
Discrete Circuit

Optimization:

Library Based

Gate Sizing and

Threshold Voltage

Assignment

Full text available at: http://dx.doi.org/10.1561/1000000019



Discrete Circuit
Optimization:
Library Based

Gate Sizing and
Threshold Voltage

Assignment

John Lee

University of California, Los Angeles
USA

lee@ee.ucla.edu

Puneet Gupta

University of California, Los Angeles
USA

puneet@ee.ucla.edu

Boston – Delft

Full text available at: http://dx.doi.org/10.1561/1000000019



Foundations and Trends R© in
Electronic Design Automation

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
USA
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is J. Lee and P. Gupta, Discrete Cir-
cuit Optimization: Library Based Gate Sizing and Threshold Voltage Assignment,

Foundations and Trends R© in Electronic Design Automation, vol 6, no 1, pp 1–120,
2012

ISBN: 978-1-60198-542-2
c© 2012 J. Lee and P. Gupta

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, mechanical, photocopying, recording
or otherwise, without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen-
ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for
internal or personal use, or the internal or personal use of specific clients, is granted by
now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The
‘services’ for users can be found on the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system
of payment has been arranged. Authorization does not extend to other kinds of copy-
ing, such as that for general distribution, for advertising or promotional purposes, for
creating new collective works, or for resale. In the rest of the world: Permission to pho-
tocopy must be obtained from the copyright owner. Please apply to now Publishers Inc.,
PO Box 1024, Hanover, MA 02339, USA; Tel. +1-781-871-0245; www.nowpublishers.com;
sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/1000000019



Foundations and Trends R© in
Electronic Design Automation

Volume 6 Issue 1, 2012

Editorial Board

Editor-in-Chief:

Radu Marculescu

Dept. of Electrical & Computer Engineering

Carnegie Mellon University

Pittsburgh, PA 15213-3890

Editors

Robert K. Brayton (UC Berkeley)

Raul Camposano (Nimbic)

K.T. Tim Cheng (UC Santa Barbara)

Jason Cong (UCLA)

Masahiro Fujita (University of Tokyo)

Georges Gielen (KU Leuven)

Tom Henzinger (IST Austria)

Andrew Kahng (UC San Diego)

Andreas Kuehlmann (Coverity)

Sharad Malik (Princeton)

Ralph Otten (TU Eindhoven)

Joel Phillips (Cadence Berkeley Labs)

Jonathan Rose (University of Toronto)

Rob Rutenbar (UIUC)

Alberto Sangiovanni-Vincentelli (UC Berkeley)

Leon Stok (IBM Research)

Full text available at: http://dx.doi.org/10.1561/1000000019



Editorial Scope

Foundations and Trends R© in Electronic Design Automation

will publish survey and tutorial articles in the following topics:

• System Level Design

• Behavioral Synthesis

• Logic Design

• Verification

• Test

• Physical Design

• Circuit Level Design

• Reconfigurable Systems

• Analog Design

Information for Librarians
Foundations and Trends R© in Electronic Design Automation, 2012, Volume 6,

4 issues. ISSN paper version 1551-3939. ISSN online version 1551-3947. Also

available as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/1000000019



Foundations and Trends R© in
Electronic Design Automation

Vol. 6, No. 1 (2012) 1–120
c© 2012 J. Lee and P. Gupta

DOI: 10.1561/1000000019

Discrete Circuit Optimization: Library
Based Gate Sizing and Threshold

Voltage Assignment

John Lee1 and Puneet Gupta2

1 UCLA, Los Angeles, CA 90095, USA, lee@ee.ucla.edu
2 UCLA, Los Angeles, CA 90095, USA, puneet@ee.ucla.edu

Abstract

Discrete gate sizing and threshold assignment are commonly used tools

for optimizing digital circuits, and ideal methods for incremental opti-

mization. The gate widths and threshold voltages, along with the gate

lengths, can be adjusted to optimize power and delay. This mono-

graph surveys this field, providing the background needed to perform

research in the field. Concepts such as standard cell libraries, static

timing analysis, and analytical delay and power models are explained,

along with examples and data to help understand the tradeoffs involved.

Comparative results are also provided to show the current state of the

field.
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1

Introduction

Gate sizing and threshold voltage assignment1 are widely used to opti-

mize digital circuits. They can be used to manage trade-offs in power,

timing, area, yield, crosstalk, statistical power, statistical delay and

soft-errors. They can also be used incrementally and as a method

for optimizing post-layout designs after placement and interconnect

routing. After over three decades, research is still active in the area.

This work will consider the case of gate sizing and threshold voltage

assignment for standard library cell designs. In this context, gates are

chosen from a library of pre-characterized gates that act as the funda-

mental building blocks. Cell-based designs compose the majority of the

digital designs today.

