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Abstract

This article reviews econometric methods for health outcomes and
health care costs that are used for prediction and forecasting, risk
adjustment, resource allocation, technology assessment, and policy eva-
luation. It focuses on the principles and practical application of data
visualization and statistical graphics and how these can enhance app-
lied econometric analysis. Particular attention is devoted to methods
for skewed and heavy-tailed distributions. Practical examples show how
these methods can be applied to data on individual healthcare costs
and health outcomes. Topics include: an introduction to data visu-
alization; data description and regression; generalized linear models;
flexible parametric models; semiparametric models; and an application
to biomarkers.

A. M. Jones. Data Visualization and Health Econometrics. Foundations and
Trends® in Econometrics, vol. 9, no. 1, pp. 1-78, 2017.

DOI: 10.1561,/0800000033.
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1

Introduction

Econometric models for health outcomes and health care costs are used
for prediction and forecasting in health care planning, risk adjustment
by insurers and public providers of health care, geographic resource
allocation, health technology assessment, and health policy impact eva-
luations. Methods for risk adjustment focus on predicting the treatment
costs for particular types of patient, often with very large survey or
administrative data sets.

Microdata for individual medical expenditures and costs of treat-
ment are typically non-normal. Survey data often feature a spike at
zero, if there are non-users in the data. Both survey and administrative
data, such as registers and discharge records, typically have a heavily
skewed distribution and heavy tails. The spike at zero is often modeled
by a two-part specification, with a binary choice model for the proba-
bility of any costs, and a conditional regression model for the positive
costs [Jones, 2000]. Due to the skewness and excess kurtosis of the data
and the importance of influential observations, regression models app-
lied directly to the raw data on the level of costs can perform poorly.
Traditionally the positive observations have been transformed prior
to fitting a regression model, most often by taking a logarithmic or,
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sometimes, a square root transformation. Once these models have been
fitted then predictions have to be retransformed back to the original —
raw cost — scale. This is not straightforward to do in a robust way,
especially if there is heteroskedasticity in the data on the transformed
scale [Manning, 1998, Manning and Mullahy, 2001, Mullahy, 1998].

In the recent literature, attention has shifted away from linear
regression models to semiparametric and flexible parametric estima-
tors. A popular semiparametric approach is to use generalized linear
models (GLMs) [e.g., Buntin and Zaslavsky, 2004, Manning and Mul-
lahy, 2001, Manning et al., 2005, Manning, 2006]. GLMs are built
around a link function that specifies the relationship between the con-
ditional mean and a linear function of the covariates and a distribu-
tional family that specifies the form of the conditional variance as a
function of the conditional mean. GLM models are estimated using a
quasi-likelihood approach derived from the quasi-score or “estimating
equations.”

In a conventional GLM the choice of link and distribution has to
be specified a priori. In practice the most frequently used GLM speci-
fication for medical costs has been the log-link with a gamma variance
[Blough et al., 1999, Manning and Mullahy, 2001, Manning et al., 2005].
Basu and Rathouz [2005] have developed a flexible semiparametric
approach to the problem of selecting the appropriate link and variance
functions. Their extended estimating equations estimator (EEE) appro-
ach uses a Box—Cox transformation for the link function and either a
power variance or quadratic variance function for the distribution. The
particular form of the link and distribution are thereby estimated from
the data at hand.

Other semiparametric methods that have appeared in the literature
on modeling health care costs include the conditional density estimator
and finite mixture models. The conditional density approach was advo-
cated by Gilleskie and Mroz [2004] and divides the support of the dis-
tribution of the dependent variable into discrete intervals then applies
discrete hazard models to these, implemented in practice as a series of
sequential logit models. Finite mixture models use a discrete mixture
of parametric models and, for example, have been applied to medical
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costs by Conway and Deb [2005]. Combining simple distributions such
as the gamma or log-normal in a mixture of relatively few components
may approximate complex empirical distributions effectively, especially
for distributions that are multimodal.

In contrast to semiparametric methods, flexible parametric methods
fully specify the distribution for health care costs. Building on standard
distributions such as the log-normal and gamma distributions, they
move to more flexible three and four-parameter distributions such as
the generalized gamma and the generalized beta distributions of the
second kind (GB2). This provides the additional flexibility to fit the
high level of skewness and the heavy tails seen in cost data [Jones
et al., 2014]. The downside of this flexibility is a risk of over-fitting
and, in practice, these approaches may be best used as a guide to
selecting one of the special or limiting cases that are nested within
the general models. In this respect the flexible parametric models can
play a similar role to using the EEE approach to select the link and
distribution functions to be used in a GLM.

Earlier literature reviews have synthesized and compared the wide
range of approaches to modeling health care costs [e.g., Hill and Miller,
2010, Jones, 2000, 2011, Jones et al., 2013, Mullahy, 2009]. In addition,
studies using a quasi-Monte Carlo design, based on English adminis-
trative data for patient level costs of hospital care, have provided an
assessment of the relative performance of these approaches [Jones et al.,
2014, 2015, 2016]. To complement these earlier studies, this article focu-
ses on the principles and practice of data visualization and statistical
graphics and how these can enhance empirical analysis of health care
costs and outcomes, especially for skewed and heavy-tailed distributi-
ons. The scope of this review is limited to non-normal but continuous
outcomes such as health care costs and biomarkers. Many health eco-
nomics applications deal with categorical and ordered outcomes, count
data, or duration data. Methods for these are reviewed in Jones [2000]
and Jones et al. [2013]. The methods and applications used here are
limited to cross-sectional data. For discussions of methods for panel
data see Jones [2009] and for the use of cohort data Von Hinke Kessler
Scholder and Jones [2015].
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Practical examples show how these graphical methods can be app-
lied using the software package Stata, which is widely used in applied
econometrics. Stata is not the obvious software of choice for specialist
work in data visualization especially for users who wish to present their
work online and to make use of animation or interactivity. Nevertheless,
for many applied econometricians it is the workhorse for data mana-
gement and econometric analysis. In this article Stata code, shown in
the font courier new, is included to show how far it is possible to go
within Stata so that graphical analysis can be integrated with statis-
tical and econometric analysis within one piece of software and using
one set of syntax.

The review of methods that have been developed for health care
cost regressions is complemented by an empirical case study that focu-
ses on objectively measured health outcomes, whose distributions share
many of the features of cost data. The case study applies the econome-
tric and graphical methods to blood-based biomarkers as the depen-
dent variables. The data set is the UK Household Longitudinal Study
(UKHLS), known as Understanding Society, which is a large nationally
representative longitudinal study [Benzeval et al., 2016].
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