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Abstract

Transistor-level circuit simulation is a fundamental computer-aided

design technique that enables the design and verification of an

extremely broad range of integrated circuits. With the proliferation

of modern parallel processor architectures, leveraging parallel comput-

ing becomes a necessity and also an important avenue for facilitating

large-scale circuit simulation. This monograph presents an in-depth

discussion on parallel transistor-level circuit simulation algorithms and

their implementation strategies on a variety of hardware platforms.

While providing a rather complete perspective on historical and recent

research developments, this monograph highlights key challenges and

opportunities in developing efficient parallel simulation paradigms.
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1

Introduction

As one of the most critical forms of pre-silicon simulation and verifica-

tion, transistor-level circuit simulation (e.g., SPICE) is essential for the

design of a very broad range of integrated circuits and systems such

as custom digital integrated circuits (ICs), memories, analog, mixed-

signal, and radio-frequency (RF) designs [74]. Circuit simulation serves

the critical mission of predicting circuit performance and makes it

possible to disqualify a failing design for expensive chip fabrication.

Equally, if not more importantly, the ability of predicting circuit perfor-

mance through simulation is at the core of any design process; it makes

the implementation of complex integrated circuits technically feasible

and economically viable while relaxing any heavy need for prototyping.

As a fundamental design and verification enabler, circuit simula-

tion has been under a long-lasting active development since the dawn

of the semiconductor industry [10, 62, 70, 71, 73, 74, 83, 102, 105, 114].

However, circuit simulation does not come without cost. Several

decades ago, when computer hardware and CPU time were both pre-

cious commodities, large-scale circuit simulation was an expensive

necessity [83]. To date, designers have the access to much cheaper and

more powerful computing facilities, thanks to the remarkable growth of

1
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2 Introduction

the semiconductor industry in the past decades. Some form of circuit

simulation is almost indispensable for any IC design flow. Electronic

circuit simulation techniques have even diffused into other disciplines

for purposes such as predicting the behavior of biological systems [67].

1.1 Historical and Recent Technological Drivers for
Parallel Circuit Simulation

While a wealth of simulation methods and tools have been crafted to

serve many different simulation needs, there is an unsaturated demand

for higher accuracy, faster speed, and new analysis capabilities in simu-

lation as the designers strive to deliver increasingly complex IC designs

with more functionality and improved performance. Simulation of large

IC designs with increasingly complex device models, necessary for mod-

eling modern fabrication processes, remains as a significant challenge. It

is by no means surprising that circuit designers may have to spend days,

weeks, or even months of CPU time to perform expensive transistor-

level circuit simulation. As such, simulation is one of the most critical

bottlenecks in the current design flow. Insufficient simulation limits the

extent to which pre-silicon verification and design space exploration

may be conducted, contributing to long design turnaround time, sub-

optimal designs, and even chip failures.

To this end, it is logical not only to develop efficient simulation

algorithms but also to leverage parallel computing to enable large-

scale circuit simulation. It is also not surprising that parallel circuit

simulation is not a new concept. There have been earlier attempts

to develop parallel simulation capabilities on vector machines, multi-

processors, and supercomputers, either custom built or commercially

available [12, 13, 18, 51, 98, 112, 118, 125].

On the other hand, the recent industry’s shift to multi- and many-

core processor technology has literally made every modern-day desktop,

server, and laptop a parallel computing system [3, 8, 25, 34, 36, 45,

50, 64, 72, 85, 96, 109, 116]. This shift toward chip multiprocessors

(CMPs) reflects the fundamental performance and power tradeoffs

in lieu of VLSI technology scaling. In addition, commodity many-

core graphics processing units (GPUs) [4, 77, 78] and heterogeneous
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1.2 New Challenges and Opportunities of Parallel Circuit Simulation 3

processors [2, 86] with impressive computing power have also merged.

For instance, modern GPUs may integrate hundreds of streaming pro-

cessors on-chip, deliver a peak performance of hundreds of GFLOPS to

several TFLOPS, and have a memory bandwidth exceeding 100 GB/s

[4, 78]. User-friendly programming model and interfacing tools have

also merged for developing general-purpose applications on GPUs [77].

