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ABSTRACT

In all areas of human knowledge, datasets are increasing in
both size and complexity, creating the need for richer statis-
tical models. This trend is also true for economic data, where
high-dimensional and nonlinear/nonparametric inference is
the norm in several fields of applied econometric work. The
purpose of this monograph is to introduce the reader to
the world of Bayesian model determination, by surveying
modern shrinkage and variable selection algorithms and
methodologies. Bayesian inference is a natural probabilistic
framework for quantifying uncertainty and learning about
model parameters, and this feature is particularly impor-
tant for inference in modern models of high dimensions and
increased complexity.

We begin with a linear regression setting in order to intro-
duce various classes of priors that lead to shrinkage/sparse
estimators of comparable value to popular penalized likeli-
hood estimators (e.g., ridge, LASSO). We explore various
methods of exact and approximate inference, and discuss
their pros and cons. Finally, we explore how priors devel-
oped for the simple regression setting can be extended in a

Dimitris Korobilis and Kenichi Shimizu (2022), “Bayesian Approaches to Shrinkage
and Sparse Estimation”, Foundations and Trends® in Econometrics: Vol. 11, No. 4,
pp 230–354. DOI: 10.1561/0800000041.
©2022 D. Korobilis and K. Shimizu

Full text available at: http://dx.doi.org/10.1561/0800000041



2

straightforward way to various classes of interesting econo-
metric models. In particular, the following case-studies are
considered, that demonstrate application of Bayesian shrink-
age and variable selection strategies to popular econometric
contexts: (i) vector autoregressive models; (ii) factor mod-
els; (iii) time-varying parameter regressions; (iv) confounder
selection in treatment effects models; and (v) quantile re-
gression models. A MATLAB package and an accompanying
technical manual1 allow the reader to replicate many of the
algorithms described in this monograph.

1Online Supplementary Material available from: http://dx.doi.org/10.1561/
0800000041_supp.
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1
Introduction

In all areas of human knowledge, datasets are increasing in both size and
complexity, creating the need for richer models. This trend is also true
for economic data, where high-dimensional and nonlinear/noparametric
inference is the norm in several fields of applied econometric work.
The purpose of this monograph is to introduce the reader to Bayesian
inference using shrinkage and variable selection priors. In particular,
we intend to demonstrate that the benefits of a Bayesian approach to
high-dimensional estimation are manifold. Bayesian inference allows for
a more accurate quantification of uncertainty. Parameters are treated
as random variables that have their own probability density (or mass)
functions. The use of a prior distribution provides a natural ground for
enhancing possibly weak information in the likelihood.1 Our first aim is
to explore classes of priors that can recover popular penalized regression
estimators, such as the LASSO of Tibshirani (1996). Next, we want to
demonstrate how the Bayesian paradigm becomes a natural framework

1Note that our interest here is in “wide” data (e.g., a linear regression model
with more predictors than observations) where unrestricted estimation based only
on the likelihood is either unreliable or impossible. In cases with “tall” data (many
observations) the Bayesian posterior will tend to concentrate towards a point mass,
i.e., uncertainty is small.

3

Full text available at: http://dx.doi.org/10.1561/0800000041



4 Introduction

for combining prior forms in order to capture more complicated patterns
of shrinkage and/or sparsity in the data. For example, Ročková and
George (2018) extend the LASSO with ideas from the Bayesian variable
selection literature in order to obtain a “spike and slab LASSO” estima-
tor that is empirically superior to shrinkage or variable selection alone,
and has desirable theoretical guarantees. Finally, we aim to illustrate
that the Bayesian framework is ideal for applied economists who want
to use shrinkage or sparsity in more complex or unconventional settings.
Economists might be interested in combining data-rigorous statistical
variable selection with economic restrictions on certain parameters,2 or
use a shrinkage estimator in a model with breaks, stochastic volatility,
missing data or other complexities. Penalized and constrained maxi-
mum likelihood frameworks can deal with such cases, but computation
is non-trivial because it relies on optimizing complex functions. We
demonstrate emphatically in this monograph that Bayesian computa-
tion provides numerous tools and algorithms for shrinkage and sparsity
that can be incorporated in very complex statistical models with the
same ease they are used in univariate linear regression settings.

Even though the notions of sparsity and shrinkage estimation are
ubiquitous since the explosion of Big Data in all fields of science (e.g.,
we doubt there are many economists these days who haven’t heard
about the LASSO), we want to clarify these terms before proceeding
with our formal definitions. Sparsity refers to finding parameter esti-
mates that have more zeros than non-zeros (where zeros in estimation
means absence of some effect or relationship). Shrinkage (or often called
“regularization” in machine learning) means estimation where many
parameter elements are compressed towards zero, but they are not
necessarily zero. While many readers might be familiar with these con-
cepts, interpretation from a Bayesian point of view is slightly different
compared to frequentist approaches. Sparsity is not identical for the
simple reason that parameters in the Bayesian paradigm are (continu-
ous, in many cases) random variables. Similarly, shrinkage toward zero

2For example, instead of the typical statistical shrinkage towards zero that
indicates whether an effect is important or not, economists might want to shrink a
parameter towards a calibrated value or a sign restriction provided by the solution
of an economic model.
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1.1. Bayesian Decision Theory and Estimation 5

in Bayesian inference is achieved by specifying certain forms of priors;
a frequentist statistician usually achieves shrinkage via a penalized
likelihood approach.

