
Numerical Simulation and

Modelling of Electronic

and Biochemical Systems

Full text available at: http://dx.doi.org/10.1561/1000000009



Numerical Simulation and
Modelling of Electronic

and Biochemical Systems

Jaijeet Roychowdhury

University of California

Berkeley, CA 94720

USA

jr@eecs.berkeley.edu

Boston – Delft

Full text available at: http://dx.doi.org/10.1561/1000000009



Foundations and Trends R© in
Electronic Design Automation

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
USA
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is J. Roychowdhury, Numerical Simulation

and Modelling of Electronic and Biochemical Systems, Foundations and Trends R©
in Electronic Design Automation, vol 3, nos 2–3, pp 97–303, 2008

ISBN: 978-1-60198-304-6
c© 2009 J. Roychowdhury

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, mechanical, photocopying, recording
or otherwise, without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen-
ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for
internal or personal use, or the internal or personal use of specific clients, is granted by
now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The
‘services’ for users can be found on the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system
of payment has been arranged. Authorization does not extend to other kinds of copy-
ing, such as that for general distribution, for advertising or promotional purposes, for
creating new collective works, or for resale. In the rest of the world: Permission to pho-
tocopy must be obtained from the copyright owner. Please apply to now Publishers Inc.,
PO Box 1024, Hanover, MA 02339, USA; Tel. +1-781-871-0245; www.nowpublishers.com;
sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/1000000009



Foundations and Trends R© in
Electronic Design Automation

Volume 3 Issues 2–3, 2008

Editorial Board

Editor-in-Chief:
Sharad Malik
Department of Electrical Engineering
Princeton University
Princeton, NJ 08544

Editors
Robert K. Brayton (UC Berkeley)
Raul Camposano (Synopsys)
K.T. Tim Cheng (UC Santa Barbara)
Jason Cong (UCLA)
Masahiro Fujita (University of Tokyo)
Georges Gielen (KU Leuven)
Tom Henzinger (EPFL)
Andrew Kahng (UC San Diego)
Andreas Kuehlmann (Cadence Berkeley Labs)
Ralph Otten (TU Eindhoven)
Joel Phillips (Cadence Berkeley Labs)
Jonathan Rose (University of Toronto)
Rob Rutenbar (CMU)
Alberto Sangiovanni-Vincentelli (UC Berkeley)
Leon Stok (IBM Research)

Full text available at: http://dx.doi.org/10.1561/1000000009



Editorial Scope

Foundations and Trends R© in Electronic Design Automation
will publish survey and tutorial articles in the following topics:

• System Level Design

• Behavioral Synthesis

• Logic Design

• Verification

• Test

• Physical Design

• Circuit Level Design

• Reconfigurable Systems

• Analog Design

Information for Librarians
Foundations and Trends R© in Electronic Design Automation, 2008, Volume 3,
4 issues. ISSN paper version 1551-3939. ISSN online version 1551-3947. Also
available as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/1000000009



Foundations and Trends R© in
Electronic Design Automation

Vol. 3, Nos. 2–3 (2008) 97–303
c© 2009 J. Roychowdhury

DOI: 10.1561/1000000009

Numerical Simulation and Modelling of
Electronic and Biochemical Systems

Jaijeet Roychowdhury

University of California, Berkeley, CA 94720, USA, jr@eecs.berkeley.edu

Abstract

Numerical simulation and modelling are witnessing a resurgence.
Designing systems with integrated wireless components, mixed-signal
blocks and nanoscale, multi-GHz “digital” circuits is requiring extensive
low-level modelling and simulation. Analysis and design in non-
electronic domains, notably in systems biology, are also relying
increasingly on numerical computation.

Sections 2–8 of this Monograph provide an introduction to the fun-
damentals of numerical simulation, and to the basics of modelling
electronic circuits and biochemical reactions. The focus is on a min-
imal set of concepts that will enable the reader to further explore the
field independently. Differential–algebraic equation models of electronic
circuits and biochemical reactions, together with basic numerical tech-
niques — quiescent, transient and linear frequency domain analyses, as
well as sensitivity and noise analyses — for solving these differential
equations are developed. Downloadable MATLAB implementations are
provided.

The last two chapters provide an introduction to computational
methods for nonlinear periodic steady states and multi-time partial
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differential equation (PDE) formulations, followed by an overview of
model order reduction (MOR) and, at the end, a glimpse of some appli-
cations of oscillator MOR — in circuits (PLLs), biochemical reaction–
diffusion systems and nanoelectronics.
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1

Introduction

1.1 Trends in Numerical Simulation and Applications

Since the advent of integrated circuits (ICs), numerical modelling
and simulation have played an important rôle in analog, mixed-signal
and RF design. Simulation is typically used to verify correctness and
debug circuits during their design. Over the years, computer simulation
has almost entirely replaced breadboarding and physical prototyping,
especially for IC designs, where fabrication is expensive and time-
consuming, and probing internal nodes difficult. Being able to “run” a
circuit in simulation makes it much more likely to function correctly
when it is actually built.

As a discipline, circuit simulation emerged in the late 1960s and
early 1970s, with early programs like CANCER [70] maturing into
design tools such as ASTAP [118] and SPICE [69, 89, 90]. These
programs became popular during the chip design boom of the 1970s
and enabled the design of new generations of ICs. After the early
1980s, simulation — the first electronic CAD discipline and arguably
the progenitor of the electronic design automation (EDA) industry —
became supplanted by other areas of EDA, such as physical design,
combinatorial and sequential synthesis, formal verification, model

1
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2 Introduction

checking, etc. However, the past decade has witnessed a resurgence
in simulation and related areas (such as model-order reduction).