1.2 New Challenges and Opportunities of
Parallel Circuit Simulation

This change of the computing landscape has produced profound impli-

cations on how compute-intensive applications shall be developed. It

has also sparkled active new research activities on parallel circuit sim-

ulation. The motivations behind this renewed interest in parallel circuit

simulation are multifold.

As power consumption acts as a show stopper for continuing scal-

ing the clock frequency, the performance of single-threaded applications

quickly saturates. Simply put, the software developer’s “free ride” of

the Moore’s Law is coming to an end. Further improvement of software

performance may only come from explicit exploration of parallelism [6].

To certain extent, this fact has forced the researchers and practitioners

to more seriously look into parallel simulation. More importantly, it

has stimulated active and exciting development of modern commer-

cial parallel circuit simulators from all major EDA tool vendors and

across the industry (see e.g., [1, 32, 110]), and provided impetus for

new research in parallel circuit simulation and other areas of parallel

electronic design automation [11].

On the other hand, advancements in CMOS and processor tech-

nologies have made parallel computing ubiquitous. Modern multi- or

many-core processors offer an amount of compute power that was even

hardly available on bulky and expensive mainframes and supercomput-

ers decades ago. Today, affordable terascale parallel compute power is

at the disposal of typical circuit designers. As illustrated in Figure 1.1,

a diverse spectrum of parallel hardware platforms exists, ranging from

CMPs, heterogeneous processors, hardware accelerators (GPUs and

FPGAs), and SMPs to computer clusters and supercomputers. Each

Full text available at: http://dx.doi.org/10.1561/1000000020



4 Introduction

Fig. 1.1 Parallel compute hardware platforms.

compute node of present day clusters and supercomputers may include

one or several multicore processors and even attached accelerators

such as GPUs. As such, leveraging the ubiquitously available parallel

compute hardware is a natural step for addressing the computational

challenges of large-scale circuit simulation.

It is noteworthy that modern parallel processor architectures have

the potential to enable circuit simulation approaches that are more

massively parallel than explored ever before. For instance, on-chip

interconnect networks in multicore processors are significantly advan-

tageous over the off-chip interconnects in conventional multichip SMP

(symmetrical multiprocessing) processors. On-chip interconnects span

smaller distances and hence incur far less latency and power con-

sumption. On-chip buses can be made much wider than those on a

PCB. As a result, core-to-core and core-to-memory bandwidths and

latencies in multicore processors are orders of magnitude better than

those of SMPs, enabling finer grained parallelism. Computer clusters

consisting of interconnected multicore processors can provide a greater

amount of compute power, leveraged based upon a combination of chip-

multiprocessing and distributed processing.

Moreover, the emergence of modern commodity heterogeneous

platforms, comprising homogenous multicore microprocessors with

attached accelerators (e.g., GPUs) or “fused” heterogeneous cores on

the same die [2, 86], brings appealing new opportunities to the comput-

ing landscape. Impressive speedups may be gained if the workload is

optimally partitioned, and the resulting partitioned tasks are efficiently

processed on distinct (e.g., general-purpose vs. SIMD) processing cores

that match each task’s characteristics.

Full text available at: http://dx.doi.org/10.1561/1000000020



1.2 New Challenges and Opportunities of Parallel Circuit Simulation 5

However, challenges still exist as we attempt to leverage this diverse

spectrum of modern processor platforms for parallel circuit simulation.

One central challenge, which is possibly long lasting, lies in the diffi-

culty of scaling parallel simulation performance up to large numbers

of processors due to the existence of unavoidable parallel overheads.

To this end, it is essential to explore a plethora of new algorithmic

and implementation level innovations that identify and exploit rich and

orthogonal forms of parallelism in circuit simulation. It is desirable to

exploit diverse (e.g., both task and data) parallelism with varying paral-

lel granularity, synchronization overhead, and data movement patterns

to fully utilize the available parallel compute power, and/or determine

the best use of a particular type of processing units of a heteroge-

neous platform. The above considerations also underscore the impor-

tant roles played by hardware characteristics (e.g., number and types

of processors, cache size, memory bus bandwidth, and latency) and

prompt algorithm/hardware interactions during the process of parallel

algorithm design.