We explain these differences, and many more concepts, in this de-
tailed monograph. We build our discussion gradually by introducing
in this section basic components of Bayesian decision theory and esti-
mation, and the principles of Bayesian model determination using the
marginal likelihood. In Section 2 we introduce the concept of hierarchical
priors and present the basic properties of a large class of hierarchical
representations of Bayesian sparsity and shrinkage estimators. In Sec-
tion 3 we focus on computation using hierarchical priors, and strategies
for making inference in high-dimension computationally feasible. Sec-
tion 4 demonstrates how the hierarchical priors and computational tools
discussed in the previous sections, can be readily applied to a wide class
of models that are important in economics and finance, as well as other
fields of science. Section 5 concludes.

Throughout the monograph, we make the assumption that the reader
has a broad understanding of the concept of a prior distribution. If this
is not the case, novice readers are advised to begin reading about the
basics of Bayesian inference in Section 1.2 and then move to Section 1.1.
More experienced readers can move directly to Section 2, skipping the
material in this section.

1.1 Bayesian Decision Theory and Estimation

In order to motivate shrinkage and sparsity, we first introduce the
concept of loss-based estimation using a Bayesian decision theoretic
approach. Detailed introductions can be found in Fourdrinier et al.
(2018) and Robert (2007). Assume we have data X ∈ X where X (the
sample space) is a measurable set of IRn, and parameters θ ∈ Θ where
Θ (the parameter space) is a measurable set of IRp. We define two
probability density functions (p.d.f.) that are measurable on X and Θ:
a likelihood function p(X|θ), and a prior function π(θ). Denote with
θ̂(X) an estimator of θ, that is, a measurable function of data X that
maps from IRn to IRp.

Full text available at: http://dx.doi.org/10.1561/0800000041



6 Introduction

Under these definitions we can now specify what is the loss and risk
associated with the estimator θ̂(X). First, we can define loss functions
of the form L(θ̂(X), θ) = ρ(θ̂(X), θ) where ρ(•) can be a symmetric loss
function (the quadratic being the most popular) or any asymmetric loss
function that measures how close θ̂(X) is to the true θ. The Bayes risk
associated with “decision” θ̂ is defined as (see also Fourdrinier et al.,
2018)

r(π, θ̂) =
∫

Θ
Eθ(L(θ̂(X), θ))dπ(θ). (1.1)

The quantity R(θ, θ̂) = Eθ(L(θ̂(X), θ)) is the frequentist risk of θ̂, which
is defined as the expected value of the loss function over the data real-
ization for a fixed θ. In contrast, the Bayes risk in Equation (1.1) is the
average of frequentist risk R with respect to the prior distribution π(θ).
Frequentist decision theory aims at making the expected loss R(θ, θ̂)
small, while Bayesian decision theory aims at finding the minimum of
r(π, θ̂). In particular, the quantity

r(π) = inf
θ̂

r(π, θ̂), (1.2)

is the Bayes risk of the prior distribution π. Given a prior π, an associated
Bayes estimator θ̂π is a minimizer in the sense that r(π, θ̂π) = r(π).

We can now define the concepts of minimaxity and admissibility.
A decision rule (estimator) is admissible with respect to the loss function
L if and only if no other rule dominates it. That is, iff r(π, θ̃) < r(π, θ̂)
then θ̃ is admissible. An estimator is θ̂0 is minimax for a given loss
function L if

sup
θ
R(θ, θ̂0) = inf

θ̂
sup
θ
R(θ, θ̂), (1.3)

that is, it is the minimizer of the worst-case frequentist risk. For a given
prior π, define an associated Bayes estimator θ̂π. If supθR(θ, θ̂π) =
r(π, θ̂π), then θ̂π can be shown to be minimax. In this case, the prior
π is least favorable in the sense that r(π′, θ̂π) ≤ r(π, θ̂π) for all other
priors π′. That is, θ̂π is the best with respect to the least favorable
prior distribution π(θ). Minimaxity is a desirable feature for compar-
ing estimators but, of course, it can still become a misleading mea-
sure of comparison; see a counterexample and further discussion in

Full text available at: http://dx.doi.org/10.1561/0800000041



1.1. Bayesian Decision Theory and Estimation 7

Robert (2007). Finally, note that if a minimax estimator is a unique
(Bayes) estimator, then this is also admissible.

Why is it important to think in terms of optimality of an estimator
with respect to a loss function? To answer this question, consider the
expected value of the squared error loss of a scalar, point estimator
θ̂ = θ̂(X), which is also known as the mean squared error:

MSE(θ̂) = E[L(θ̂, θ)] = E[(θ̂ − θ)2] (1.4)
= E[(θ̂ − E{θ̂}+ E{θ̂} − θ)2] (1.5)
= E[(θ̂ − E{θ̂})2] + (E{θ̂} − θ)2. (1.6)

The first term in the last equation above is the variance of θ̂, and the
second term is the square of its bias. The least squares estimator, which
in many simple linear settings coincides with the maximum likelihood
estimator, has zero bias (unbiased) and is the “best” meaning that it
has narrowest sampling distribution (minimum variance) among all
unbiased estimators. Despite these two desirable properties, it is not
necessarily the case that OLS will always have the lowest mean squared
error. Indeed, in high-dimensional cases with fat data (p large relative
to n) the sample variance of the OLS will tend to become very large.
In cases with more parameters than observations (p > n), the OLS
estimator has infinite solutions and infinite variance. In such cases, there
exist biased estimators that achieve much lower variance compared to
the unbiased estimator, to the extent that this reduction in variance
compensates for any increase in the square of the bias (making the
total MSE of the biased estimator lower). Specifically in the case of
out-of-sample prediction the MSE of our modeled variable will be larger
if the estimation MSE in Equation (1.6) is high, showing that evaluating
estimation loss might be more important than looking only at (minimum
variance) unbiasedness.