This resurgence has been spurred by several factors. Ever-shrinking
DSM technologies have resulted in analog and digital designs both
becoming markedly less ideal. Indeed, at lower levels of design, the
distinction has become blurred, with continuous/analog effects being
pervasive and causing digital abstractions to break down. This trend
started almost three decades ago, when delay and crosstalk started
becoming important concerns in digital design, first at the gate level
and then in interconnect; today, huge chip sizes and extensive system-
level integration — e.g., in systems-on-chip (SoCs) and systems-in-
packages (SiPs) — have made interference and noise crucial limiting
factors in virtually all digital and mixed-signal designs. Moreover,
as feature sizes have evolved toward the 22 nm node over the last
decade, low-level non-ideality in transistor characteristics has emerged
as another serious design issue. An important aspect of this non-ideality
is greatly increased parameter variability. These effects are all con-
tinuous, or analog, in nature, hence call for low-level simulation and
modeling tools during design and verification.

Integrated RF and communication system design, which since the
mid-1990s has constituted an important part of the semiconductor
industry’s portfolio, has been another driver for numerical simula-
tion and modelling. Such designs involve analog/mixed-signal, RF and
digital components on the same substrate.

They also frequently involve micro/nanoelectromechanical system
(MEMS/NEMS) elements and electromagnetic (EM) structures, such
as antennas and transmission lines; and, to a lesser extent, optical and
even biological elements. These trends have increased reliance on sim-
ulation technologies, not only during the design of individual circuits,
but for the verification of larger systems. Indeed, interactions between
analog/mixed-signal, RF, non-electronic and digital systems are a pro-
lific source of design problems and functional failures; an important
use of low-level simulation and modelling tools is to help debug such
problems.

It is for these reasons that numerical simulation and modelling have
been growing in importance and seeing steadily increasing practical
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1.2 Scope and Organization of This Monograph 3

application. The proliferation of physical domains for which simulation
technologies are now needed, compounded by generally increased com-
plexity, has expanded the scope of numerical simulation and modelling
within CAD and spurred new research directions. For example, inter-
connect issues drove research in EM simulation and extraction, and
in linear model-order reduction (MOR), through the 1990s. Efficient
algorithms for periodic and stochastic (noise) analysis of large nonlin-
ear circuits and systems, developed in the mid to late 1990s, were driven
by the integrated RF ICs which fueled the portable wireless revolution.
Nonlinear stochastic simulation, currently a topic of active research,
is motivated by the parameter variability problem. Automated nonlin-
ear computational macromodelling, or nonlinear MOR, is similarly a
topic of current interest because it enables system level verification and
design. The rise of multi-core computational platforms has led to par-
allelization of numerical simulation algorithms becoming yet another
topic of current interest.

Another exciting driver for research in the above areas is biolog-
ical systems. The past decade has witnessed tremendous progress in
mathematical biology; biology has been transforming into a precise,
quantitative, bottom-up, predictive discipline, much as physics and
engineering did over the last century. Even more than in electronics,
biological systems feature many individual entities that interact exten-
sively and are organized hierarchically, with logical functionality emerg-
ing from the hybrid interplay of discrete and continuous-time dynamics;
and to a much greater extent than the human-engineered systems of
today, understanding how most biological systems work — even qual-
itatively — is often simply not possible at all without computational
tools. Similar circumstances led to CAD tools becoming indispensable
in electronics. The same is happening in the biological arena; effective
leveraging of computational techniques from electronics and engineer-
ing systems can catalyze progress in the field.

1.2 Scope and Organization of This Monograph

This Monograph provides an introduction to the fundamentals of
numerical simulation, and to the basics of modelling electronic circuits
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4 Introduction

and biochemical reactions. The emphasis is on capturing a minimal
set of important concepts succinctly, but concretely enough that the
reader will be left with an adequate foundation for further independent
exploration. Starting from mathematical models of basic electronic ele-
ments, circuits are modeled as nonlinear differential–algebraic equa-
tion (DAE) systems. Two basic techniques — quiescent steady state
and transient — for solving these differential equations systems are
then developed. It is then shown how biochemical reactions can also be
modeled deterministically as DAEs (hence simulated using the various
numerical simulation methods developed of this Monograph). Following
this, frequency domain techniques for finding sinusoidal steady states
of linear DAEs are developed, as are direct and adjoint techniques for
computing parameter sensitivities and the effects of stationary random
noise.

For readers interested in a glimpse of topics beyond these basics,
an introduction to nonlinear periodic steady state methods (harmonic
balance and shooting) and the multitime partial differential equation
formulation is provided. Also provided is an overview of model order
reduction, an important topic of current research that has roots in
numerical simulation algorithms. Finally, sample applications of nonlin-
ear oscillator macromodels — in circuits (PLLs), biochemical reaction–
diffusion systems and nanoelectronics — are presented.

1.3 Website for MATLAB Scripts and Updates

The reader is encouraged to visit the following URL, which contains
MATLAB implementations illustrating topics in this Monograph:

http://www.eecs.berkeley.edu/∼jr/NOW-FT-Monograph/.

The site also contains addenda and updates.

1.4 Acknowledgments

The basic material in the earlier chapters of this Monograph is strongly
influenced by [7]. The author would like to acknowledge a number of
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