Looking in a different angle, we shall note that circuit properties

have a definitive influence on the performance of a given simulation

algorithm. In many ways, today’s IC designs look different from older

designs that were targeted during the early developmental phase of

parallel simulation technologies several decades ago. In scaled fabrica-

tion processes, MOS transistors possess many more non-ideal device

effects that must be included in transistor models and captured in

simulation. We also see an explosion of design complexity, which is

reflected not only by escalating device count but also by significantly

increased parasitic coupling. Both factors stress the existing circuit sim-

ulation methodologies by creating large, complex, and highly coupled

simulation instances. The desire toward accurate full-chip verification

challenges the existing simulation technologies at yet another higher

level, where a mixture of digital, analog, and memory blocks must be

feasibly simulated.

While it is anticipated that “going for parallel” may offer an out-

standing opportunity to tackle the above simulation challenges, it

is observed that the ongoing technology and design trends clearly

steer simulation technologies toward delivering higher performance,
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6 Introduction

improved robustness, and accuracy. Nevertheless, these trends have

broken the underlying assumptions of some classical parallel simulation

techniques, rendering them less attractive or inapplicable for modern

chip designs. This, however, strongly motivates the development of new

parallel simulation approaches that are optimized for current IC designs

in order to meet the desired performance, robustness, and accuracy

requirements.

1.3 Focus and Organization of This Article

Circuit simulation is a broad field. Over the years, a myriad of simula-

tion approaches have emerged, delivering solutions for a wide variety of

digital, analog, mixed-signal, RF, and memory circuits as well as full-

chip simulation needs with varying performance and accuracy targets.

Clearly, examining all this large body of work from a parallel perspec-

tive is simply infeasible, given the scope limitation of this monograph.

As such, the main focus of this monograph is placed upon parallel

transistor-level simulation techniques aimed at delivering full-SPICE

accuracy. A comprehensive review, which is not meant to be exhaus-

tive, is devoted to significant early developments in the past decades,

and more recent work that has been stimulated by the arrival of the

multicore computing era.

For the sake of completeness, key concepts behind fast-SPICE

are succinctly reviewed to provide a basic exposure to the accuracy-

performance tradeoffs made in this line of simulation techniques,

which present a significant ongoing industrial development [1, 26, 32].

Elements of fast-SPICE techniques are contrasted with some of histor-

ical parallel simulation techniques.

The rest of this monograph is organized as follows. In Section 2, to

set up a stage for this review, existing parallel circuit simulation works

are classified according to two different views, algorithmic level of par-

allel processing and the domain of parallel processing. The two views

offer a systematic examination of the types of parallelism that may

be exploited in circuit simulation. Parallel direct simulation methods

and the implementation issues are discussed in Section 3. Section 4 is

devoted to two special classes of domain decomposition-based parallel

Full text available at: http://dx.doi.org/10.1561/1000000020
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simulation methods, nonlinear relaxation methods and waveform relax-

ation, which were the subjects of many historical research efforts. Other

linear and nonlinear domain decomposition methods are presented

in Sections 5 and 6, respectively. Some recent efforts in exploiting

advanced numerical integration techniques for parallel simulation are

described in Section 7. A multialgorithm parallel simulation frame-

work, leveraging coarse-grained interalgorithm parallelism, is presented

in Section 8. A succinct review of fast-SPICE is given in Section 9.

For most part of the aforementioned sections, the assumed under-

lying hardware architecture is general-purpose MIMD machine (e.g.,

multicore processors or computer clusters), which cover the bulk of

previous and ongoing parallel simulation work. Some of the reviewed

historical work was conducted on traditional vector machines.

Recent research activities on leveraging modern hardware accelera-

tors and heterogeneous processors are reviewed in Section 10. Finally,

confusions are drawn in Section 11.

Full text available at: http://dx.doi.org/10.1561/1000000020
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