A well-known illustration of this concept, that changed dramatically
the way statisticians think about estimators, is the example of the
James-Stein estimator. Assume our likelihood is X ∼ Np(θ, σ2Ip) where
θ ∈ IRp is the unknown parameter and σ2 is assumed to be known.
Stein (1956) proved that the maximum likelihood estimator θ̂mle = X

is the minimum risk equivariant estimator under various loss functions,

Full text available at: http://dx.doi.org/10.1561/0800000041



8 Introduction

it is minimax, and it is admissible for p = 1, 2. However, for p ≥ 3
the maximum likelihood estimator is inadmissible under a square loss
function, and the James-Stein estimator

θ̂JS =
(

1− (p− 2)σ2∑n
i=1Xi

)
X, (1.7)

has lower risk than the MLE, that is, R(θ̂JS) < R(θ̂mle). Efron and
Morris (1973) showed that the James-Stein estimator is a special case
of an empirical Bayes estimator of θ, that is, an estimator that places a
Gaussian prior on θ and sets its prior variance to be a certain function
of the data X. Stein’s estimator minimizes the total quadratic risk of
θ, but there may be elements θ̂JSi , i ∈ [1, p], which have higher risk
than the MLE. For that reason, Efron and Morris (1973) also propose a
limited translation empirical Bayes estimator, which offers a compromise
between Stein’s estimator and the MLE.

Bayesian estimators are by default biased towards the prior expecta-
tion, which is a result of forming inference by using the information in
both the likelihood and prior functions. Similarly, penalized likelihood
estimators, such as the popular LASSO of Tibshirani (1996), constrain
the likelihood function with a penalty that intends to introduce a simi-
lar bias. The purpose of this subsection is to introduce an alternative
view to traditional econometric inference with small parameter spaces,
where unbiasedness is usually the holy grail for the econometrician. In
high-dimensional settings some estimation bias may be desirable, espe-
cially when the purpose is prediction in which case richly parameterized
specifications are not welcome. In many instances, in-sample parameter
estimation accuracy (instead of out-of-sample prediction) is of primary
importance, for example, when the quantity of interest is an elasticity
or a causal effect that can inform policy decisions. We show later in
this monograph that in such cases Bayesian and frequentist penalized
regression estimators can be desirable.

Full text available at: http://dx.doi.org/10.1561/0800000041



1.2. Principles of Bayesian Model Choice: A Regression Perspective 9

1.2 Principles of Bayesian Model Choice: A Regression Perspective

According to Gelman et al. (2013), the process of Bayesian data analysis
involves three steps:

(1) Setting up a full probability model. This doesn’t only involve
specifying a likelihood for our data (observables), but we need to
specify a joint distribution for both observables and unobservables
(parameters, or other unobserved data/variables)

(2) Conditioning on the observed data in order to calculate posterior
probabilities of all unobservables

(3) Assessing model fit, for example, understanding limitations of the
chosen likelihood and prior for recovering interpretable and useful
parameters estimates, and addressing sensitivity of the results to
these choices.

In the first part of this monograph, we use a simple linear regression
setting as the basis for developing shrinkage and sparsity priors (step
1), for discussing posterior computation (step 2) and assessing model
fit (step 3). By doing so we aim to offer the same level playing field
for presenting various hierarchical prior formulations. The final section
presents several extensions of shrinkage and sparsity priors in more com-
plex settings, such as factor models, time-varying parameter regression,
and cofounder selection in treatment effect estimation.

The regression model we build upon has the form

yi = Xiβ + εi, i = 1, . . . , n, (1.8)

where n is the number of observations, yi is a scalar dependent variable,
Xi is a 1 × p vector of covariates (or regressors or predictors) that
can possibly include an intercept, dummies, exogenous variables or
other effects (e.g., trend in a time-series setting), β is a p× 1 vector of
regression coefficients, and εi ∼ N(0, σ2) is a Gaussian disturbance term
with zero mean and scalar variance parameter σ2. Within this setting
our interest lies in obtaining “good” estimates of β and σ2, specifically
in settings with many covariates (“large p, small n” regression).

