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ABSTRACT

Quantile regression has become one of the standard tools of
econometrics. We examine its compatibility with the special
goals of stochastic frontier analysis. We document several
conflicts between quantile regression and stochastic frontier
analysis. From there we review what has been done up to
now, we propose ways to overcome the conflicts that exist,
and we develop new tools to do applied efficiency analysis
using quantile methods in the context of stochastic frontier
models. The work includes an empirical illustration to reify
the issues and methods discussed, and catalogs the many
open issues and topics for future research.
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1
Introduction

This monograph seeks to merge two seemingly disparate econometric
fields, quantile estimation and stochastic frontier analysis (SFA). Why
might these two fields be viewed as disparate? Quantiles exist on a
continuum of the distribution, the frontier is a fixed object of it. As will
be seen, these two approaches can, when used properly, be merged to
provide a unified approach to studying a stochastic boundary.

The use of distribution quantiles for estimation purposes is an old
story. The most well known case is the use of the sample median
to estimate location parameters instead of the sample mean. More
generally, sample quantiles are more robust than sample means against
outliers, and this advantage has always been championed, in the face of
contaminated samples that did not conform with the idealized conditions
needed for sample means to fully perform as theory tells us that they
should.

In econometrics, “quantile regression”, introduced by Koenker and
Bassett (1978), has become the most popular method to use quantile
methods in estimation. With hindsight, it was a package with two inter-
connected but distinct offerings. The first offering was a new estimator
focused on linear regression analysis that required no distributional

2
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3

assumptions, was more robust than least-squares methods with respect
to outliers in the data, and, when the regressors were independent from
the error term, allowed one to estimate consistently the slope regression
coefficients. We will call it the “Q-estimator” henceforth, and “quan-
tile regression” will also refer to their approach. We will use the term
“quantile estimation” to refer more generally to approaches that pursue
their inference goals by estimating quantiles.

The second offering was based on the fact that the Q-estimator
could estimate the effects of regressors at different quantiles of the
conditional distribution of the dependent variable, simply by choosing
the probability associated with each quantile. In the case where the
error term of the regression was independent from the regressors, this
multiple-quantiles view gave rise to changes only in the value of the
constant term of the regression. But when some form of dependence is
present between regressors and the error term (like heteroskedasticity),
the marginal effects of the regressors differ at different quantiles of the
dependent variable, and the Q-estimator was able to provide this much
richer information, making the least-squares estimator to suddenly look
like a poor relative.

This is the “quantile approach” to statistical analysis and econo-
metric inference proper, where a statistical aspect of our data, the
conditional quantiles of the dependent variable, are mapped to an im-
portant structural aspect. To provide a prototypical example, if the
dependent variable is earnings, and the regressor is a government subsidy
program for professional education, “different effects at different quan-
tiles” would tell us whether it was the low-earners or the high-earners
that tended to benefit most from the policy. This multiple-quantiles
estimation can be achieved by the Q-estimator and it is no wonder
that it spread and saw intense use in the treatment effects literature. It
remains today a methodology of choice when one wants to drill down
on marginal effects and policy evaluation.1

In the process, the quantile regression toolkit expanded to include
non-linear setups and quantile regression models that accounted for

1We take here the opportunity to note that our work will be focused solely on
conditional quantile methods. The “unconditional quantiles” approach made widely
known by Firpo et al. (2009) is beyond the scope of this work.
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4 Introduction

endogeneity, while its basic incarnation has become a standard feature
of most econometric software, that makes it an off-the-shelf choice even
for beginners . . . which does not always lead to valid outcomes.

SFA, on the other hand, which begun with Aigner et al. (1977) and
Meeusen and van den Broeck (1977), attempts to discern a stochastic
boundary of firm performance, usually cost or output. These methods
are not interested in average behavior, but in both an idealized level
of performance and any deviations from it. This puts the model, and
its corresponding estimators, at odds with traditional regression. How-
ever, it has connections to conditional quantiles as the frontier exists
somewhere in the output space.

