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Abstract

In this survey we describe the main research directions in pre-silicon

power modeling and post-silicon power characterization. We review

techniques in power modeling and characterization for three computing

substrates: general-purpose processors, system-on-chip-based embed-

ded systems, and field programmable gate arrays. We describe the basic

principles that govern power consumption in digital circuits, and utilize

these principles to describe high-level power modeling techniques for

designs of the three computing substrates. Once a computing device

is fabricated, direct measurements on the actual device reveal a great

wealth of information about the device’s power consumption under

various operating conditions. We describe characterization techniques

that integrate infrared imaging with electric current measurements to

generate runtime power maps. The power maps can be used to vali-

date design-time power models and to calibrate computer-aided design
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tools. We also describe empirical power characterization techniques

for software power analysis and for adaptive power-aware computing.

Finally, we provide a number of plausible future research directions for

power modeling and characterization.
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1

Introduction

In the past decade power has emerged as a major challenge to

computing advancement. A recent report by the National Research

Council (NRC) of the National Academies highlights power as the

number one challenge to sustain historical improvements in comput-

ing performance [39]. Power is limiting the performance of both mobile

and server computing devices. At one extreme, embedded and portable

computing devices operate within power constraints to prolong battery

operation. The power budgets of these devices are about tens of milli-

Watts for some embedded systems (e.g., sensor nodes), 1–2 W for

mobile smart phones and tablets, and 15–30 W for laptop computers.

At another extreme, high-end server processors, where performance is

the main objective, are increasingly becoming hot-spot limited [46],

where increases in performance are constrained by a maximum junc-

tion temperature (typically 85◦C). Economic air-based cooling tech-

niques limit the total power consumption of server processors to about

100–150 W, and it is the spatial and temporal allocation of the power

distribution that leads to hot spots in the die that can comprise the

reliability of the device. Because server-based systems are typically

deployed in data centers, their aggregate performance becomes power

1
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2 Introduction

limited [6], where energy costs represent the major portion of total cost

of ownership. The emergence of power as a major constraint has forced

designers to carefully evaluate every architectural and design feature

with respect to its performance and power trade-offs. This evaluation

requires pre-silicon power modeling tools that can navigate the rich

design landscape. Furthermore, runtime constraints on power consump-

tion require power management tools that control a number of runtime

knobs that trade-off performance and power consumption. Power man-

agement techniques that seek to meet a power cap, e.g., as in the case of

servers in data centers [6, 37], require either direct power measurements

when feasible, or alternatively, runtime power modeling techniques that

can substitute direct characterization. In addition, software power char-

acterization can help tune and restructure algorithms to reduce their

power consumption.

The last decade has seen a diversification in possible computing sub-

strates that offer different trade-offs in performance, power, and cost

for different applications. These substrates include application-specific

custom-fabricated circuits, application-specific circuits implemented in

field-programmable logic arrays (FPGAs), general-purpose processors

whose functionality is determined by software, general-purpose graphi-

cal processing units (GP-GPUs), digital signal processors (DSPs), and

system-on-chip (SoC) substrates that combine general-purpose cores

with heterogeneous application-specific custom circuits. None of these

substrates necessarily dominate the other, but they rather offer certain

advantages that depend on the target application and the deployment

setting of the computing device. For instance, custom fabricated cir-

cuits outperform their FPGA counterparts in performance and power,

but they are more expensive. SoCs offer higher performance/Watt ratio

for a range of applications than general-purpose processors; however,

general-purpose processors offer higher throughput for scientific appli-

cations. GPGPUs are also emerging as a strong contender to processors

and FPGAs; however, the relative advantage of each of these substrates

differs by the application [39, 54, 76]. Sorting out the exact trade-offs

of all these substrates across different application domains is an active

area of research [4, 29, 76]. While power modeling and characterization

for these substrates share common concepts, each of these substrates
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3

has its own peculiarities. In this survey we will discuss the basic power

modeling and characterization concepts that are shared among these

substrates as well as the specific techniques that are applicable for

each one.

Pre-silicon power modeling and post-silicon power characterization

are very challenging tasks. The following factors contribute to these

challenges.

(1) Large die areas with billions of transistors and interconnects

lead to computational difficulties in modeling.

(2) Input patterns and runtime software applications trigger

large variation in power consumption. These variations are

computationally impossible to enumerate exhaustively dur-

ing modeling.