Full text available at: http://dx.doi.org/10.1561/0800000041



10 Introduction

The linear regression formulation implies a certain Gaussian like-
lihood function L(β, σ2|y,X) that is proportional to the sampling
density p(y|β, σ2). These two quantities are not identical because the
likelihood is not a true density function.3 The Bayesian needs to specify
a joint prior distribution of the parameters, in the form p(β, σ2). Bayes
Theorem postulates that

p(β, σ2|y) = p(y|β, σ2)× p(β, σ2)
p(y) , (1.9)

but for the purpose of parameter estimation, in particular, it is easier
to ignore p(y) since it is a normalizing constant (i.e., not a function of
the parameters of interest β, σ2) and work instead with the formula

p(β, σ2|y) ∝ p(y|β, σ2)× p(β, σ2). (1.10)

A default prior setting in Bayesian inference is the natural conjugate
prior4 which is defined as

p(β, σ2) = p(β|σ2)p(σ2) (1.11)

= N(0, σ2D)× Inv−Gamma
(
v0
2 ,

s2
0
2

)
(1.12)

∝ (σ2)−
p
2 exp

{
− 1

2σ2β
′D−1β

}
(1.13)

× (σ2)−v0/2−1 exp
{
−s

2
0/2
σ2

}
, (1.14)

where (D, v0, s0) are prior hyperparameters chosen by the researcher.
Due to the fact that the likelihood has a similar structure to this prior, it
is trivial to prove (see the Online Supplementary Technical Document)
that the posterior is of the form

p(β, σ2|y) = N(V (X ′y), σ2V )× Inv−Gamma
(
v

2 ,
s2

2

)
, (1.15)

where V = (X ′X +D−1)−1, v = v0 + n+ p, s2 = s2
0 + (y −Xβ)′(y −

Xβ) + β′D−1β, X = [X ′1, . . . ,X ′n]′, and y = (y1, . . . , yn)′.
3The likelihood is a product of densities that lacks a normalizing constant.
4Under a conjugate prior, the prior and the posterior of a parameter are of the

same distributional form.
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1.2. Principles of Bayesian Model Choice: A Regression Perspective 11

1.2.1 Goodness of Fit Measures: Marginal Likelihood and
Information Criteria

While Equation (1.10) is of primary importance for the parameter
posterior distributions, the quantity p(y) in Equation (1.9) is importance
for Bayesian model determination. This is the prior predictive likelihood,
more commonly known as the marginal likelihood:

p(y) =
∫ ∞
−∞

∫ ∞
0

p(y|β, σ2)p(β, σ2)dβdσ2, (1.16)

which is well-defined for proper priors. It is the evidence in data y
after we integrate out the effect of all possible values that the “random
variables” β, σ2 can admit through their prior distribution. The marginal
likelihood is the expected value of the likelihood where the expectation
is taken with respect to the prior. Put differently, it is the prior mean
of the likelihood function. An important characteristic of the marginal
likelihood is that the integral in Equation (1.16) can only be calculated
when the prior is a proper density, that is, if p(β, σ2) integrates to one.
The non-informative prior on β and σ2 is a key example where this
condition fails and the marginal likelihood does not exist.5

Assume we want to predict a new (future) observation yn+1 given
Xn+1 using the prediction (out-of-sample) model p(yn+1|β, σ2,y) which,
in turn, is based on the in-sample estimated model. We can then define
the posterior predictive density:

p(yn+1|y) =
∫ ∞
−∞

∫ ∞
0

p(yn+1|β, σ2)p(β, σ2|y)dβdσ2, (1.17)

which is the density of the out-of-sample data point marginalized over
the posterior density of the model parameters.

Both quantities – prior and posterior predictive distributions – are
fundamental for model assessment in Bayesian inference. In the bench-
mark case of the linear regression with the natural conjugate prior, the
marginal likelihood can be derived analytically and is of the form

p(y) = p(y|β, σ2)× p(β, σ2)
p(β, σ2|y) (1.18)

5The non-informative prior is of the form p(β, σ2) ∝ 1
σ2 .
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=
Γ(v0

2 )−1(s0/2)
v0
2

(2π)
n
2 Γ
(
v
2
)−1 (s/2)

v
2

|D|−
1
2
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2

(1.19)

×
[1

2(s0 + y′y − µ∗V −1µ∗)
]
, (1.20)

where v0, s0,D are parameters of the prior distribution (chosen by the
researcher), and v, s,V are parameters of the posterior distribution
whose values are provided in Equation (1.15) and µ∗ = V (X ′y).

The predictive likelihood is also available analytically and it is of
the form

yn+1|y ∼ t1(yn+1;Xn+1V (X ′y), s
v

(1 +Xn+1V X
′
n+1), v), (1.21)

where we define the p-dimensional Student t-density with location µ,
scale matrix Σ, and degrees of freedom d as

tp(x;µ,Σ, d) =
Γ(d+p

2 )
Γ(d2)dp/2πp/2|Σ|1/2

×
[
1 + 1

d
(x− µ)′Σ−1(x− µ)

]
. (1.22)

The marginal likelihood is rarely available analytically, and in most
cases the integral in Equation (1.16) has to be approximated using
Monte Carlo or numerical methods.6 In cases of either a complex model
or a complex prior structure, or both, evaluating the marginal likelihood
can become challenging, if not impossible. In such cases it might be
easier to calculate the posterior predictive density in Equation (1.17)
using a procedure called leave one out cross-validation (LOO-CV). This
would involve fitting the model in training data and then using a hold-
out sample to evaluate the posterior predictive distribution. Notice that
if MCMC samples from the parameter posterior are available, evaluation
of Equation (1.17) is straightforward using Monte Carlo integration via

6Two early examples are Gelfand and Dey (1994) and Chib (1995); see also Chib
and Jeliazkov (2001) for a review. Both Gelfand and Dey (1994) and Chib (1995)
esitmators of the marginal likelihood rely on derivation of simple expressions for
p(y), which explains their popularity in applied research. However, both estimators
can be numerically sensitive in certain cases (Geweke, 1999), plus they are not
appropriate for multi-model comparisons due to their reliance on computationally
intensive Monte Carlo simulation methods.
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sampling from7

p(yn+1
∣∣β(s), σ

2
(s)) (1.23)

where (β(s), σ
2
(s)), s = 1, . . . , S, are S MCMC samples from p(β, σ2|y).