The application of quantile methods in SFA has in the past been
rather sparse, but a recent flurry of interest in combining the two was
what motivated the present work. We have four main goals: the first
is to examine whether, and to what degree, the popular and easily
available Q-estimator and quantile regression align well, or not, with
the special properties and goals of SFA. We warn the reader that the
conclusions here will be partly negative: there exist certain fundamen-
tal incompatibilities that do not allow the Q-estimator to provide in
stochastic frontier models (SFMs) what it provides in treatment effects
studies. Our second goal is to offer an overview of how the quantile
approach has been used up to now in stochastic frontier analysis, using
quantile regression or likelihood-based analysis. This gives an acute
picture of the aforementioned incompatibilities. Our third goal is to
provide new and ready-to-implement tools that allow the valid use of
quantile regression for efficiency analysis, including estimation of the
frontier but also quantile-dependent (in)efficiency measures. Our fourth
goal is to sketch avenues for future research and name the many prints
that are not yet blue, which is done partly throughout the text but also
compiled in the penultimate Section of this work.

Sections 2 to 6 present the current state of affairs. We start in
Section 2 by detailing the very close link between the regression func-
tion and the conditional quantile function, in order to show that the
quantile relation is not some disconnected statistical aspect that lives
independently of our regression specification. This section also shows
what the quantile approach and the Q-estimator actually do, and we

Full text available at: http://dx.doi.org/10.1561/0800000042



5

contrast this with what SFA models want to do, using also a simulated
example. Already we encounter the first points of tension between the
quantile regression approach and the SFA view.

The reader may be disappointed that we will not provide a detailed
treatment here on the use of quantile approaches in the sister field of
data envelopment analysis (DEA). This is intentional. The presence
of stochastic noise makes the treatment of SFA and DEA distinct,
and there are subtle, nontrivial complications that warrant a more
thorough discussion of SFA methods due to the presence of both noise
and inefficiency. We provide a heuristic discussion of this difference at
the end of Section 2 to illustrate the main intuitive distinction of the
stochastic and deterministic frontier models when quantile methods are
applied.

In Section 3 we present the main characteristics and properties of the
linear Q-estimator when the error term is independent of the regressors,
as a necessary preparation to move to Section 4, where we show how
some of these properties are fundamentally incompatible with the goals
and purposes of SFA. Essentially, the area of friction is the quantile
probability of the deterministic component (DF) of the stochastic fron-
tier (SF).2 To make the point forcefully, we include in this section a
review of applied SFA studies that have used quantile regression, and we
show how this incompatibility undermines the reliability and usefulness
of their results. Section 5 begins the healing process: we discuss recent
advances that properly construct the deterministic frontier.

Section 6 is where we move away from quantile regression, and we
present likelihood-based approaches that use density functions that
include as one of their parameters the probability of the zero-quantile
of their distributions. We focus on a specific incarnation of the Asym-
metric Laplace distribution for the noise term in a composite error
SFA specification. We examine both frequentist and Bayesian lines of
research. The Bayesian approach appears to achieve the desideratum of
obtaining different estimates of regression coefficients and of inefficiency

2The word “deterministic” is used to describe the component of the dependent
variable that depends on variables traditionally treated as decision variables of the
firm.
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6 Introduction

per quantile, but we clarify that this only reflects the interconnected
estimation uncertainty that is inherent in Bayesian econometrics.

Sections 7 to 10 present a new estimator, but also metrics and
insights that allow to fruitfully use the quantile approach in SFA. In
Section 7 we show how one can use the Q-estimator together with
additional assumptions in order to provide conceptually valid and useful
estimation and inference results in SFMs. In Section 8 we present
quantile-dependent measures of efficiency both at the sample level,
and at the individual level, but also how the conditional quantiles of
the distribution of inefficiency can be used to offer a picture of how
individual efficiency scores are distributed around a chosen quantile of
the efficiency distribution.

In Section 9 we prove a fundamental result: that positive and high
values of the composite error term of production SFA models, are
expected to co-exist with low inefficiency, in a concrete probabilistic
sense. An analogous result holds for cost models: when the value of
the composite error term is negative and large in absolute value, cost
inefficiency is expected to also be low. We decided to separate and stress
this result because, with minimum assumptions and certainly for the
distributions that are the mainstays of stochastic frontier analysis, it
allows us to gauge individual inefficiency based on estimated quantities
like the residuals of the model.

