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ABSTRACT

Climate econometrics is a new sub-discipline that has grown
rapidly over the last few years. As greenhouse gas emissions
like carbon dioxide (CO2), nitrous oxide (N2O) and methane
(CH4) are a major cause of climate change, and are gener-
ated by human activity, it is not surprising that the tool
set designed to empirically investigate economic outcomes
should be applicable to studying many empirical aspects of
climate change.

Economic and climate time series exhibit many commonali-
ties. Both data are subject to non-stationarities in the form
of evolving stochastic trends and sudden distributional shifts.
Consequently, the well-developed machinery for modeling
economic time series can be fruitfully applied to climate
data. In both disciplines, we have imperfect and incomplete
knowledge of the processes actually generating the data.
As we don’t know that data generating process (DGP), we
must search for what we hope is a close approximation to it.

Jennifer L. Castle and David F. Hendry (2020), “Climate Econometrics: An Overview”,
Foundations and Trends® in Econometrics: Vol. 10, No. 3–4, pp 145–322. DOI:
10.1561/0800000037.
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The data modeling approach adopted at Climate Economet-
rics (http://www.climateeconometrics.org/) is based on a
model selection methodology that has excellent properties
for locating an unknown DGP nested within a large set of
possible explanations, including dynamics, outliers, shifts,
and non-linearities. The software we use is a variant of ma-
chine learning which implements multi-path block searches
commencing from very general specifications to discover a
well-specified and undominated model of the processes under
analysis. To do so requires implementing indicator satura-
tion estimators designed to match the problem faced, such
as impulse indicators for outliers, step indicators for loca-
tion shifts, trend indicators for trend breaks, multiplicative
indicators for parameter changes, and indicators specifically
designed for more complex phenomena that have a com-
mon reaction ‘shape’ like the impacts of volcanic eruptions
on temperature reconstructions. We also use combinations
of these, inevitably entailing settings with more candidate
variables than observations.

Having described these econometric tools, we take a brief
excursion into climate science to provide the background
to the later applications. By noting the Earth’s available
atmosphere and water resources, we establish that humanity
really can alter the climate, and is doing so in myriad ways.
Then we relate past climate changes to the ‘great extinctions’
seen in the geological record. Following the Industrial Revo-
lution in the mid-18th century, building on earlier advances
in scientific, technological and medical knowledge, real in-
come levels per capita have risen dramatically globally, many
killer diseases have been tamed, and human longevity has ap-
proximately doubled. However, such beneficial developments
have led to a global explosion in anthropogenic emissions of
greenhouse gases. These are also subject to many relatively
sudden shifts from major wars, crises, resource discoveries,

Full text available at: http://dx.doi.org/10.1561/0800000037
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technology and policy interventions. Consequently, stochas-
tic trends, large shifts and numerous outliers must all be
handled in practice to develop viable empirical models of cli-
mate phenomena. Additional advantages of our econometric
methods for doing so are detecting the impacts of impor-
tant policy interventions as well as improved forecasts. The
econometric approach we outline can handle all these jointly,
which is essential to accurately characterize non-stationary
observational data. Few approaches in either climate or eco-
nomic modeling consider all such effects jointly, but a failure
to do so leads to mis-specified models and hence incorrect
theory evaluation and policy analyses. We discuss the haz-
ards of modeling wide-sense non-stationary data (namely
data not just with stochastic trends but also distributional
shifts), which also serves to describe our notation.

The application of the methods is illustrated by two detailed
modeling exercises. The first investigates the causal role of
CO2 in Ice Ages, where a simultaneous-equations system is
developed to characterize land ice volume, temperature and
atmospheric CO2 levels as non-linear functions of measures
of the Earth’s orbital path round the Sun. The second turns
to analyze the United Kingdom’s highly non-stationary an-
nual CO2 emissions over the last 150 years, walking through
all the key modeling stages. As the first country into the
Industrial Revolution, the UK is one of the first countries
out, with per capita annual CO2 emissions now below 1860’s
levels when our data series begin, a reduction achieved with
little aggregate cost. However, very large decreases in all
greenhouse gas emissions are still required to meet the UK’s
2050 target set by its Climate Change Act in 2008 of an
80% reduction from 1970 levels, since reduced to a net zero
target by that date, as required globally to stabilize tem-
peratures. The rapidly decreasing costs of renewable energy

Full text available at: http://dx.doi.org/10.1561/0800000037
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technologies offer hope of further rapid emission reductions
in that area, illustrated by a dynamic scenario analysis.