When marginal or posterior predictive distributions are difficult to
obtain, a (computationally) straightforward alternative strategy is to
rely on information criteria. For example, the Bayesian information
criterion (BIC), is a first-order approximation to the marginal likelihood.
Performing a Taylor expansion around the posterior mode8 (β̃, σ̃2) for
the logarithm of the term p(y|β, σ2)p(β, σ2) in Equation (1.16), we can
write the log-marginal likelihood as

log p(y) = log p(y|β̃, σ̃2) + log p(β̃, σ̃2) + p

2 log(2π)

−p
2 logn− 1

2 log |Jn(β̃, σ̃2)|+O(n−1),
(1.24)

where Jn(β̃, σ̃2) is the expected Fisher information matrix of p(y|β, σ2) ·
p(β, σ2) evaluated at the posterior mode (β̃, σ̃2). In large samples,
the posterior mode coincides with the MLE (β̂, σ̂2). Considering this
approximation and removing from Equation (1.24) any terms of order
O(1) or less, we obtain

log p(y) = log p(y|β̂, σ̂2)− p

2 logn+O(1). (1.25)

The approximation above provides the basis for defining the Schwarz
(1978)’s Bayesian information criterion

BIC = −2 logL(β̂, σ̂2|y,X) + p logn, (1.26)

where L(β̂, σ̂2|y,X) is the likelihood function evaluated at
the MLE.

7Recognizing the numerical and computational shortcomings of model choice
based on marginal likelihoods, there are several early studies that propose model
choice criteria that are based on variants of the posterior predictive distribution, see
Davison (1986), Gelfand and Ghosh (1998), Gelman et al. (1996), Laud and Ibrahim
(1995), Ibrahim and Laud (1994) and Martini and Spezzaferri (1984).

8The posterior mode is chosen such that the first derivative of the posterior is
zero, which simplifies terms when taking the Taylor expansion; see Raftery (1995)
for a detailed proof.
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The BIC is only a crude approximation to the marginal likelihood
and it is based on a point estimate. An alternative popular criterion
is the deviance information criterion (DIC) proposed by Spiegelhalter
et al. (2002) which is of the form

DIC = −4Ep(β,σ2|y)[log p(y|β, σ2)] + 2 log p(y|β̃, σ̃2). (1.27)

The first term is the expectation of the data density with respect to
the posterior9 which can be evaluated numerically from the MCMC
output by taking the mean of log p(y|β, σ2) over all MCMC samples
of the parameters. The second term is the value of the data density
evaluated at the posterior mode (β̃, σ̃2). For more information on the
DIC, see also Chan and Grant (2016), Spiegelhalter et al. (2014) and
van der Linde (2005).

In hierarchical models, there are latent variables in addition to
(β, σ2). In such case, computing the DIC incorporating the latent vari-
ables has a practical advantage that it is easy to obtain from MCMC
outputs. However, this approach faces difficulties in some cases because
the asymptotic justification of DIC can be provided when the dimension-
ality of the parameter vector does not grow indefinitely with the number
of observations. In many hierarchical models, this dimensionality grows
asymptotically. See Quintero and Lesaffre (2018) for more discussion
and alternative approaches for computing DIC in hierarchical models.

Chen and Chen (2008) propose a modification to the Bayesian in-
formation criterion for high-dimensional spaces, which they call the
extended Bayesian information criterion (EBIC). In the context of a
proportional hazards model, Volinsky and Raftery (2000) propose a
modification of the BIC penalty term that is consistent with a conjugate
unit-information prior under this model. Foster and George (1994) pro-
pose the risk inflation criterion (RIC) while George and Foster (2000)
present empirical Bayes selection criteria. Watanabe (2010, 2013) de-
rives the widely applicable information criterion (WAIC), also known as
the Watanabe-Akaike information criterion since this criterion can be
considered to be a Bayesian variant of the popular Akaike information

9For that reason, the DIC is related to the posterior predictive density, i.e., the
integral in Equation (1.17), rather than the marginal likelihood.
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criterion. Gelman et al. (2014) and Vehtari et al. (2017) perform infor-
mative comparisons of the properties of BIC, DIC, WAIC and LOO-CV
in a Bayesian context.