Section 10 examines the case of dependence between the error term
and the regressors or other covariates. We first discuss the issues that
generally arise when “traditional” heteroskedasticity co-exists with a
skewed and non zero-mean error term, and how we can obtain consistent
estimation in such a case. We then examine the particular SFA setting
of “determinants of inefficiency” situation, and we develop a non-linear
quantile regression model for this setup.

In Section 11 we provide an empirical illustration that showcases
the approach of the four previous Sections, and functions as a guide for
detailed applied studies.

Section 12 includes a list of the various open issues as well as
ideas and directions for future research, while Section 13 offers a short
summary and a few parting thoughts.
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12
Challenges Ahead

At various places in this study we have mentioned or hinted at unfin-
ished business. Here we collect and present open issues that relate to
asymptotic theory, statistical testing, accounting for panel data and
nonparametric estimation, as interesting topics for future theoretical
breakthroughs.

Inference for the Corrected Q-Estimator

In order to strengthen the reliability of the Corrected Q-estimator a
worthy endeavor would be to determine its asymptotic distribution. This
should start with the asymptotic distribution of the centered quantile
residuals, and proceed to determine the distribution of the individual
coefficient estimators, a la Olson et al. (1980), while Coelli (1995) could
inspire adjusted significance tests.

Testing the Distributional Assumption Using Quantiles

We provide here the preliminaries on distributional specification tests
based on quantiles.

100
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Using Conditional Quantiles of the Error Components

The Production Frontier. Here the composite error term is εi = vi−ui.
We consider the conditional quantile relation, for some τ , qv | ε(τ | εi) ≡
G−1
v | ε(τ). For the same τ , we have

Pr(ui ≤ qu | ε(τ | εi) | εi) = τ

=⇒ Pr(vi − εi ≤ qu | ε(τ | εi) | εi) = τ

=⇒ Pr(vi ≤ εi + qu | ε(τ | εi) | εi) = τ

=⇒ Gv | ε
(
εi + qu | ε(τ | εi)

)
= τ.

Applying G−1
v | ε(·) to both sides of the expression and rearranging, we

obtain
εi = qv | ε(τ | εi) − qu | ε(τ | εi).

Essentially the same principle that we saw in Section 2 applies here.1
Consider then for the left-hand side the consistent predictor ε̂i(τ̂DF )

and assume distributions for the right-hand side. Under the null hy-
pothesis of correct specification, it will be the case that

|ε̂i(τ̂DF )− (q̂v | ε(τ | εi) − q̂u | ε(τ | εi))| −→p
H0

0, ∀ i, ∀ τ.

Notice that this should hold for every i and for every τ , and so it
can form the basis for a formal statistical test.

The Cost Frontier. The expression for a cost frontier changes, because
we have to transform a tail probability to a cumulative probability. Here
the composite error term is εi = vi+ui, and we consider the conditional
quantile relation, qv | ε(1− τ | εi) ≡ G−1

v | ε(1− τ). For the same τ , we have

Pr(ui ≤ qu | ε(τ | εi) | εi) = τ

=⇒ Pr(εi − vi ≤ qu | ε(τ | εi) | εi) = τ

=⇒ 1− Pr(vi ≤ εi − qu | ε(τ | εi) | εi) = τ

=⇒ Gv | ε
(
εi − qu | ε(τ | εi)

)
= 1− τ.

1Note the interplay between realizations, conditional quantiles, and additivity.
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102 Challenges Ahead

Following as before we have, in the case of a cost frontier,

εi = qv | ε(1− τ | εi) + qu | ε(τ | εi).

Here, under correct specification we obtain the statistic

|ε̂i(τ̂DF )− (q̂v | ε(1− τ | εi) + q̂u | ε(τ | εi))| −→p
H0

0, ∀ i, ∀ τ.

Using Estimates of the Constant Term of the Regression at Different
Quantile Probabilities

As we have said, the importance of having a consistent predictor series
for the residuals and the location of the deterministic frontier, makes
the execution of the Q-estimator at different quantiles problematic in
SFA. But we can use multiple-quantiles estimation to construct another
specification test.

Assume that we estimate the deterministic frontier as described
earlier, and so we have

α̂(τ̂DF ) −→p α.

Then by executing the Q-estimator at other τ values τ1, . . . , τj , . . . τm,
we can obtain the series

α̂(τj)− α̂(τ̂DF ) = qε(τj) + op(1), j = 1, . . . ,m.

