Three-dimensional Integrated Circuits: Design, EDA, and Architecture
Three-dimensional Integrated Circuits: Design, EDA, and Architecture

Guangyu Sun
Yibo Chen
Xiangyu Dong
Jin Ouyang
Yuan Xie

Pennsylvania State University
USA
{gsun, yxc236, xydong, jouyang, yuanxie}@cse.psu.edu

Boston – Delft
Foundations and Trends® in Electronic Design Automation
Volume 5 Issues 1–2, 2011
Editorial Board

Editor-in-Chief:
Sharad Malik
Department of Electrical Engineering
Princeton University
Princeton, NJ 08544

Editors
Robert K. Brayton (UC Berkeley)
Raul Camposano (Synopsys)
K.T. Tim Cheng (UC Santa Barbara)
Jason Cong (UCLA)
Masahiro Fujita (University of Tokyo)
Georges Gielen (KU Leuven)
Tom Henzinger (EPFL)
Andrew Kahng (UC San Diego)
Andreas Kuehlmann (Cadence Berkeley Labs)
Ralph Otten (TU Eindhoven)
Joel Phillips (Cadence Berkeley Labs)
Jonathan Rose (University of Toronto)
Rob Rutenbar (CMU)
Alberto Sangiovanni-Vincentelli (UC Berkeley)
Leon Stok (IBM Research)

Full text available at: http://dx.doi.org/10.1561/1000000016
Editorial Scope

Foundations and Trends® in Electronic Design Automation will publish survey and tutorial articles in the following topics:

- System Level Design
- Behavioral Synthesis
- Logic Design
- Verification
- Test
- Physical Design
- Circuit Level Design
- Reconfigurable Systems
- Analog Design

Information for Librarians
Foundations and Trends® in Electronic Design Automation, 2011, Volume 5, 4 issues. ISSN paper version 1551-3939. ISSN online version 1551-3947. Also available as a combined paper and online subscription.
Three-dimensional Integrated Circuits: Design, EDA, and Architecture

Guangyu Sun, Yibo Chen, Xiangyu Dong, Jin Ouyang, Yuan Xie

Pennsylvania State University, Computer Science and Engineering Department, University Park, PA 16802, USA, {gsun, yxc236, zydong, jouyang, yuanxie}@cse.psu.edu

Abstract

The emerging three-dimensional (3D) integration technology is one of the promising solutions to overcome the barriers in interconnection scaling, thereby offering an opportunity to continue performance improvements using CMOS technology. As the fabrication of 3D integrated circuits has become viable, developing CAD tools and architectural techniques are imperative for the successful adoption of 3D integration technology. In this article, we first give a brief introduction on the 3D integration technology, and then review the EDA challenges and solutions that can enable the adoption of 3D ICs, and finally present design and architectural techniques on the application of 3D ICs, including a survey of various approaches to design future 3D ICs, leveraging the benefits of fast latency, higher bandwidth, and heterogeneous integration capability that are offered by 3D technology.
Contents

1 Introduction 1

2 3D Integration Technology 3

2.1 The Impact of 3D Technology on 3D IC Design Partitioning 5

3 Benefits of 3D Integrated Circuits 7

3.1 Wire Length Reduction 7

3.2 Memory Bandwidth Improvement 9

3.3 Heterogenous Integration 11

3.4 Cost-effective Architecture 13

4 3D IC EDA Design Tools and Methodologies 15

4.1 Thermal Analysis for 3D ICs 15

4.2 Physical Design Tools and Algorithms for 3D ICs 20

4.3 3D Testing 34

4.4 3DCacti: an Early Analysis Tools for 3D Cache design 37

5 3D FPGA Design 47

5.1 FPGA Background 47

5.2 3D FPGA Design 48

5.3 PCM-Based 3D Non-Volatile FPGA 49

5.4 Summary 59
6 3D Architecture Exploration 61

6.1 Single-core Fine-Granularity Design 62
6.2 Multi-core Memory Stacking 69
6.3 3D Network-on-Chip 76

7 Cost Analysis for 3D ICs 87

7.1 Introduction 87
7.2 Early Design Estimation for 3D ICs 91
7.3 3D Cost Model 99
7.4 Cost Evaluation for Fully-Customized ASICs 106
7.5 Cost Evaluation for Many-Core Microprocessor Designs 114
7.6 3D IC Testing Cost Analysis 125
7.7 Conclusion 138

8 Challenges for 3D IC Design 141

Acknowledgments 143

References 145
1

Introduction

With continued technology scaling, interconnection has emerged as the dominant source of circuit delay and power consumption. The reduction of interconnect delays and power consumption are of paramount importance for deep-sub-micron designs. Three-dimensional integrated circuits (3D ICs) are attractive options for overcoming the barriers in interconnection scaling, thereby offering an opportunity to continue performance improvements using CMOS technology.

3D integration technologies offer many benefits for future microprocessor designs. Such benefits include: (1) The reduction in interconnection wire length, which results in improved performance and reduced power consumption; (2) Improved memory bandwidth, by stacking memory on microprocessor cores with TSV connections between the memory layer and the core layer; (3) The support for realization of heterogeneous integration, which could result in novel architecture designs. (4) Smaller form factor, which results in higher packing density and smaller footprint due to the addition of a third dimension to the conventional two-dimensional layout, and potentially results in a lower cost design.

This monograph first presents the background on 3D integration technologies, and shows the major benefits offered by 3D integration.
2 Introduction

As a key part, EDA design tools and methodologies for 3D ICs are reviewed. The designs of 3D FPGAs and micro-architectures are then discussed, which leverage the benefits of fast latency, higher bandwidth, and heterogeneous integration capability that are offered by 3D technologies. The cost of 3D integration is also analyzed in the last section.
References

References

References

References

[85] Bryan Black, Donald W. Nelson, Clair Webb, and Nick Samra. 3D processing technology and its impact on iA32 microprocessors. In ICCD ’04: Proceedings
References

151

[94] Yaoyao Ye, Lian Duan, Jiang Xu, Jin Ouyang, Mo Kwai Hung, and Yuan Xie. 3D optical networks-on-chip (NoC) for multiprocessor systems-on-chip (MPSoC). pages 1–6, sep. 2009.

Full text available at: http://dx.doi.org/10.1561/1000000016
References

[100] Soon-Moon Jung, Jae-Hoon Jang, Won-Seok Cho, et al. The revolutionary and truly 3-dimensional 25F² SRAM technology with the smallest S³ (Stacked Single-Crystal Si) cell, 0.16µm², and SSTFT (Stacked Single-Crystal Thin Film Transistor) for ultra high density SRAM. In Proceedings of the Symposium on VLSI Technology, pages 228–229, 2004.

References

References