1.1 Other Types of Cell Optimization Problems

There are other variants of gate sizing and threshold voltage assignment

that are not covered in this work:

(1) Transistor sizing for analog design

(2) Transistor sizing for custom digital design

1 While the title explicitly states the gate sizing and Vt assignment, the material is relevant
to other cell optimization methods, such as gate-length biasing problems.

1
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2 Introduction

These variants are a minority of IC designs. Custom digital design is

mainly limited to high-performance designs. However, analog designs

are becoming increasingly important with the increase in systems on

a chip (SoC) methodologies that integrate entire TVs or radios on a

single die [63].

1.1.1 Transistor Sizing for Analog Designs

In analog design, there are many different constraints and performance

specifications: gain, accuracy, linearity, signal-to-noise, and impedance

matching. For example, the pair of transistors forming a current mir-

ror or differential pair must be matched, or have very similar electri-

cal characteristics. Also, transistors that function as voltage-controlled

resistors must be operating in the linear region, and an amplifier must

have the proper signal-to-noise ratio for the system to work properly.

While standard cells mask much of the underlying electrical waveforms

using logic states, analog designs utilize these underlying characteris-

tics to produce amplifiers, digital-to-analog converters, current sources,

etc. However, many more facets of the design must be controlled for a

proper function.

The main challenge in automated analog sizing is to input the design

specifications and models into a form that can be used by the sizing

method. This is challenging because the range of analog designs is large.

For instance, while the analytical performance models for a given op-

amp topology might be well known, it is difficult to write down the

equations that govern the sizing of an arbitrary design.

Early methods for automated sizing were knowledge-based, where

templates [52, 55, 72] were used to synthesize designs. These pre-

characterized templates would carry information on a good initial siz-

ing and on how to optimize the given template. Sizing these designs

was therefore equivalent to executing the design plans. For example,

in [52], the sizing proceeds by determining the bias current, then the

W/L ratios, followed by the 1/f noise consideration, and finally the W

and L of each device. In [72], the values are chosen using a fixed point

method, where the parameters are determined serially. Each parameter

is chosen to best satisfy the design considerations, assuming the other

parameters to be fixed.
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1.1 Other Types of Cell Optimization Problems 3

The time required to construct these templates, however, was often

much greater than the time needed to design the circuit directly [63].

The accumulation of knowledge bases, and the codification of the expert

knowledge was not practical. This, coupled with the limited range

of circuits that the method could handle, led to the decline of these

types of methods. However, there is recent interest in automating the

knowledge-extraction process [108], and in identifying substructures in

a design automatically [107].

Another branch of analog sizing is the optimization-based methods.

These methods use optimization procedures, rather than codified design

rules, to size the design. The first subclass of optimization methods con-

sists of equation based methods2 [64, 75, 87] that rely on the designer

to provide the equations, but in contrast to the knowledge-based meth-

ods, the sizing process is automated using optimization methods, rather

than rules. The optimization process may use simulated annealing [64],

steepest-descent [87], or convex optimization [75]. This sub-class works

well in certain contexts (such as in [75]), but they may be limited by

their accuracy.

The second subclass of optimization based methods are the sim-

ulation based methods [54, 58, 88, 118, 119, 126] that use numeri-

cal simulations to measure the performance. The simulations provide

these methods with greater accuracy, however they create a large over-

head that makes these methods much slower than their equation-based

counterparts.

1.1.2 Transistor Sizing for Custom Digital Designs

In the custom digital setting, every transistor in the design is available

for optimization [7, 44, 45, 82, 153]. The early papers on gate sizing

were based on transistor-level sizing (see [60, 135]), until standard cells

became widespread in the 1990s.3 With the increasing complexity of

designs, standard cell libraries are almost universally used.

Custom digital design techniques are primarily used for high-

performance parts of high-volume designs which is needed to recover

2 See [63] for the taxonomy of analog sizing methods and a comprehensive review of methods

prior to 2000.
3 See, for example, [159].
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4 Introduction

the increased cost of designing at a transistor level, as in the case of

microprocessors [12]. Custom digital transistor sizing is still an active

area of research today and most current research is directed toward

the statistical design of custom circuits [8, 43, 146]. However, these

methods account for a minority of the digital designs.

1.2 The Physical Design Process

Gate sizing and threshold voltage assignment are a part of the

larger Electronic Design Automation (EDA) ecosystem that transforms

Register Transfer Language (RTL) descriptions into a physical layout.

The process of creating the physical layout is called the physical design

process, and consists of six steps:

(1) Logic synthesis.

• Input: RTL/HDL design description, standard cell

library information, timing constraint information.

• Output: Netlist mapped to the standard cell library.

Transform the RTL/HDL design description into a gate level

netlist, using a given cell library. Convert state machines,

map arithmetic blocks, etc.

