coefficient vector and η̃ is a mean zero
random term. In this form, the usual least squares estimate of α is
given by:

α̂ = Ω−1
<i · Ωi,<i, (1.33)

where
Ω<i = Cov(I <i, I <i)

=




Cov(Ĩ1, Ĩ1) Cov(Ĩ1, Ĩ2) Cov(Ĩ1, Ĩ3) · · · Cov(Ĩ1, Ĩi−1)
Cov(Ĩ2, Ĩ1) Cov(Ĩ2, Ĩ2) Cov(Ĩ2, Ĩ3) · · · Cov(Ĩ2, Ĩi−1)
Cov(Ĩ3, Ĩ1) Cov(I3, I2) Cov(Ĩ3, Ĩ3) · · · Cov(Ĩ3, Ĩi−1)

...
Cov(Ĩi−1, Ĩ1) Cov(Ĩi−1, Ĩ2) Cov(Ĩi−1, Ĩ3) · · · Cov(Ĩi−1, Ĩi−1)


,

4This first-order approximation can be continually improved by increasing the
order of the approximation. For instance, a second-order approximation would
approximate the right side of Equation (1.31) by the expectation from a lin-
ear regression model that has Ĩi as the “dependent” random variable and Ĭ<i =
(Ĩ1, Ĩ2, . . . , Ĩi−1, Ĩ12, Ĩ13, . . . I1,i−1, Ĩ23, Ĩ24, . . . Ĩ2,i−1, . . . Ii−2,i−1) as the independent
random variable vector, where Ĩi′j′ = Ĩi′ Ĩj′ . Essentially this adds second-order inter-
actions in the independent random variable vector (see Joe, 1995). However, doing
so entails trivariate and four-variate normal cumulative distribution function (CDF)
evaluations (when I > 4) as opposed to univariate and bivariate normal CDF eval-
uations in the first-order approximation, thus increasing computational burden. As
discussed in Bhat [2011] and shown in Bhat and Sidharthan [2011], the first-order
approximation is more than adequate (when combined with the CML approach) for
estimation of MNP models. Thus, in the rest of this monograph, we will use the term
approximation to refer to the first-order approximation evaluation of the MVNCD
function.
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and

Ωi,<i = Cov(I<i, I i) =




Cov(Ĩi, Ĩ1)
Cov(Ĩi, Ĩ2)
Cov(Ĩi, Ĩ3)

...
Cov(Ĩi, Ĩi−1)




.

Finally, putting the estimate of α̂ back in Equation (1.32), and
predicting the expected value of Ĩi conditional on 2Ĩ<i = 1 (i.e.,
Ĩ1 = 1, Ĩ2 = 1, Ĩi−1 = 1), we get the following approximation for Equa-
tion (1.31):

Pr(Wi < wi|W1 < w1, W2 < w2, . . . , Wi−1 < wi−1)
≈ Φ(wi) + (Ω−1

<i · Ωi,<i)′(1 − Φ(w1), 1 − Φ(w2) . . . 1 − Φ(wi−1))′

(1.34)

This conditional probability approximation can be plugged into Equa-
tion (1.29) to approximate the multivariate orthant probability in
Equation (1.28). The resulting expression for the multivariate orthant
probability comprises only univariate and bivariate standard normal
cumulative distribution functions.

One remaining issue is that the decomposition of Equation (1.28)
into conditional probabilities in Equation (1.29) is not unique. Further,
different permutations (i.e., orderings of the elements of the random
vector W = (W1, W2, W3, . . . , WI)) for the decomposition into the
conditional probability expression of Equation (1.29) will lead, in
general, to different approximations. One approach to resolve this
is to average across the I!/2 permutation approximations. However,
as indicated by Joe [1995], the average over a few randomly selected
permutations is typically adequate for the accurate computation of the
multivariate orthant probability. In the case when the approximation
is used for model estimation (where the integrand in each individual’s
log-likelihood contribution is a parameterized function of the β and
Σ parameters), even a single permutation of the W vector per choice
occasion may suffice, as several papers in the literature have now
shown (see later chapters).
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