Keywords: climate econometrics; model selection; policy interventions;
outliers; saturation estimation; Autometrics; Ice Ages; CO2 emissions.
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1
Introduction

Climate econometrics is a sub-discipline that has grown rapidly over
the last few years, having held four annual international conferences (at
Aarhus, Oxford, Rome and Milan) and with a global network.1 A Spe-
cial Issue of the Journal of Econometrics (https://www.sciencedirect.
com/journal/journal-of-econometrics/vol/214/issue/1) has 14 contri-
butions across a wide range of climate issues, and a second in Econo-
metrics (https://www.mdpi.com/journal/econometrics/special_issues/
econometric_climate) is in preparation. Because greenhouse gas emis-
sions like carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4)
are the major cause of climate change, and are generated by human
activity, it is not surprising that the tool set originally designed to em-
pirically investigate economic outcomes should be applicable to studying
many empirical aspects of climate change. Most climate-change analysis
is based on physical process models embodying the many known laws
of conservation and energy balance at a global level. Such results under-
pin the various reports from the Intergovernmental Panel on Climate
Change (IPCC: https://www.ipcc.ch/). Climate theories can also be

1See https://www.jiscmail.ac.uk/cgi-bin/webadmin?A0=climateeconometrics:
its planned 5th Econometric Models of Climate Change Conference at the University
of Victoria has had to be postponed till 2021 because of the SARS-CoV-2 pandemic.

5
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6 Introduction

embedded in models of the kind familiar from macroeconomics: for ex-
ample, Kaufmann et al. (2013) link physical models with statistical ones
having a stochastic trend, and Pretis (2019) establishes an equivalence
between two-component (i.e., atmosphere and oceans) energy-balance
models of the climate and a cointegrated vector autoregressive system
(CVAR). Even in such a well-understood science, knowledge is not
complete and immutable, and there are empirical aspects that need
attention. For example, CO2 and other greenhouse gas emissions depend
on changeable human behavior; volcanic eruptions vary greatly in their
climate impacts; the rate of loss of Arctic sea ice alters the Earth’s
albedo and such feedbacks affect warming.

Our approaches at Climate Econometrics (our research group, shown
capitalized to differentiate it from the general research area) are comple-
mentary to physical process models, and use a powerful set of modeling
tools developed to analyze empirical evidence on evolving processes
that are also subject to abrupt shifts, called wide-sense non-stationarity
to distinguish from the use of ‘non-stationarity’ purely for unit-root
processes that generate stochastic trends: see Castle and Hendry (2019).
A key reason is that differencing a wide-sense non-stationary time
series does not ensure stationarity as is often incorrectly assumed
in economics. Because the data are wide-sense non-stationary time
series observations, the data generating process (DGP) is inevitably
unknown and has to be discovered. The model selection methodol-
ogy described below has excellent properties for locating an unknown
DGP when it is embedded within a large set of potential explana-
tions. Thus, we advocate commencing from a general specification that
also includes variables to allow for dynamics, outliers, shifts, and non-
linearities. We use a variant of machine learning called Autometrics
that explores multi-path block searches to discover a well-specified and
undominated model of the processes under analysis (see Doornik, 2009).
Hendry and Doornik (2014) analyze the properties of Autometrics: also
see §2.3.2 The approach is available in R by Pretis et al. (2018a) at
https://cran.r-project.org/web/packages/gets/index.html, and as the

2For summaries, see http://voxeu.org/article/data-mining-more-variables-obser
vations and https://voxeu.org/article/improved-approach-empirical-modelling-0.
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Excel Add-in XLModeler (see https://www.xlmodeler.com/). Other
model selection algorithms include the Lasso (see Tibshirani, 1996) and
its variants.

Our methods are designed to select models even when there are more
candidate variables, N , than the number of observations, T . Autometrics
employs a variety of saturation estimators that inevitably create N > T .
Each is designed to match the problem faced, namely impulse-indicator
saturation (denoted IIS) to tackle outliers, step-indicator saturation
(SIS) for location shifts, trend-indicator saturation (TIS) for trend
breaks, multiplicative-indicator saturation (MIS) for parameter changes,
and designed-indicator saturation for modeling phenomena with a regu-
lar pattern, applied below to detecting the impacts on temperature of
volcanic eruptions (VIS). Importantly, saturation estimators can be used
in combination, and can be applied when retaining without selection a
theory-model that is the objective of a study, while selecting from other
potentially substantive variables. Saturation estimators, and indeed our
general approaches, have seen applications across a range of disciplines
including dendrochronology, volcanology, geophysics, climatology, and
health management, as well as economics, other social sciences and fore-
casting. Although theory models are much better in many of these areas
than in economics and other social sciences, modeling observational
data faces most of the same problems, which is why an econometric
toolkit can help.