(2) Floorplanning.

• Input: synthesized netlist, macro information,

standard cell library information, standard cell row

information, information on chip inputs and outputs.

• Output: floorplan with rows for standard cell place-

ment, pads for input and output, locations for

macros.

Create a die for the design, and allocate space for input–

output ports, macros, and library gates.

(3) Placement.

• Input: synthesized netlist, floorplan.

• Output: locations for each of the cells in the design

in a standard cell row.

Full text available at: http://dx.doi.org/10.1561/1000000019



1.2 The Physical Design Process 5

Places, flips and rotates cells into the rows created by the

floorplanning algorithm. Minimizes the wirelength in the

resulting layout, while meeting timing constraints (timing-

driven placement).

(4) Clock Tree synthesis.

• Input: placed design, clock nets.

• Output: clock tree to distribute the clock signal to

the sequential elements (flip-flops, latches, etc.).

Creates a clock tree to distribute the clock signal across the

design. The goals are to minimize the size of the clock tree

(to minimize power), and the skew at each of the outputs of

the clock tree. Buffers may be added to help distribute the

clock signal.

(5) Routing.

• Input: placed design, connection information, metal

and via information from the library.

• Output: design with cells connected with wires.

Connects cells in the library using metal layers and vias. The

objective is to minimize the amount of interconnect needed,

while observing design rules and meeting timing.

(6) Physical verification and yield enhancement.

• Input: placed, routed design.

• Output: verified design with improved yield.

Improves the yield of the design. Corrects design rules viola-

tions, inserts metal fill, doubles vias, checks connectivity and

topology.

A flowchart for the EDA process is shown in Figure 1.1.

Although gate sizing and threshold voltage assignment are not

explicitly in the design flow above, they are used throughout the design

flow to correct timing errors, and to optimize the design. For example,

they are commonly used after placement to resize gates that violate

maximum fanout rules or flip-flop setup time requirements (see, for

example [22]). After clock tree synthesis, they are used to further fix

Full text available at: http://dx.doi.org/10.1561/1000000019



6 Introduction

Fig. 1.1 Electronic Design Automation flow.

rule violations and setup and hold violations, using the clock informa-

tion from the clock-tree synthesis. After routing, they are again used to

fix setup and hold violations, along with design rule violations. At this

step, an incremental routing may be needed to account for changes in

the cell sizes, and their corresponding pin locations.

They are also used at different points in the design flow to reduce

the power consumption [2]. While this may reduce the power using the

same timing constraint, in other instances the timing constraints may

need to be relaxed to achieve a power reduction.

Gate sizing and threshold voltage assignment are powerful tools for

optimization, and are the most widely used incremental optimization

tools. These methods are more powerful and less intrusive than adjust-

ing the placement or routing of the design. For example, fixing setup

time violations using placement would require the gates on the violating

path to be moved, and would require rerouting the interconnects. Sim-

ilarly, fixing setup time violations using routing would also require the

connections between the cells to be rerouted. In both the cases, a signif-

icant portion of the design will need to be rerouted to provide benefits.

On the other hand, gate sizing and threshold voltage assignment are

less disruptive than re-placing the cells or re-routing them. For exam-

ple, the timing of a buffer driving a large wire load could be improved

Full text available at: http://dx.doi.org/10.1561/1000000019



1.3 The Standard Cell Library 7

by increasing its size. This may result in a local rerouting to accom-

modate the different pin locations of the larger cell, and if there is no

space around the surrounding cell, then an incremental placement will

be needed to create space for the cell. However, this is preferable to

rerouting large sections of the design, or adjusting the placements of

tens or hundreds of cells.

In some cases, when only the gate lengths or threshold voltages

change, the disruption is very minimal. In these cases, the cell dimen-

sions and pin locations are the same, and these cell alternatives can

be swapped without any change in the routing or the placement. The

only verification needed is to ensure that the crosstalk noise, power,

and timing constraints are satisfied.

Another advantage of gate sizing and threshold voltage assignment

is that they are versatile, as they can be targeted to different optimiza-

tion objectives. They have been used for power and timing optimiza-

tion [46], to fix noise constraints due to crosstalk [98, 170], to harden

soft-errors due to radiation [174], to improve yield [37, 50], and to

minimize statistical power [42, 151].

1.3 The Standard Cell Library

The standard cell library contains logic cells such as inverters, ands,

not–ands (nands), and x-ors that implement Boolean logic functions.

There are also sets of sequential cells such as flip-flops, latches, and their

variants with capabilities for setting, resetting and reading in scan-

chains. These sequential cells provide memory, allowing pipe-lining,

state machines, and a memory for computations. Lastly, there are util-

ity cells, such as filler cells, antenna cells, and buffer cells, which are

tools to help with the physical implementation of the design.