At the same time, we can compute estimates for these quantiles by
using the assumed distribution for the composite error term,

G−1
ε (τj ; θ̂) = qε(τj) + op(1),

where θ̂ represents the vector of estimated distribution parameters.
Under the null hypothesis of correct specification we will have

|G−1
ε (τj ; θ̂)− α(τ̂j) + α(τ̂DF )| −→p

H0

0, ∀ j.

This is another route to construct a specification test for the distri-
butional assumptions, here using the quantiles of the error term and
multiple-quantiles estimation by the Q-estimator, perhaps along the
lines of a Kolmogorov-Smirnov approach, and the use of the suprema
of these absolute values. The asymptotic theory for these tests would
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likely be complicated and, since we have to use estimated quantities,
bootstrapping will be needed to construct variances and/or critical
values.

Handling Panel Data

We briefly review here the small literature related to quantile regression
in a panel data setting, in order to highlight the challenges that arise
but also the avenues that one could take. Quantile regression with panel
data is conceptually and technically complicated, and still very much a
rather unsettled endeavor.

The wheels of research started to turn many years after the in-
troduction of quantile regression, with Koenker (2004) who presented
a fixed-effects model where the individual effects were time-invariant,
not depending on the conditioning quantile probability, and therefore
representing only a location shift, just an individual intercept, and not
a distributional shift. The author deployed a weighted and penalized
Q-estimator where we pool and weight sample information over several
τ ’s in order to improve the estimation of the individual effects. But the
model is applicable conditional on a single τ also (at the researcher’s
peril). Lamarche (2010) established further that there exists an optimal
value for the regularization parameter attached to the penalty term
and provided the related formula. Galvao and Montes-Rojas (2010)
extended the penalized fixed effects model to a dynamic setting while
Galvao (2011) revisited the dynamic model but this time without a
penalty term. Harding and Lamarche (2009) considered a model with
endogeneity and IV estimation where the individual effect is estimated
on its own with the use of the two-stage method of Chernozhukov and
Hansen (2008).

Kato et al. (2012) examined carefully the asymptotic theory for the
fixed effects Q-estimator for large-N/large-T panels (for the static and
for the dynamic case). A main finding is that asymptotic Normality
requires the T -dimension to grow much faster than the N -dimension.
Galvao and Kato (2016) smoothed the objective function and obtain
asymptotic Normality when N and T grow at the same rate. A bias
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104 Challenges Ahead

remains in the asymptotic mean and they propose a bias-reduction
scheme.

Graham et al. (2018) presented a quantile correlated random co-
efficients panel data model (in a “fixed-effects” approach). Gu and
Volgushev (2019) examined a model with grouped fixed effects. Zhang
et al. (2019) had similar concerns and proposed a new quantile-regression-
based clustering method for panel data. These approaches could link to
an SFA model with group-frontiers and the meta-frontier approach.

Abrevaya and Dahl (2008) developed an early model with random
effects, where the individual effect is partly a function of the regressors,
which is essentially the formulation of Mundlak (1978). Rosen (2012)
was concerned with relaxing the i.i.d assumption related to the error
term across the temporal dimension. He shows that, left completely
unrestricted, dependence leads to loss of identification. He derives a set
of restrictions weaker than full independence that restore identification.

Canay (2011) started with a random-coefficients panel data model
that is a mean-conditional model with a mean-independent and con-
ditionally heteroskedastic error term. After estimating the individual
effect, he proposed a quantile regression where we subtract the esti-
mated individual effect from the dependent variable. We note that in a
SFM the estimate of the individual effect will include also the non-zero
mean of the composite error term, hence it is not clear how one could
proceed from there.

Besstremyannaya and Golovan (2019) detected two errors in Canay
(2011). One relates to the needed rates of convergence to infinity of the
two panel dimensions. They show that the condition that guarantees
asymptotically valid inference requires a much higher growth of the T
dimension than what Canay asserted, leading again to the conclusion
that quantile regression requires long panels to be trusted. The second
error relates to the estimation and inference of the constant term of the
model. Chen and Huo (2021) elaborated further on the problems that
plague Canay’s model and estimation method, and offer an alternative
“simple” approach, by combining the first step of Canay’s estimator
with a “smoothed quantile regression” as proposed in Galvao and Kato
(2016). This second step is no longer a linear programming problem but
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a non-linear minimization one, albeit estimating fewer parameters than
in Galvao and Kato’s method.

