Experimetrics: A Survey
Other titles in Foundations and Trends® in Econometrics

Climate Econometrics: An Overview
Jennifer L. Castle and David F. Hendry

Foundations of Stated Preference Elicitation: Consumer Behavior and Choice-based Conjoint Analysis
Moshe Ben-Akiva, Daniel McFadden and Kenneth Train

Structural Econometrics of Auctions: A Review
Matthew L. Gentry, Timothy P. Hubbard, Denis Nekipelov and Harry J. Paarsch
ISBN: 978-1-68083-446-8

Data Visualization and Health Econometrics
Andrew M. Jones
ISBN: 978-1-68083-318-8
Experimetrics: A Survey

Peter G. Moffatt
University of East Anglia
UK
P.Moffatt@uea.ac.uk

Full text available at: http://dx.doi.org/10.1561/0800000035
Foundations and Trends® in Econometrics

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

© 2021 P. J. Moffatt

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise, without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The ‘services’ for users can be found on the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system of payment has been arranged. Authorization does not extend to other kinds of copying, such as that for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale. In the rest of the world: Permission to photocopy must be obtained from the copyright owner. Please apply to now Publishers Inc., PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781 871 0245; www.nowpublishers.com; sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission to use this content must be obtained from the copyright license holder. Please apply to now Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail: sales@nowpublishers.com
Editorial Scope

Topics

Foundations and Trends® in Econometrics publishes survey and tutorial articles in the following topics:

- Econometric Models
- Simultaneous Equation Models
- Estimation Frameworks
- Biased Estimation
- Computational Problems
- Microeconometrics
- Treatment Modeling
- Discrete Choice Modeling
- Models for Count Data
- Duration Models
- Limited Dependent Variables
- Panel Data
- Time Series Analysis
- Latent Variable Models
- Qualitative Response Models
- Hypothesis Testing
- Econometric Theory
- Financial Econometrics
- Measurement Error in Survey Data
- Productivity Measurement and Analysis
- Semiparametric and Nonparametric Estimation
- Bootstrap Methods
- Nonstationary Time Series
- Robust Estimation

Information for Librarians

Foundations and Trends® in Econometrics, 2021, Volume 11, 4 issues. ISSN paper version 1551-3076. ISSN online version 1551-3084. Also available as a combined paper and online subscription.
Contents

1 Introduction ... 3

2 Treatment Testing 9
 2.1 Key Concepts and Definitions 10
 2.2 Choosing the Values of α and β 12
 2.3 Treatment Tests Illustrated 13
 2.4 Dictator Game Data 15
 2.5 Tests of Normality 20
 2.6 Parametric (Independent-Sample) Treatment Tests ... 21
 2.7 Non-Parametric (Independent-Sample) Treatment Tests 22
 2.8 The Bootstrap ... 23
 2.9 Tests Comparing Entire Distributions 24
 2.10 Independent-Sample Tests with Binary Outcomes 26
 2.11 Within-Subject Tests 28
 2.12 Within-Subject Tests with Binary Outcomes 29
 2.13 Within-Subject Tests with Binary Outcomes:
 Other Applications 31
 2.14 Treatment Testing Using Regression Models
 and Multilevel Models 34

3 Power Analysis ... 38
 3.1 Power Analysis – Theory 38
3.2 Power Analysis – Practice ... 41
3.3 Power and the Scientific Quality Debate 45
3.4 The Monte Carlo Method in Power Calculations 46
3.5 Power of Treatment Tests in Multilevel Models 48
3.6 Choosing Number of Subjects and Number of Tasks 51

4 Experimental Data Types .. 53
4.1 Binary Data .. 53
4.2 Optimal Design of Binary Choice Problems 55
4.3 Ordinal Data .. 59
4.4 Interval Data .. 62
4.5 Multivariate Interval Data .. 67
4.6 Continuous (Exact) Data .. 71
4.7 Censored Data ... 73

5 Structural Estimation of Social Preference Parameters 74
5.1 The Modified Dictator Game 74
5.2 Estimation of Social Preference Parameters 76
5.3 Estimation of Social Preference Parameters
Using Stated Choice Data .. 79