(3) Spatial and temporal thermal variations arising from power

consumption trigger large variations in leakage power, which

lead to intricate dependencies in power modeling.

(4) Process variabilities that arise during fabrication lead to

intra-die and inter-die power leakage variations that are

unique to each die. These deviations recast the modeling

results to be educated guesses, rather than exact estimates.

(5) Practical limitations on the design of power-delivery net-

works make it difficult to directly characterize the runtime

power consumption of individual circuit blocks.

The objective of this survey is to describe modern research

directions for pre-silicon power modeling and post-silicon power

characterization. Pre-silicon power modeling tools estimate the power

consumption of an input design, and they can be used to create a

power-aware design exploration framework, where different design

choices are evaluated in terms of their power impact in addition to

traditional design objective such as performance and area. Post-silicon

power characterization tools are applied to a fabricated design to

characterize its power consumption under various workloads and

environmental variabilities. The results of power characterization are

useful for power-related debugging issues, calibration of design-time

power modeling tools, software-driven power analysis, and adaptive
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4 Introduction

power-aware computing. Our technical exposition reviews power mod-

eling and characterization techniques of various computing substrates,

while emphasizing cross-cutting issues. We also connect the dots

between the research results of different research communities, such as

circuit designers, computer-aided design (CAD) developers, computer

architects, and system designers. Our discussions reveal the shared

concepts and the different research angles that have been explored for

power modeling and characterization.

1.1 Computing Substrates

1.1.1 General-Purpose Processors

A general-purpose processor is designed to serve a large variety of appli-

cations, rather than being highly tailored to one specific application or

a class of applications. The design of a general-purpose processor has

to be done carefully to lead to good performance within the proces-

sor’s thermal design power (TDP) limit under different kinds of work-

loads. The TDP limit has forced a significant change in the design of

processors. At present, designers aim to increase the processor’s total

throughput rather than improving the single-thread performance. This

throughput increase is achieved by using more than one processing core

per chip.

Figure 1.1 gives an example of a quad-core processor based on Intel’s

Core i7 Nehalem architecture. The 64-bit processor features four cores

that share an 8 MB of L3 cache. The cores can run up to 3.46 GHz in a

130 W TDP. Each core has a 16-stage pipeline and includes a 32 KB L1

instruction cache, a 32 KB L1 data cache, and a 256 KB of L2 cache.

The front-end of the pipeline can fetch up to 16 bytes from the L1

instruction cache. The instructions in the fetched 16 bytes are identi-

fied and inserted into an instruction queue. The decoder unit receives its

inputs from the instruction queue, and it can decode up to four instruc-

tions per cycle into micro-ops. A branch prediction unit with a branch

target buffer enables the core to fetch and process instructions before

the outcome of a branch is determined. The back-end of the pipeline

allocates resources for the micro-ops and renames their source and des-

tination registers to eliminate hazards and to expose instruction-level

Full text available at: http://dx.doi.org/10.1561/1000000022



1.1 Computing Substrates 5

Fig. 1.1. High-level diagram of Intel Core i7 processor (Nehalem architecture).

parallelism. The micro-ops are then queued in the re-order buffer until

they are ready for execution. The pipeline can dynamically schedule

and issue up to six micro-ops per cycle to the execution units as long

as the operands and resources are available. The execution units per-

form loads, stores, scalar integer or floating-point arithmetic, and vector

integer or floating-point arithmetic. The results from the execution of

micro-ops are stored in the re-order buffer, and results are committed

in-order only for correct instruction execution paths.

1.1.2 Embedded SoC

SoCs are computational substrates that are targeted for embedded

systems and mobile computing platforms for a certain niche of appli-

cations. An SoC for a smart phone or a tablet typically consumes less

than 1–2 W of power, while delivering the throughput required for

Full text available at: http://dx.doi.org/10.1561/1000000022



6 Introduction

applications that include video and audio playback, internet connec-

tivity, and games. In contrast to a general-purpose processor, an SoC

includes, in addition to the general-purpose core(s), application-specific

custom hardware (HW) components that can provide the required

throughput for the target applications within the power envelope of

the embedded system. Because total die area is constrained by cost

and yield considerations, the inclusion of application-specific custom

HW components must come at the expense of the functionality of

the general-purpose core. SoC general-purpose cores are less capable

than the ones used in general-purpose processors. They are usually less

aggressively pipelined with limited instruction-level parallelism capa-

bilities and smaller cache sizes.