The library generally provides several gate options for each logic

function. Each of the options are logically equivalent — they implement

the same boolean function — but have varying electrical characteristics,

due to differences in their gate lengths, widths, PMOS–NMOS width

ratios and threshold voltages Vt. These alternative options can be used

to optimize the design. For example, critical paths can be sped up by

swapping high-Vt cells by low-Vt cells, and gates with fanout violations

Full text available at: http://dx.doi.org/10.1561/1000000019



8 Introduction

can be fixed using alternatives with larger-transistor widths and smaller

effective resistances at the gate outputs.

Two library files that are used for sizing and threshold voltage

assignment are:

(1) Physical library information.

(usually expressed in Library Exchange Format (LEF)):

• Cell information: dimensions of the cell and locations

of the pins.

• Interconnect information: dimensions, pitch, capaci-

tance, and resistances for each metal layer.

• Via information: dimensions, resistance, and layers

that are connected.

(2) Timing library information.

(usually expressed in Liberty Format):

• Library characterization information: temperature,

voltage and process.

• Parameters used in the library: slew thresholds,

input thresholds, output thresholds, and measure-

ment units.

• Cell information: delays, area, logic function, short-

circuit power, switching power, leakage power. For

flip-flops the hold and setup time requirements are

also given.

• Cell pin information: capacitances, maximum loads.

The geometry information in the LEF file is used for placement and

routing. This information tells the program how to create standard cell

rows for floorplanning, and the dimensions of each cell for placement.

Next, the pin locations, interconnect geometries, and via dimensions

are used for routing, and once routing is complete, the capacitance and

resistance information is used to extract information about the wire

parasitics.

The timing and power information from the Liberty file is used for

the timing and power analysis of the design. The timing information

Full text available at: http://dx.doi.org/10.1561/1000000019



1.4 The Gate Sizing and Vt Assignment Problem 9

is used in conjunction with the wire parasitic information to create

delay estimates and power estimates with interconnect loading model-

ing. This will be covered in more detail in Section 2.4.

1.4 The Gate Sizing and Vt Assignment Problem

Of the many variations on the gate sizing and threshold voltage assign-

ment problem, this work will consider the following metrics:

• Leakage power
• Dynamic power
• Clock period

The application most commonly found in literature today is to min-

imize the power, or some combination of the leakage power and the

dynamic power, with a constraint on the clock period. When timing

closure is important, the objective is to minimize the clock period, and

in post-layout situations, the noise and crosstalk violations are often

optimized.

The variables in the optimization process are the cells used to imple-

ment the gates. These cells can be swapped to decrease the delay or

power, or to modify the output signal waveform. The cells may be

different sizes, and have different pin locations.

Functionally equivalent cells that can be interchanged may be iden-

tified by the designer, the design tool, or by the library by having

the same footprint. For example, the inverter-type cells will have an

“inverter” footprint, which identifies the family of cells that can be

used to replace the gate. Each of these cells performs the same logic

function, thus changing the cells does not affect the functionality of the

design.

Formally, the problem may be written as an optimization problem.

For example, with the vector of cell options ~ω, the delay-constrained

power optimization problem is:

minimize Power(~ω)

subject to Delay(~ω) ≤ Tmax

(1.1)

where Tmax is the clock period. This form helps summarize the objec-

tives and constraints in the optimization process.

Full text available at: http://dx.doi.org/10.1561/1000000019



10 Introduction

Table 1.1. Notation.

Symbol Meaning

G Set of gates in the design
g A gate in the design

ω,ω0 A cell option, current cell option

CellOptions(g) Set of alternative library cell options for g

wg The width for gate g

vthg The threshold voltage for gate g

ta Arrival time
ta(g) Set of arrival times for the inputs of gate g

tr Required arrival time

tr(g) Set of required arrival times for the inputs of gate g

τg Set of input transition slews for gate g

d Delay
p Power

PI Primary inputs input ports in the design

PO Output ports in the design

fi(g) The set of gates that drive the inputs of gate g
fo(g) The set of gates that are connected to the output of gate g

ε A small positive number

ρ Power/delay tradeoff sensitivity

The delay is estimated using a Static Timing Analysis method (see

Section 2) and timing constraints are usually expressed in a Synop-

sys Design Constraint (SDC) format. These constraints can be very

complex, with multicycle paths, multiple clocks, power domains, and

false-path definitions. In addition, parasitic information in a Standard

Parasitic Exchange (SPEF) format is used to approximate the inter-

connect delay.

1.5 Notations and Acronyms

While new notation is avoided when possible, notation for certain key

concepts are unavoidable. The notation for key symbols used in this

monograph are summarized in Table 1.1. These symbols, and concepts,

will be elaborated in the remainder of the monograph; for example, the

slew and other timing concepts will be covered in the following section.
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