Below, we explain our econometric methods and illustrate some of
their applications to climate time series. The first illustration investi-
gates past climate variability over the Ice Ages, where a simultaneous-
equations system is developed to characterize land ice volume, Antarctic
temperature and atmospheric CO2 levels as non-linear functions of mea-
sures of the Earth’s evolving orbital path round the Sun. The focus
is on system modeling and how we implement that despite N > T , as
well as the difference in how saturation estimation is applied in systems.
Few economists will ever have the opportunity to consider multi-step
forecasts over 100,000 years as we do here! The second illustration
is a detailed study of the UK’s CO2 emission over 1860–2017 that
walks through the various stages of formulation, model specification,
selection while tackling outliers and location shifts, then investigating

Full text available at: http://dx.doi.org/10.1561/0800000037
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8 Introduction

cointegration, and on to model simplification for forecasting and policy
analyses. A key aim is establishing the possible impacts of past policy
interventions though we also discuss possible future developments.

As Pretis (2019) remarks

Econometric studies beyond IAMs (integrated assessment
models) are split into two strands: one side empirically
models the impact of climate on the economy, taking climate
variation as given . . . the other side models the impact of
anthropogenic (e.g., economic) activity onto the climate by
taking radiative forcing—the incoming energy from emitted
radiatively active gases such as CO2—as given . . . . This
split in the literature is a concern as each strand considers
conditional models, while feedback between the economy
and climate likely runs in both directions.

Examples of approaches conditioning on climate variables such as tem-
perature include Burke et al. (2015), Pretis et al. (2018b), Burke et al.
(2018), and Davis (2019). Hsiang (2016) reviews such approaches to
climate econometrics. Examples from many studies modeling climate
time series include Estrada et al. (2013), Kaufmann et al. (2011, 2013)
and Pretis and Hendry (2013). Pretis (2017) addresses the exogeneity
issue in more detail. Most of the research described in this monograph
concerns the second approach, although the methods are applicable
both to the first and to investigating exogeneity as shown in Section 6.
The resulting econometric tools also contrast with the methodology
predominantly used in the first approach of a quasi-experimental frame-
work using panel regressions under the assumption of strict exogeneity
of climate variables.

The structure of the monograph is as follows. First, Section 2 de-
scribes econometric methods for empirical climate modeling that can
account for wide-sense non-stationarity, namely both stochastic trends
and location shifts, with possibly large outliers, as well as dynamics and
non-linearities. Model selection is essential as the behavioral processes
determining greenhouse gas emissions are too complicated to be known
a priori. A basic question then concerns what is model selection trying
to find? This is answered in §2.1 on the roles therein of theory models

Full text available at: http://dx.doi.org/10.1561/0800000037
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and DGPs by trying to find the latter, or at least a good approximation
to its substantive components. §2.2 first discusses the formulation of
models for wide-sense non-stationary time series, then §2.3 describes
model selection by Autometrics and §2.4 explains its block multi-path
selection algorithm. Next, §2.5 turns to understanding why automatic
model selection can work well despite N > T . Saturation estimators
are described in §2.6, commencing with impulse-indicator saturation
(IIS) to tackle outliers. IIS is illustrated in §2.6.1, and its properties
are described in §2.6.2. Then §2.6.3 considers step-indicator saturation
(SIS), §2.6.4 the extension to super saturation estimation combining IIS
and SIS, §2.6.5 explains a variant to handle trend saturation estimation
(TIS), followed in §2.6.6 by multiplicative-indicator saturation (MIS)
which interacts SIS with regressors for detecting parameter changes.
Then §2.6.7 illustrates designed-indicator saturation by formulating in-
dicators for modeling the impacts of volcanic eruptions on temperature
reconstructions (VIS). §2.7 summarizes the various saturation estima-
tors. §2.8 considers selection, estimation and evaluation of simultaneous
equations models, addressing identification in §2.8.1. Facing forecasting
in a wide-sense non-stationary world, §2.9 discusses the consequences
of not handling location shifts and describes forecasting devices that
are more robust after shifts than ‘conventional’ forecasting models.