Figure 1.2 gives an example of an SoC based on nVidia’s Tegra

platform that has a total power budget of about 250 mW. The SoC fea-

tures a 32-bit ARM11 general-purpose core that runs up to 800 MHz.

The ARM11 core has an 8-stage pipeline, with a single instruction issue

and support for out-of-order completion. The L1 data and code cache

memory sizes are 32 KB each, and the size of the L2 cache is 256 KB.

The performance specifications of the core are clearly inferior compared

to the specifications of the Core i7. To compensate for the lost general-

purpose computing performance, the SoC uses a number of application-

specific components to deliver the required performance within its

Fig. 1.2. Example of nVidia Tegra SoC.
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1.1 Computing Substrates 7

power budget. These include an image signal processor that can provide

image processing functions (e.g., de-noising, sharpening, and color cor-

rection) for images captured from embedded cameras. The SoC includes

a high-definition audio and video processor for image, video and audio

playback, and a GPU to deliver the required graphics performance

for 3-D games. The SoC supports an integrated memory controller,

an encryption/decryption accelerator component, and components for

communication, such as Universal Asynchronous Receiver/Transmitter

(UART), Universal Serial Bus (USB), and High-Definition Multimedia

Interface (HDMI). All SoC components communicate with each other

using an on-chip communication network, which can take a number of

forms, including shared and hierarchical busses, point-to-point busses,

and meshes.

1.1.3 Field-Programmable Gate Arrays

Soaring costs associated with fabricating computing circuitry at

advanced technology nodes have increased the interest in programm-

able logic devices that can be configured after fabrication to implement

user designs. The most versatile programmable logic currently available

is Field Programmable Gate Arrays (FPGAs). The basic FPGA archi-

tecture is an island-style structure, where programmable logic array

blocks (LABs) are embedded in a reconfigurable wiring fabric that con-

sists of wires and switch blocks as illustrated in Figure 1.3. The inputs

and outputs of the LABs are connected to the routing fabric through

programmable switches. When programmed, these switches determine

the exact input and output connections of the LABs. In addition,

10s–100s of programmable I/O pads are available in the FPGA. In

many occasions, FPGAs also host heterogeneous dedicated computing

resources, such as digital signal processors to implement multiplica-

tions, memory blocks to store runtime data, and even full light-weight

processor cores.

Each LAB is composed of several basic logic elements (BLEs), where

a BLE is made up of a 4-, 5-, or 6-input look-up table (LUT) together

with an associated flip-flop. A 4-input LUT can be used to implement

any 4-input Boolean function. Figure 1.4(a) illustrates the structure

Full text available at: http://dx.doi.org/10.1561/1000000022
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Fig. 1.3. Island-style FPGA.

Fig. 1.4. Typical design of a Logic Array Block (LAB) and a basic logic element (BLE).

of a BLE and, Figure 1.4(b) illustrates the structure of a LAB. Each

BLE can receive its inputs from other BLEs inside its LAB or from

other LABs through the reconfigurable wiring fabric. Additional wiring

structures in the LAB enable it to propagate arithmetic carry outputs

Full text available at: http://dx.doi.org/10.1561/1000000022



1.2 Survey Overview 9

in a fast and efficient way. To implement a computing circuit into an

FPGA, it is first necessary to synthesize the input circuit by breaking it

up into subcircuits, where each subcircuit is mapped to a BLE. These

BLEs are then clustered into groups, where the size of each group

is determined by the number of BLEs in a LAB. These clusters are

then mapped and placed at the LABs. Finally, routing is conducted to

determine the exact routes and switches of the routing fabric used by

the circuit. The configuration bits for the logic and routing are stored

in SRAM or FLASH memory cells.

While FPGAs are very attractive to computer-system designers due

to their post-silicon flexibility, this flexibility comes at the expense of

higher design area and power consumption compared to custom cir-

cuits that perform the same computing tasks. For example, Kuon and

Rose report almost a 35× overhead for using programmable logic over

custom logic [68]. However, for low to mid-volume fabrication, pro-

grammable logic is the only economically feasible technology. Along

with performance and area, power is also an important factor that

must be considered during architectural design exploration of FPGAs.