1.2.2 Testing Hypotheses: Bayes Factors

Consider now the case of two competing models, model one (denoted as
M1) and model two (denoted as M2). For example, a key scenario that
fits this setting, is that of testing hypotheses of the form H0: βj = 0 vs.
H1: βj 6= 0, for some j = 1, . . . , p. Evidence in favor of either H0 or H1,
corresponds to how good is the fit of two corresponding nested regression
models (M1 is unrestricted, and M2 has the restriction βj = 0 imposed).
In this setting it is convenient to condition parameter posteriors and
marginal likelihoods for each model on the random variable Mi, i =
1, 2, that indexes each of the two models. For example, p(β, σ2|y,M1)
and p(y|M1) denote the parameter posterior and marginal likelihood,
respectively, of regression model 1. Consequently, the quantity

BF12 = p(y|M1)
p(y|M2) , (1.28)

is the Bayes Factor between models 1 and 2. The quantity

PO12 ≡
p(M1|y)
p(M2|y) = p(y|M1)

p(y|M2) ×
p(M1)
p(M2) , (1.29)

is the posterior odds between models 1 and 2. It is defined as the
product of the Bayes factor and the prior odds. If we assign equal model
probabilities a-priori, then p(M1) = p(M2) = 1

2 and the Bayes factor
is identical to the posterior odds ratio. The Bayes factor above is a
primary tool for assessing evidence in favor of a statistical model versus
a competing model.

Kass and Raftery (1995) provide a rule-of-thumb on how to in-
terpret the statistical evidence against model 2 based on ranges of
values of BF12: for values higher than three the evidence is substan-
tial, for values higher than 10 it is strong, and for values higher than
100 it is decisive. Given that marginal likelihoods are not available
with improper priors (even if the posterior is proper), there has been
plenty of interest in calculating Bayes factors when such priors are used.
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Aitkin (1991) proposes to calculate Bayes factors based on integrating
the likelihood with the posterior – this is equivalent to replacing p(β, σ2)
with p(β, σ2|y) in Equation (1.16). This formulation allows to calculate
“posterior” Bayes factors regardless of the prior structure of each model,
and at the same time it avoids Lindley’s paradox (Aitkin, 1991). Berger
and Pericchi (1996, 1998) suggest the use of the intrinsic Bayes factor.
Their suggestion involves splitting the data into n subsets, such that
one can obtain the marginal likelihood of the ith subset conditional
on all other subsets. Subsequently, either the arithmetic or geometric
average of the Bayes factors estimated in all n subsets of the data can
be used as the final estimate.

For nested model comparisons, Verdinelli and Wasserman (1995)
show that Bayes factors can be calculated using the Savage-Dickey
density ratio (SDDR) approach. Consider two regression models as in
Equation (1.8) but for notational simplicity set p = 1, that is, only a
single covariate is available. The first model, M1, is an unrestricted
model while model M2 imposes the restriction β = β? for some scalar
value β? (the previous example of testing of H0: β = 0 vs H1: β 6= 0 fits
this setting). In this case the Bayes factor can be written as

BF12 = p(y|M1)
p(y|M2) (1.30)

=
∫∞
−∞

∫∞
0 p(y|β, σ2,M1)p(β, σ2|M1)dβdσ2∫∞

0 p(y|β?, σ2,M2)p(β?, σ2|M2)dσ2 (1.31)

=
∫∞

0 p(β?, σ2|y,M2)dσ2∫∞
0 p(β?, σ2|M2)dσ2 , (1.32)

that is, SDDR is the ratio of the marginal posterior and prior of β under
model M2, evaluated at the point β = β?. In general it will be easy
to evaluate these two distributions, especially when the Gibbs sampler
is used for approximating the posterior distribution. This is because
evaluation of the numerator using Monte Carlo integration would be
fairly straightforward. Additionally, in the case of an independent prior
of the form p(β, σ2) = p(β)p(σ2) the denominator above becomes∫∞

0 p(β?, σ2|M2)dσ2 = p(β?|M2)
∫∞

0 p(σ2|M2)dσ2 = p(β?|M2), i.e., we
only need to evaluate the (Gaussian) prior of β at the point β?.
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There are of course numerous other ways of obtaining approximations
to the Bayes factors that do not explicitly involve calculating ratios of
marginal likelihoods. Goutis and Robert (1998) propose an alternative
procedure for testing nested models based on the Kullback-Leibler
divergence. The idea is to compute the projection of the unrestricted
model to the restricted parameter space, and use the corresponding
minimum distance to judge whether or not the restricted model is
appropriate. The same way we used the BIC to obtain a first-order
approximation to the marginal likelihood, we can also use the BIC to
obtain approximations to Bayes factors – this approach is illustrated
in Raftery (1995). Notable early studies on the topic of Bayes factors
include Kass and Wasserman (1995), De Santis and Spezzaferri (1997),
O’Hagan (1995), Berger and Pericchi (2001), Berger and Mortera (1999),
Lewis and Raftery (1997), Raftery (1996) and DiCiccio et al. (1997).
A systematic review of methods for calculating Bayes factors can be
found in Kadane and Lazar (2004).