6 Continuous Heterogeneity: Maximum Simulated Likelihood 82
6.1 Theoretical Background for Choice Under Risk 82
6.2 Decision-Theoretical Framework: EU and RDU 85
6.3 The Fechner Model (Random Utility Model) 89
6.4 The Tremble Parameter ... 89
6.5 The Role of Experience ... 90
6.6 Between-Subject Variation and the Sample Log-Likelihood . 91
6.7 The Method of Maximum Simulated Likelihood (MSL) 92
6.8 Post-Estimation ... 95
6.9 The Random Preference (RP) Model 96
6.10 Non-Nested Tests ... 99

7 Discrete Heterogeneity: Finite Mixture Models 101
7.1 Finite Mixture Models ... 101
Experimetrics: A Survey

Peter G. Moffatt

University of East Anglia, UK; P.Moffatt@uea.ac.uk

ABSTRACT

This monograph aims to survey a range of econometric techniques that are currently being used by experimental economists. It is likely to be of interest both to experimental economists who are keen to expand their skill sets, and also the wider econometrics community who may be interested to learn the sort of econometric techniques that are currently being used by Experimentalists. Techniques covered range from the simple to the fairly advanced. The monograph starts with an overview of treatment testing. A range of treatment tests will be illustrated using the example of a dictator-game giving experiment in which there is a communication treatment. Standard parametric and non-parametric treatment tests, tests comparing entire distributions, and bootstrap tests will all be covered. It will then be demonstrated that treatment tests can be performed in a regression framework, and the important concept of clustering will be explained. The multilevel modelling framework will also be covered, as a means of dealing with more than one level of clustering. Power analysis will be covered from both theoretical and practical perspectives, as a means of determining the sample size required to attain a given power, and also as a means of computing ex-post power for a reported test. We then progress to a discussion of different data types arising in Experimental Economics (binary, ordinal, interval, etc.), and how to deal with them. We then consider the estimation of fully structural models, with particular attention paid to

the estimation of social preference parameters from dictator game data, and risky choice models with between-subject heterogeneity in risk aversion. The method maximum simulated likelihood (MSL) is promoted as the most suitable method for estimating models with continuous heterogeneity. We then consider finite mixture models as a way of capturing discrete heterogeneity; that is, when the population of subjects divides into a small number of distinct types. The application used as an example will be the level-\textit{k} model, in which subject types are defined by their levels of reasoning. We then consider other models of behaviour in games, including the Quantal Response Equilibrium (QRE) Model. The final area covered is models of learning in games.
Experimetrics1 comprises the body of econometric techniques that are customised to experimental applications. This monograph is aimed principally at two types of reader. The first is the experimental economist who is interested in expanding their skill set in econometric techniques. In particular, experimental researchers who rely heavily on straightforward treatment testing techniques will hopefully be persuaded that more sophisticated econometric techniques are more suitable in many settings. The second type of target reader is the researcher from the wider econometrics community who may be interested to discover the sort of econometric techniques that are currently being used by Experimentalists. Of particular interest to this type of reader may be the techniques that have not traditionally been part of the standard Econometrics toolkit, for example, power analysis and optimal experimental design. The best possible end result from this monograph would be the cross-fertilisation of ideas from Applied of Theoretical Econometrics resulting in new and improved techniques in Experimetrics.

1The word “Experimetrics” was (to the best of my knowledge) coined by Camerer (2003, p. 42). The first article containing the word in the title was Bardsley and Moffatt (2007), and a textbook bearing the title \textit{Experimetrics} was produced by Moffatt (2015).
The most widely used approach in the experimental economics literature is the treatment testing approach. The treatment test often simply amounts to a comparison of some behavioural outcome between two samples: a control sample and a treatment sample, drawn randomly from the population of experimental subjects. Justification of this approach is usually provided in terms of subjects being assigned randomly to treatments, and all influences on behaviour other than the treatment of interest being held fixed by virtue of the experimental environment. These arguments are often used to explain away many of the types of problem that econometricians have traditionally been interested in, such as sample selection bias, measurement error, and endogeneity.

