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Factor Extraction in Dynamic
Factor Models: Kalman Filter
Versus Principal Components
Esther Ruiz1 and Pilar Poncela2
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2Department of Economic Analysis: Quantitative Economics,
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ABSTRACT
This survey looks at the literature on factor extraction in
the context of Dynamic Factor Models (DFMs) fitted to
multivariate systems of economic and financial variables.
Many of the most popular factor extraction procedures
often used in empirical applications are based on either
Principal Components (PC) or Kalman filter and smoothing
(KFS) techniques. First, we show that the KFS factors are a
weighted average of the contemporaneous information (PC
factors) and the past information and that the weights of
the latter are negligible unless the factors are close to the
non-stationarity boundary and/or their loadings are pretty
small when compared with the variance-covariance matrix
of the idiosyncratic components. Note that the weight of
the past can be large either because the cross-sectional
dimension is small or because the magnitude of the factor
loadings is small. Consequently, we are able to explain why,
in practice, there is a general consensus about PC and KFS
factors being rather similar when extracted from stationary

Esther Ruiz and Pilar Poncela (2022), “Factor Extraction in Dynamic Factor Models:
Kalman Filter Versus Principal Components”, Foundations and Trends® in Econo-
metrics: Vol. 12, No. 2, pp 121–231. DOI: 10.1561/0800000039.
©2022 E. Ruiz and P. Poncela

Full text available at: http://dx.doi.org/10.1561/0800000039



2

systems of large dimensions. Second, we survey how PC
and KFS deal with several issues often faced in the context
of extracting factors from real data systems. In particular,
we describe PC and KFS procedures to deal with mixed
frequencies and missing observations, structural breaks, non-
stationarity, Markov-switching parameters or multi-level
factor structures. In general, we see that KFS is very flexible
to deal with these issues.

Keywords: Markov-switching; missing observations; mixed-frequency;
multi-level; non-stationarity; time-varying parameters; unobserved
components.
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1
Introduction

When dealing with large systems of economic time series, Dynamic
Factor Models (DFMs), popularized by Geweke (1977) and Sargent
and Sims (1977), assume the existence of a relatively small number of
unobserved latent factors that capture the comovements in the variables.
Note that DFMs were also the basis of the arbitrage pricing theory
of Ross (1976). DFMs have been the main “big data” tool used in
empirical macroeconomics and finance during the last 30 years; see
Breitung and Eickmeier (2006), Bai and Ng (2008), Stock and Watson
(2011), Barhoumi et al. (2013), Breitung and Choi (2013), Bai and Wang
(2016), Doz and Fuleky (2020), Peña and Tsay (2021), Poncela et al.
(2021) and Lippi et al. (in press) for some selected surveys carried out
during the last two decades covering particular aspects of these models.
In a very recent study, Goulet Coulombe et al. (2021) compare several
Machine Learning procedures in terms of macroeconomic forecasting
and conclude that “while Machine Learning methods can handle the
high-dimensional X (both computationally and statistically), extracting
common factors remains straightforward feature engineering that pays
off”.

3
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4 Introduction

Many of the most popular procedures often implemented in empiri-
cal applications to extract the underlying factors are based on either
Principal Components (PC) or Kalman filter and smoothing (KFS),
with prominent implementations of both techniques by leading central
banks and public institutions.1 PC-based procedures are non-parametric
and, therefore, robust against misspecification of the dynamic evolution
of the underlying factors and/or the idiosyncratic components. Further-
more, their computational simplicity allows them to extract factors in
systems with rather large cross-sectional dimensions.2 The alternative
KFS-based procedures are parametric and require the estimation of a
large number of parameters when dealing with large systems; see, for
example, the very recent survey by Poncela et al. (2021) on KFS factor
extraction. One of the advantages of KFS factor extraction is that it al-
lows for Maximum Likelihood (ML) estimation of the DFM parameters
with the corresponding extracted factors being efficient if their assumed
specification is correct. However, when the cross-sectional dimension is
large, the optimization of the log-likelihood may be problematic due to
the large number of parameters that need to be estimated. Fortunately,
Doz et al. (2012) soften the way to implement KFS in large systems
with weakly correlated idiosyncratic noises by showing that, when both
the cross-sectional and temporal dimensions diverge to infinity, the
factors extracted assuming that the idiosyncratic noises are temporal
and cross-sectionally uncorrelated (and, consequently, largely reducing
the number of parameters to be estimated) are consistent, even if they
are truly correlated in any of both directions. However, the KFS may
not be efficient as, in this context, both the filters are run and the
parameters are estimated in a misspecified model; see the asymptotic
results by Barigozzi and Luciani (2020), who show that this lack of
efficiency may be negligible in large samples.

1Although the focus in this survey is on economic and financial applications,
there is an important literature using DFMs in many other areas as, for example,
Psychology (Molenaar and Ram, 2009), Demography (French and O’Hare, 2013;
Ortega-Osona and Poncela, 2005, and Shang et al., 2011), environmetrics (Zuur
et al., 2003) or climate change (Diebold et al., 2021).

2Fan et al. (2021a) also survey estimation based on low-rank regularization, which
is an alternative to PC based on soft-thresholding instead of hard-thresholding.
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5

In this survey, we look at the literature on PC and KFS factor
extraction with a focus on how they compare and how they deal with
several relevant issues often encountered when dealing with real systems
of macroeconomic and financial time series. In particular, large systems
of real macroeconomic and financial variables of interest are often
characterized by missing observations, variables observed with mixed
frequencies, structural changes, time-varying parameters, switching
regimes and/or non-stationarity. Also, the structure of the factors
could be multi-level as, for example, when there are global factors and
factors affecting only subsets of the variables in the system, or the
DFM could be defined for observations that are matrices instead of
vectors. In empirical applications, there is a large number of authors
who prefer the computational simplicity of PC-based methods while
many others prefer the flexibility of KFS to deal with serially dependent
unobserved factors. Both PC and KFS have been adapted to deal with
the empirical characteristics mentioned above. However, their complexity
and empirical performance could be different and, consequently, we
also provide a comprehensive updated summary of the literature on
the extensions of PC and KFS procedures proposed to extract the
underlying factors in the context of the empirical characteristics often
encountered in empirical applications.

A word of warning is due before the reader starts going through
this survey. Due to the extremely large literature on DFMs and factor
extraction, we have restricted ourselves to survey mostly published
works, leaving out many interesting contributions that, we are sure, will
be published in the near future. We have only cited working papers when
they are crucial for our arguments. In any case, we want to apologize
to the authors of many interesting works who have not been cited. It
was an impossible mission trying to cover all contributions. In spite of
this limitation, we still hope that this survey provides a broad vision of
factor extraction and the advantages and limitations of the main two
tools available for it.

The rest of this survey is organized as follows. Section 2 describes
PC and KFS factor extraction and shows how they are related in the
context of stationary static DFMs. Section 3 extends the description to
non-stationary DFMs. Section 4 describes factor extraction in DFMs

Full text available at: http://dx.doi.org/10.1561/0800000039



6 Introduction

with time-varying parameters, structural breaks and Markov-switching
parameters. Section 5 is a bird’s eye view on how factors are extracted
from multi-level DFMs while Section 6 deals with matrix-valued DFMs.
Dealing with missing and mixed-frequency observations is considered
in Section 7. Finally, Section 8 concludes.
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