Finally, it is worth noting that in the case of nested hypothesis
testing we can derive an optimal Bayesian point estimate by minimizing
expected loss averaged over the two hypotheses, using posterior model
probabilities as weights. That is, considering again the simple case with
p = 1 and ignoring the variance parameter σ2 for simplicity, we aim to
find point estimate β̂ such that the joint expected loss under the two
models/hypotheses

E(L(β, β̂)) = [p(M1|y)E(L(β, β̂)|M1) (1.33)
+ p(M2|y)E(L(β, β̂)|M2)], (1.34)

achieves a minimum. Under a quadratic loss function L(β, β̂), the
posterior means are optimal meaning that the optimal estimator is

β̂BPE = p(M1|y)E(p(β|y,M1)) + p(M2|y)E(p(β|y,M1)). (1.35)

This estimator can be considered a Bayesian pre-test estimator, hence
the acronym BPE in the equation above; see Judge et al. (1985) for a
detailed discussion. In the next section we will generalize this result to
the case of K models, in order to motivate model choice in the presence
of many models.
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1.2.3 Model Choice with Many Models: Bayesian Model Averaging

Model choice can have many forms, but the benchmark scenario that
will motivate later in this monograph to focus on shrinkage and sparse
estimation, is that of model determination among many nested models.
In particular, consider the problem of deciding which of p variables in
the covariate matrix X should be in the “optimal” regression model.
Each covariate can have two outcomes, either it is included in a model
or it is excluded, meaning that the model space in the presence of p
covariates is 2p. We denote the model set asM = {Mr: r = 1, . . . , 2p}.
The covariates that pertain to model Mr are denoted in this subsection
as Xr and their associated coefficients as βr. That is, Xr is a matrix
that is constructed using only a subset of the columns in X. Therefore,
we denote regression model Mr as10

Mr: y = Xrβr + ε, (1.36)

where Xr is n× pr and βr is pr × 1 with pr ∈ {1, . . . , p}. Now with 2p
models, even for small p, pairwise model comparison based on Bayes
factors is impractical and alternative computational methods are needed.
Most importantly, in the presence of many models the researcher might
not want to give the same weight to each and every model. For ex-
ample, she might want to give more weight on parsimonious models
or models that include a certain predictor suggested by some theory
or common sense. For that reason we define prior model probabilities
p(Mr) with

∑2p
r=1 p(Mr) = 1. Based on Bayes theorem, prior model

probabilities combined with marginal likelihoods p(y|Mr) give posterior
model probabilities

p(Mr|y) ∝ p(y|Mr)p(Mr). (1.37)

Bayesian model selection (BMS) corresponds to selecting the best model,
that is, the model Mr with the highest p(Mr|y). Bayesian model aver-
aging (BMA) involves averaging over many models using p(Mr|y) as

10For simplicity we do not explicitly allow for an intercept. If an intercept is
present in all competing models, then it is important to remove the sample mean
from all covariates X (and, as a result, in all subsets Xr) in order to ensure that
the estimated intercept has exactly the same interpretation in all models. With
demeaned covariates and the use of a flat prior, the intercept term becomes identical
to the sample mean of y in all 2p competing models.
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weights. That is, for a quantity of interest ∆ (e.g., an out-of-sample
observation yn+1 of y) BMA is constructed as the following weighted
average

p(∆|y) =
2p∑
r=1

p(∆|y,Mr)p(Mr|y). (1.38)

For small model spaces, typically when p < 30 posterior model prob-
abilities can be calculated analytically such that we can enumerate
and estimate all 2p available models. For p > 30 it is impossible to
enumerate and estimate all models in a deterministic way. In such cases,
one can rely on Markov chain Monte Carlo algorithms which are able to
“visit” in each iteration, in a stochastic way, the most probable models.
Hoeting et al. (1999) and Fragoso et al. (2018) provide two systematic
reviews on the topic.

While model selection and model averaging with an arbitrary num-
ber of models are straightforward extensions of the case with only two
models, prior elicitation in multi-parameter and multi-model settings
is anything but straightforward. In order to explain the intuition be-
hind why this is the case, consider the natural conjugate prior defined
previously, which in the case of model Mr can be written as

p(βr, σ2|Mr) = Npr(0pr , σ2Dr)× Inv−Gamma
(
v0
2 ,

s2
0
2

)
. (1.39)

Prior elicitation involves choice ofDr, v0, s0. The hyperparameters v0, s0
are scalar in all regression models can be simply set to a small value
close to zero, implying a weakly informative prior on σ2. However, Dr is
a matrix that changes size based on the number of predictors in model
Mr. Assume for simplicity we define Dr = τIpr , with Ipr the pr × pr
identity matrix. In this case, prior elicitation breaks down to choosing a
single hyperparameter τ . We can’t use the diffuse choice τ →∞ because
the marginal likelihood in Equation (1.20) will become infinite, hence,
τ should be finite in the multi-model case. However, using the same
finite value of τ in all models, doesn’t mean that the effect of this prior
is identical (that is, “objective”) for each model. Consider for instance
two models, one with two predictors X2 = (x1,x2) and a restricted
model with only the first predictor X1 = x1. The posterior variance
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is V r = σ2(X ′rXr + (τIpr)−1)−1 for each model r = 1, 2, so that the
impact of τ on the common predictor in the two models will be identical
only if x1 is not correlated with x2 andX ′2X2 becomes diagonal. If this
is not the case, the correlation between the two predictors will imply
that the effect of τ on the regression coefficient of x1 will not be the
same in the two models. This issue complicates prior elicitation further
when considering p� 2 correlated covariates, that also potentially have
different units of measurement.11

For that reason, many researchers have proposed empirical Bayes
priors, in the spirit of the empirical Bayes formulation of Stein’s esti-
mation rule; see equation Equation (1.7) and discussion of Efron and
Morris (1973). Empirical Bayes procedures allow to choose prior hy-
perparameters as a function of the data observations, sometimes also
chosen to optimize some criterion (e.g., maximum marginal likelihood).
A default prior for multi-model settings is the g-prior due to Zellner
(1986). The g-prior for model Mr takes the form