FPGA architectural parameters include segment length, switch block

topology, cluster size, BLE/LAB designs. Choices for these parame-

ters lead to different power, performance, and area trade-offs. Thus,

proper evaluation of power consumption is required to help designers

and users make correct choices for the FPGA’s architecture and pro-

grammed designs.

1.2 Survey Overview

The basic techniques for circuit-level power modeling are discussed in

Section 2. The power consumption of computing circuits can be des

cribed by two components: dynamic power and static power. The section

includes discussions on how to estimate each of these components when

the design’s circuit is available. We will also discuss the various factors

that impact these power components, which include, circuit design and

layout, input patterns, fabrication technology, process variability, and

operational temperature. The discussions in Section 2 will form the basis

for the techniques discussed in Sections 3 and 4.

Full text available at: http://dx.doi.org/10.1561/1000000022



10 Introduction

In Section 3 we discuss techniques for pre-silicon power model-

ing techniques. Historically, performance and area were the two main

criteria during the design of computing devices. In the past 10–15 years,

power has emerged as a third criterion that has to be considered dur-

ing design. Every architectural feature has to be judged in terms of its

performance, area and power. A typical design space has an exponen-

tial number of possible combination of settings for the various features.

Thus, there is a strong need for power modeling methods that enable

designers to efficiently explore the design space and to evaluate the

impact of various high-level system architectural choices and optimiza-

tions on power consumption. These architectural features and choices

vary by the medium of the computing substrate. For multi-core proces-

sors, the choices include, for example, pipeline depth, instruction issue

width, and cache sizes. For SoC-based embedded systems, the choices

include, the functionality of the custom blocks and the on-chip commu-

nication architecture (e.g., network topology, buffer sizes and transfer

modes). In some embedded systems, the boundary between hardware

(HW) and software (SW) is fluid, where the choice of the implemen-

tation (SW or HW) of every component could be decided based on its

impact on performance, power, and area. In embedded design environ-

ments, it is necessary to have power co-modeling tools that can effec-

tively explore the possible HW/SW implementation choices of every

design component, and guide designers to the correct choice. FPGA

power modeling is also challenging as the user’s design is not known

during the design and fabrication of the FPGA. Furthermore, users do

not have direct access to the internal circuits of the FPGA. Thus, pre-

characterized power models for the different FPGA structures must be

estimated during the design of the FPGA and then bundled with the

vendor’s tools to be used by the end user.

Once a design is implemented and a physical prototype is avail-

able for direct measurements, new opportunities become possible. In

Section 4, we discuss a number of techniques for post-silicon power

characterization. We describe techniques that integrate infrared imag-

ing and direct electric current measurements to develop power mapping

techniques, that reveal the true power consumption of every design

structure. These true power maps can be used to validate pre-silicon

Full text available at: http://dx.doi.org/10.1561/1000000022



1.3 Summary 11

design estimates, to calibrate power-modeling CAD tools, and to esti-

mate the impact of variabilities introduced during fabrication. We also

discuss power characterization techniques for adaptive power-aware

computing, where power models based on lumped power measurements

are used by power management systems to cut down operational mar-

gins and to enforce runtime power constraints. Another discussed topic

is SW power characterization using instruction-level, architectural-level

and algorithmic-level power models. SW power characterization helps

software developers and compiler designers to cut down the power con-

sumption of their applications.

1.3 Summary

In this section we have highlighted the importance of power modeling

and characterization techniques for modern computing devices. Future

computing systems will be constrained by power, and the choices for

design features and runtime settings have to be guided by the impact

on power consumption as well as traditional objectives such as perfor-

mance and implementation area.

Computing substrates can come in a number of forms, including

custom circuits with fixed functionality, general-purpose processors

whose functionality is determined by software applications, SoCs that

combine general-purpose processing cores with application specific cus-

tom circuits, and programmable logic that can be used to implement

computing circuits in a cost-effective way. These computing forms share

some basic power modeling techniques; however, their unique architec-

tural features enable them to utilize efficient large-scale modeling and

characterization methods.

Pre-silicon power modeling and post-silicon characterization tech-

niques will be discussed in the remaining sections of this survey.

The basic circuit-level power modeling techniques are discussed in

Section 2. High-level power modeling techniques for various computing

substrates will be discussed in Section 3. In Section 4 we overview dif-

ferent techniques for post-silicon power characterization through phys-

ical measurements on a fabricated device. Finally, a number of future

research directions are outlined in Section 5.
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