A main lesson from all these studies is that once we move away from
the most naive dependence structure (i.i.d data across both dimensions of
the panel), established techniques like data transformation do not work:
in the complete i.i.d. case, we could certainly apply first-differencing
to obtain estimates of the slope regression coefficients using the Q-
estimator, estimates that would be the same across quantiles. But then
again, the complete i.i.d. case essentially reduces panel data to a large
cross-sectional sample.2 In an i.i.d.-fixed effects setting we exploit neither
the panel structure nor the potential of the Q-estimator for different
results per different quantile. Once some form of quantile dependence
is allowed, the quantile regression coefficients will differ per τ , and
then we have to work with untransformed data, and/or multiple-stage
procedures.

A second message is that the asymptotics of the Q-estimator with
panel data are opaque and need special attention and examination in
more depth than usual.

A third result is that currently, the estimators need long panels to
claim asymptotic validity, in fact samples where the temporal dimension
dominates the cross-sectional. This limits their practical reliability. In
this respect the sensible approach of Galvao and Kato (2016) that
restored balance between the two dimensions and attempts to correct
for the resulting bias looks promising.

Finally, the case of a quantile-dependent individual effect has been
left essentially unexplored, or put aside by treating models and es-
timators “conditional on the individual effect” (which then can be
conveniently left uncharacterized).3 Only the model of Abrevaya and
Dahl (2008) of those mentioned above treat the issue directly, by mak-
ing the individual effect partly dependent on the regressors. This leads
to a quantile-dependent individual effect. It also provides an obvious

2This was the case with Knox et al. (2007) that we presented in Section 4, which
applied standard quantile regression on a pooled panel data sample.

3Machado and Silva (2019) proposed a novel “quantiles via moments” approach
to estimate panel data models with individual effects that are, eventually, quantile-
dependent.
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connection to the “determinants of inefficiency” SFA model, at least
if we are willing to consider a set of covariates (possibly including the
regressors) that operate as “determinants of the individual effect”.

In the SFA literature, Laporte and Dass (2016) and Hsu et al. (2017)
made a first attempt at applying panel-data quantile regression, initially
using simulated data and in the second article an empirical data set.
They equated the individual effect with inefficiency, and then applied
both the Schmidt and Sickles (1984) approach to compute inefficiency,
and also the Mundlak (1978) approach where the individual effect is a
function of regressors. Identifying inefficiency with the individual effect
has been criticized in the literature, see for example Greene (2005).

Colombi et al. (2014) have proposed a four component model that
nests most of the SF panel data models that have been published. Their
model separates the individual effect from time-invariant inefficiency,
and also includes time varying inefficiency and stochastic noise (hence
four components).4 By nesting the restricted formulations, this four
component model also provides a useful compact typology for researchers
to decide, conceptually and structurally in the first place, what is
more suitable for each applied study. We should also anticipate that
quantile estimation methods may have different particularities, different
asymptotics and different results as we choose different assumptions on
the unobservables of a SFM with panel data.

Nonparametric Methods

The discussion so far has focused on parametric specification of the
production frontier. However, there have been major developments
in the area of nonparametric quantile estimation and those methods
could also be deployed here to estimate the frontier. See Li and Racine
(2007) for a textbook treatment of nonparametric quantile regression.
One early paper in this area is Wang et al. (2014). The authors used
convexification and monotonization to construct a piecewise linear
representation of the true, unknown quantile process. Consequently, if
the axioms of production underlying these restrictions do not hold then

4Under specific distributional assumptions the model has a Closed Skew Normal
likelihood.
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this estimator will not be consistent. An alternative approach, which
is nonparametric in nature, but does not rely on axioms of production
to pull out the shape of the frontier is kernel smoothing. This is akin
in the conditional mean setting to the work of Fan et al. (1996) (see
Parmeter and Kumbhakar, 2014, for a review).