βr|σ2,Mr ∼ Npr

(
0pr ,

1
g
σ2(X ′rXr)−1

)
, (1.40)

where σ2(X ′rXr)−1 is essentially the covariance matrix associated with
the OLS estimator β̂r and g a scalar tuning parameter. Under this
prior, the posterior variance of β conditional on σ2 becomes V r =

1
1+g×σ

2(X ′rXr)−1, such that the posterior variance is uniformly affected
by selection of g. Consequently, the posterior mean/mode is

β?r = 1
1 + g

β̂r. (1.41)

When g → 0 the posterior mean tends to the OLS estimate of model
Mr (β̂r) while when g →∞ the posterior contracts towards zero. While
the effect of the prior now depends in a straightforward, transparent

11The scaling issue in X can be dealt with by standardizing the data, that is,
dividing each column with its sample standard deviation. High correlation in columns
of X can also be dealt with by orthogonalizing this matrix. While standardization
is easy to apply and is recommended in all model averaging and variable selection
algorithms, orthogonalization of the columns of X is only feasible when n > p.
Therefore this latter procedure is not available in the high-dimensional case (p > n),
which is exactly where there is higher chance of encountering many correlated
predictors!
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way12 on a single hyperparameter, choice of this hypeparameter is very
important for determining marginal likelihoods and model probabilities.

Fernández et al. (2001a,b) propose default values of g in the context
of Bayesian model averaging, and Eicher et al. (2011) expand this
discussion by considering further values of g. A benchmark suggestion
of Fernández et al. (2001b) is to set g ≡ gr = pr/n, that is, a value of g
that is the ratio of the number of coefficients in each model r over the
total number of observations. Wide models with many covariates models
will have larger g, thus, tending to shrink their posterior towards zero
more aggressively. Put differently, the prior variance is getting smaller
meaning that the information in the prior increases relative to the
information in the likelihood. This is a basic principle of shrinkage
and variable selection estimators: when p is large and especially when
p > n, the information in the likelihood is not sufficient to estimate
all p coefficients and the prior becomes increasingly important for
determining posterior outcomes. That is, for both Bayesian and non-
Bayesian approaches, the concepts of shrinkage and sparsity amount to
the prior expectation that increasingly many coefficients a priori will
be zero or close to zero.

Of course, there are more rigorous ways of selecting g. A key contri-
bution is that of Liang et al. (2008) who put hyper-priors on g, treating
it as a random variable. Such hierarchical approaches are the topic
of close examination of the next section, so we won’t expand on it
here. Krishna et al. (2009) extend the g-prior into an adaptive powered
correlation prior of the form

βr|σ2,Mr ∼ Npr

(
0pr ,

1
g
σ2(X ′rXr)λ

)
, (1.42)

where λ ∈ R controls the prior’s response to collinearity in predictors.
λ = −1 gives the original prior proposed by Arnold Zellner, while λ = 0
gives the ridge regression prior.

While the g-prior addresses the issue of setting a prior on different
regression models that might be nested and have correlated covariates,

12We avoid using the term “objective”, first, because as Gelman and Hennig
(2017) argue, it is counterproductive to do so and, second, because the g-prior is not
in any way an objective prior.
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another important issue is how to define a prior on model space. For
both conceptual and computational reasons Bayesians prefer to index
all possible 2p models using dummy variables γ = (γ1, . . . , γp)′. When
γj = 0 a covariate is excluded from a model and when γj = 1 it is
included. Therefore, the model with no predictors is indexed as γ =
(0, . . . , 0)′ and the model with all predictors is indexed as γ = (1, . . . , 1)′.
All intermediate models are indexed by vectors γ that are sequences of
zeros and ones. Instead of placing priors on the model space, we can
now explicitly consider priors on γ, and the binomial distribution is a
good candidate for a parameter that takes 0/1 values. The binomial
prior can become both uniform but also more informative when this is
desirable (e.g., in high-dimensional spaces, where our prior is that only
a small number of predictors will be important).

This setting that combines the g-prior on regression coefficients with
a binomial prior on model space, is the major workhorse model for
implementing Bayesian variable selection. The theoretical underpinning
of Bayesian variable selection are well-understood in linear regression
with both Gaussian (Hoeting et al., 1999) and non-Gaussian (Klein and
Smith, 2021; Kundu and Dunson, 2014) errors, as well as nonparametric
regression (Kohn et al., 2001; Smith and Kohn, 1996). At the same time,
variable selection with the g-prior provides the ground for some of the
most interesting Bayesian work on computation in high-dimensional
settings.13 Ultimately, modern inference with g-prior relies heavily on
the benefits of a hierarchical Bayes modeling. Therefore, we use this
brief discussion of BMA as a stepping stone for introducing in the
next the concept of full-Bayes/hierarchical Bayes priors that result in
shrinkage and sparse estimators.

13See for example, Bottolo and Richardson (2010), Clyde et al. (2011), Dellaportas
et al. (2002), Hans et al. (2007), Ji and Schmidler (2013), Madigan et al. (1995),
Nott and Kohn (2005) and Peltola et al. (2012).
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