However, there are a number of compelling reasons why the level of econometrics required in the analysis of experimental data goes beyond simple treatment testing. Firstly, in planning a treatment test, issues of experimental design are important. The most basic feature of the design is the sample size, and the use of power analysis is becoming routine in the process of setting this design feature. Power analysis has underpinnings in statistical theory, and conducting a thorough power analysis is facilitated by an understanding of this underlying theory. It must be said that this interest in the use of power analysis is relatively new in econometrics and has taken hold mainly as a consequence of the rise of Experimental Economics.

Second, there are many different ways of conducting the treatment test itself. A choice must be made over parametric and non-parametric tests, between-subject and within-subject tests, and so on. Which approach is best suited in a particular situation is often far from obvious. Once again power analysis is important. Testing approaches vary widely in terms of power. However, a theme of this monograph is that there are other considerations relating to human behaviour which sometimes distort theoretical prescriptions, and the test with the highest power is not always the most suitable.

Third, the structure of experimental data is frequently such that straightforward application of treatment tests is invalid. Data is often clustered, sometimes at more than one level. It is very common for each subject to engage in a sequence of experimental tasks, and hence there is clustering (or dependence) at the subject-level. In some types
of experiment, subjects interact in groups, and it is natural to expect clustering at the group level. Finally, an experiment may be divided into sessions taking place in different places or at different times, and we may expect clustering at the session level. It is well-known (Moulton, 1986) that any combination of these different levels of clustering invalidates any test that assumes independence between observations. One way of dealing with these problems is to conduct the treatment tests as tests of significance in regressions with clustered standard errors, but a superior approach is to use a multilevel model that fully incorporates all levels of clustering.

Fourth, most treatment tests are performed on the assumption that if agents respond to a treatment, they all respond to it in the same way. That is, there is an implicit assumption of homogeneity. It may be that a proportion of subjects respond to the treatment in the expected way, but the remainder are not affected by the treatment. In this case, a test that assumes homogeneity will underestimate the treatment effect for those who respond to it. A more extreme possibility is that half of the population respond positively to the treatment while the other half respond negatively, and in this case the homogeneous treatment test may completely fail to detect any effect.

The importance of subject heterogeneity extends far beyond treatment effects. In many experiments, the focus is on “home-grown” characteristics of experimental subjects, such as risk aversion, ambiguity aversion, discount rate, inequity aversion, aversion to lying, and depth of reasoning. All of these characteristics are likely to exhibit wide variation over the population of subjects. Any model of any aspect of behaviour in which such characteristics are relevant must allow for this variation. Often, the most natural way to allow for such variation is to construct a fully structural model in which the distributional parameters of the varying characteristics are estimated along with the treatment effects of interest.

A good example of this is the modelling of social preference data. In some settings, individuals face repeated tasks in each of which they decide how to divide an endowment between their self and another player, with the endowment and price of transferring varying between tasks. This sort of data set provides an opportunity to estimate social
preference parameters such as aversion to inequity and preference for efficiency – parameters which are almost certain to exhibit between-subject heterogeneity.

Another example is the modelling of risky choice data. Here, data on repeated choices between lottery pairs may be used to estimate preference parameters such as risk aversion and probability weighting. Again, these are parameters for which between-subject heterogeneity is expected. This sort of heterogeneity is allowed for in estimation using the method of maximum simulated likelihood.

Some sorts of heterogeneity may be referred to as discrete heterogeneity, meaning that, instead being characterised by continuously varying preference parameters, it takes the form of the population subjects dividing into discrete “subject-types”, with discretely different models of behaviour. One example is behaviour in public goods games, in which the population might be assumed to divide between free-riders (who follow the Nash prediction by contributing zero), reciprocators (who are willing to contribute only if they see others contributing), selfish contributors (who contribute in anticipation of reciprocity by others), and altruists (who contribute regardless). Note that these four types are each defined by a different sub-model, and the econometric objective is to use the experimental data to estimate the parameters of these four models, along with a set of mixing proportions, which reveal the proportions of the population who are of each type. The econometric framework used for this purpose is the finite mixture model. A variety of methods are available for the estimation of finite mixture models, including machine learning techniques.