Section 3 considers hazards confronting empirical modeling of non-
stationary time-series data using an example where a counter-intuitive
finding is hard to resolve. The framework has a clear subject-matter
theory, so is not mere ‘data mining’, yet the empirical result flatly
contradicts the well-based theory. §3.1 considers whether assessing the
constancy and invariance of the relationship can reveal the source of the
difficulty, but does not. An encompassing evaluation of the relationship
in §3.2 fortunately does.

Section 4 provides a brief excursion into climate science, mainly
concerned with the composition of the Earth’s atmosphere and the role
of CO2 as a greenhouse gas. §4.1 considers whether humanity can alter
the planet’s atmosphere and oceans, and demonstrates we can—and
are. §4.2 discusses the consequences of changes in the composition of
the atmosphere, focusing on the impacts of climate change on ‘great
extinctions’ over geological time.

Full text available at: http://dx.doi.org/10.1561/0800000037



10 Introduction

Section 5 considers the consequences, both good and bad, of the
Industrial Revolution raising living standards beyond the wildest dreams
of those living in the 17th century, but leading to dangerous levels of
CO2 emissions from using fossil fuels.

Against that background, we consider applications of climate econo-
metrics. Section 6 illustrates the approach by modeling past climate
variability over the Ice Ages. §6.1 describes the data series over the past
800,000 years, then §6.2 models ice volume, CO2 and temperature as
jointly endogenous in a 3-variable system as a function of variations in
the Earth’s orbit, taking account of dynamics, non-linear interactions
and outliers using full information maximum likelihood. The general
model is formulated in §6.2.1, and the simultaneous system estimates
are discussed in §6.2.2. Their long-run implications are described in
§6.3 with one hundred 1000-year 1-step and dynamic forecasts in §6.3.1.
Then, §6.3.2 considers when humanity might have begun to influence
climate, and discusses the potential exogeneity of CO2 to identify its
role during Ice Ages. §6.4 looks 100,000 years into the future using the
fact that the eccentricity, obliquity and precession of Earth’s orbital
path is calculable far into the future, to explore the implications for the
planet’s temperature of atmospheric CO2 being determined by humans
at levels far above those experienced during Ice Ages. Finally, §6.5
summarizes the conclusions on Ice-Age modeling.

Section 7 models UK annual CO2 emissions over 1860–2017 to walk
through the stages of modeling empirical time series that manifest all the
problems of wide-sense non-stationarity. §7.1 provides data definitions
and sources, then §7.2 discusses the time-series data. §7.3 formulates
the econometric model, then §7.4 highlights the inadequacy of simple
model specifications. The four stages of model selection from an initial
general model are described in §7.5, then implemented in §7.6–§7.8. §7.9
conducts an encompassing test of the linear-semilog model against a
linear-linear one. §7.10 presents conditional 1-step ‘forecasts’ and multi-
step forecasts from a VAR. §7.11 addresses the policy implications of
the empirical analysis, then §7.12 considers whether the UK can reach
its 2008 Climate Change Act (CCA) CO2 emissions targets for 2050.
Finally, §7.13 estimates a ‘climate-environmental Kuznets curve’.

Full text available at: http://dx.doi.org/10.1561/0800000037
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Section 8 concludes and summarizes a number of other empirical
applications.

To emphasize the different and interacting forms of non-stationarity,
Figure 1.1 records time series from climate and economic data. Panel (a)
shows the varying trends in global monthly atmospheric CO2 concentra-
tions in ppm measured at Mauna Loa over 1958(1)–2019(6); Panel (b)
records the dramatically non-stationary UK per capita CO2 emissions,
with up and down trends, outliers and shifts; Panel (c) reports the log
of UK GDP, again with changing trends and large shifts; and (d) plots
the log of the UK wage share, with large shifts and outliers.

The lockdowns round the world in response to SARS-CoV-2 will
doubtless cause a sharp drop in global CO2 emissions in early 2020 need-
ing modeled. The indicator saturation estimators described in Section 2
are designed to tackle such multiple shifts of unknown magnitudes
and directions at unknown dates as countries gradually bring their
pandemics under sufficient control to ‘restart’ their economies.
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Figure 1.1: (a) Global monthly atmospheric CO2 concentrations in parts per million
(ppm) measured at Mauna Loa, 1958(1)–2019(6); (b) UK CO2 emissions in tons per
capita per annum; (c) the log of UK GDP; (d) log of the UK wage share. (b)–(d)
are all annual over 1860–2018.
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