In the presence of determinants of inefficiency, one problem with
direct nonparametric quantile estimation is that the object that is
returned is not a quantile frontier, but a conditional quantile. Consider
the nonparametric quantile estimator of Li and Racine (2008). With
this approach one would estimate the conditional CDF of output (or
cost) conditional on both x and z. However, because the quantile is
recovered by inverting the estimated conditional CDF, there is no way to
distinguish between the impact of x on the frontier and z on inefficiency.

An alternative approach would be to try to follow the setup of
Tran and Tsionas (2009) and Parmeter et al. (2017) which exploits the
partial linear structure of the stochastic frontier model in the presence of
determinants of inefficiency. This would entail estimation of the quantile
model

yi = x′iβ(τ) + σ(zi, τ)εi, (12.1)

where Var(εi) = 1 and so σ(zi, τ) is the standard deviation of the
composite error, something that does not allow separate identification
of the distribution parameters of the components of εi.

For this “partly linear” setup a quantile estimator based on B-splines
(Wang et al., 2009) can be constructed. Let N = Nn be the number
of interior knots and let q be the spline order. Divide [0, 1] (we can
always rescale any of our variables that do not live on [0, 1] accordingly)
into (N + 1) subintervals Ij = [rj , rj+1), j = 0, . . . , N − 1, IN = [rN , 1],
where {rj}Nj=1 is a sequence of interior knots, given as

r−(q−1) = · · · = r0 = 0 < r1 < · · · < rN < 1 = rN+1 = · · · = rN+q.

Define the q-th order B-spline basis as Bs,q = {Bj (xs) : 1− q ≤ j ≤ N}′

(de Boor, 2001, Page 89). Let Gs,q = G
(q−2)
s,q be the space spanned by

Bs,q, and let Gq be the tensor product of G1,q, . . . , Gd,q, which is the
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space of functions spanned by

Bq (z) = B1,q ⊗ · · · ⊗Bd,q

=

{ d∏
s=1

Bjs,q (zs) : 1− q ≤ js ≤ N, 1 ≤ s ≤ d
}′

Kn×1

=
[
{Bj1,...,jd,q (z) : 1− q ≤ js ≤ N, 1 ≤ s ≤ d}′

]
Kn×1

,

where z = (z1, . . . , zd)
′
and Kn = (N + q)d. Let Bq = [{Bq (z1) , . . . ,

Bq (zn)}′]n×Kn . Then σ (z, τ) can be approximated by Bq (z)′ θ, where
θ is a Kn × 1 vector. With this notation in tow we can estimate our
partly linear quantile stochastic frontier model as

min
β,θ

n∑
i=1

ρτ

(
yi − x′iβ(τ)
Bq (zi)′ θ(τ)

)
. (12.2)

To our knowledge this type of an approach has not appeared in the
quantile estimation literature but does follow the parametric approach
in Jung et al. (2015). The theoretical properties of this estimator are
left for future work.
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Summary and Concluding Remarks

In this work we started a bit grimly, sounding the alarm and showing
the incompatibilities that exist between quantile regression and SFA,
by using theory but also by reviewing published applied studies (Sec-
tions 2–6). But then, we provided new estimation and inference tools
that surmount these obstacles and allow the valid use of quantile regres-
sion and the quantile approach more generally in SFA (Sections 7–11).
Specifically, we developed the quantile-based Corrected Q-estimator,
that is simple to implement and performed well in the empirical illus-
tration of Section 11, and, for the first time in the SFA literature, we
constructed valid quantile-dependent measures of efficiency, both at the
sample level but also for individual observations. We showed how the
availability of determinants of inefficiency in a data set can be exploited
by the implementation of a non-linear quantile model. We also proved
an important theoretical result as regards the composed error term
of stochastic frontier analysis: large positive values of the composed
error in a production model have a large probability of containing low
values of inefficiency, when noise and inefficiency are independent. This
provides a link between conditional and unconditional quantiles that
could be further explored. . . alongside the many other open research
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topics, that we have mainly collected in Section 12. The empirical ap-
plication of Section 11 we believe vindicates our belief that the quantile
approach is an interesting and useful path to take in order to enhance
stochastic frontier and efficiency analysis. Yes, the approach needs to be
modified; yes, there are still many things we do not yet know; but there
are illuminating ways to do quantile-based applied stochastic frontier
and efficiency analysis now, while we expand this frontier also.
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