Another application of the finite mixture model which is used for illustrative purposes in this monograph is to depth of reasoning models. Here, the objective is to use data from behaviour in one-shot interactive games in order to estimate the proportion of the population who act at each level of reasoning.

Also of interest is behaviour in repeated games, where the initial questions to be addressed are how closely subject choices adhere to the Nash-equilibrium prediction, and whether sequences of choices appear random. More sophisticated analysis of repeated-game data reveals whether and how decision-makers learn to optimise their behaviour.
in repeated games. Are they attracted to strategies that have proved beneficial in previous tasks (reinforcement learning), or do they go further and form beliefs about the other players’ actions and then make optimal decisions based on these beliefs (belief learning)?

The purpose of this monograph is to survey these techniques. However, it aims to be more than just a survey of the literature because it also aims to explain the techniques and evaluate them with illustrations, sometimes using data sets from previously published studies.

Section 2 provides an overview of treatment testing. A range of treatment tests are illustrated using the example of a dictator-game giving experiment in which there is a communication treatment. Standard parametric and non-parametric treatment tests, and also tests comparing entire distributions, are surveyed briefly. Then bootstrap tests are proposed as a way of avoiding the disadvantages of both parametric and non-parametric tests. Then it is explained how a treatment tests can be performed in a regression framework, as the test of significance of the effect of a dummy variable representing the treatment, one considerable advantage of this approach being that it becomes possible to correct the test for clustering of the data that inevitably arises at the subject-level and/or the session level. The final part of the section covers multi-level modelling, in which subject-specific and session-specific random effects are both incorporated in estimation.

Section 3 covers power analysis, an area of growing importance in experimental economics. The question of central interest is usually: what sample is required in a treatment test to attain a benchmark level of power (e.g., 0.8)? Tailor-made routines are outlined, but it is made clear that these methods are only applicable to a fairly limited range of treatment testing problems. The Monte Carlo method is proposed as a useful method for performing power calculations in situations in which ready-made routines are not available. The method is be applied to investigate questions including: how much more powerful is a within-subject test with \(n \) subjects than a between-subject test with \(2n \) subjects? Then the method is applied to consider the problem of how to choose both \(n \) and \(T \) simultaneously in order to attain a required power in a panel data context.
Section 4 covers the different types of data arising in Experimental Economics, and the reasons why they arise in the form they do. Decision-making under risk is the chosen context in which these are considered. This choice of context is convenient because different data types arise depending on the elicitation method used: binary data arises when the subject chooses between lotteries; ordinal data arises when the subject makes a choice and also reports strength of preference; interval data arises when the subject is faced with a sequence of choice problems and decides on their switch-point, that is, where in the sequence they switch from the safe to the risky choice or vice versa; exact data arises when the subject has been asked to report a certainty equivalent of a single lottery.

The remainder of the monograph is concerned mainly with the estimation of fully structural models. Section 5 considers methods for the structural estimation of social preference parameters. Section 6 considers ways of dealing with continuous heterogeneity. The method of maximum simulated likelihood (MSL) is be used for all examples, and this method is explained in reasonable detail. Models with one dimension of heterogeneity, such as the Fechner and RP models of risky choice, in which only risk aversion varies between subjects, are be considered first. We then move on to settings in which there is more than one dimension of heterogeneity, for example: models in which subjects vary in both risk aversion and probability weighting; models in which subjects vary in risk aversion and time preference; models in which subjects vary in risk aversion and inequity aversion.

Section 7 considers finite mixture models as a way of capturing discrete heterogeneity; that is, when the population of subjects divides into a small number of distinct types. The application used as an example will be the level-k model, in which subjects are defined by their levels of reasoning, with the level of reasoning typically ranging from 0 up to 3 or 4. Section 8 considers other models of behaviour in games, including the Quantal Response Equilibrium (QRE) Model. Section 9 considers models of Learning. Section 10 concludes.

References

References

Full text available at: http://dx.doi.org/10.1561/08000000035

References

StataCorp (2019). *Stata Statistical Software: Release 16*. College Station, TX: StataCorp LLC.

