Full text available at: http://dx.doi.org/10.1561/1000000034

Rigorous System Design

Full text available at: http://dx.doi.org/10.1561/1000000034

Rigorous System Design

Joseph Sifakis

EPFL
Switzerland

Joseph.Sifakis@epfl.ch

Now

the essence of knowledge

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/1000000034

Foundations and Trends® in
Electronic Design Automation

Published, sold and distributed by:
now Publishers Inc.

PO Box 1024

Hanover, MA 02339

USA

Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.

PO Box 179

2600 AD Delft

The Netherlands

Tel. +31-6-51115274

The preferred citation for this publication is J. Sifakis, Rigorous System Design,
Foundations and Trends® in Electronic Design Automation, vol 6, no 4, pp 293-362,
2012

ISBN: 978-1-60198-660-3
© 2013 J. Sifakis

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, mechanical, photocopying, recording
or otherwise, without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen-
ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for
internal or personal use, or the internal or personal use of specific clients, is granted by
now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The
‘services’ for users can be found on the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system
of payment has been arranged. Authorization does not extend to other kinds of copy-
ing, such as that for general distribution, for advertising or promotional purposes, for
creating new collective works, or for resale. In the rest of the world: Permission to pho-
tocopy must be obtained from the copyright owner. Please apply to now Publishers Inc.,
PO Box 1024, Hanover, MA 02339, USA; Tel. +1-781-871-0245; www.nowpublishers.com;
sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/1000000034

Foundations and Trends® in
Electronic Design Automation

Volume 6 Issue 4, 2012
Editorial Board

Editor-in-Chief:
Radu Marculescu
Dept. of Electrical & Computer Engineering

Carnegie Mellon University
Pittsburgh, PA 15213-3890

Editors

Robert K. Brayton (UC Berkeley)
Raul Camposano (Nimbic)

K.T. Tim Cheng (UC Santa Barbara)
Jason Cong (UCLA)

Masahiro Fujita (University of Tokyo)
Georges Gielen (KU Leuven)

Tom Henzinger (IST Austria)

Andrew Kahng (UC San Diego)
Andreas Kuehlmann (Coverity)
Sharad Malik (Princeton)

Ralph Otten (TU Eindhoven)

Joel Phillips (Cadence Berkeley Labs)
Jonathan Rose (University of Toronto)
Rob Rutenbar (UIUC)

Alberto Sangiovanni-Vincentelli (UC Berkeley)
Leon Stok (IBM Research)

Full text available at: http://dx.doi.org/10.1561/1000000034

Editorial Scope

Foundations and Trends® in Electronic Design Automation
will publish survey and tutorial articles in the following topics:

e System Level Design e Physical Design

e Behavioral Synthesis e Circuit Level Design

e Logic Design e Reconfigurable Systems
e Verification e Analog Design

e Test

Information for Librarians

Foundations and Trends® in Electronic Design Automation, 2012, Volume 6,
4 issues. ISSN paper version 1551-3939. ISSN online version 1551-3947. Also
available as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/1000000034

Foundations and Trends® in
Electronic Design Automation

Vol. 6, No. 4 (2012) 293-362 n.w

© 2013 J. Sifakis
DOI: 10.1561/1000000034 the essence of knowledge

Rigorous System Design

Joseph Sifakis

RiSD Laboratory, EPFL, Lausanne, Switzerland, Joseph.Sifakis@epfl.ch

Abstract

The monograph advocates rigorous system design as a coherent and
accountable model-based process leading from requirements to correct
implementations. It presents the current state of the art in system
design, discusses its limitations, and identifies possible avenues for over-
coming them.

A rigorous system design flow is defined as a formal account-
able and iterative process composed of steps, and based on four
principles: (1) separation of concerns; (2) component-based construc-
tion; (3) semantic coherency; and (4) correctness-by-construction. The
combined application of these principles allows the definition of a
methodology clearly identifying where human intervention and inge-
nuity are needed to resolve design choices, as well as activities that
can be supported by tools to automate tedious and error-prone tasks.
An implementable system model is progressively derived by source-to-
source automated transformations in a single host component-based
language rooted in well-defined semantics. Using a single modeling lan-
guage throughout the design flow enforces semantic coherency. Correct-
by-construction techniques allow well-known limitations of a posteriori
verification to be overcome and ensure accountability. It is possible to

Full text available at: http://dx.doi.org/10.1561/1000000034

explain, at each design step, which among the requirements are satis-
fied and which may not be satisfied.

The presented view for rigorous system design has been amply
implemented in the BIP (Behavior, Interaction, Priority) component
framework and substantiated by numerous experimental results show-
ing both its relevance and feasibility.

The monograph concludes with a discussion advocating a system-
centric vision for computing, identifying possible links with other
disciplines, and emphasizing centrality of system design.

Full text available at: http://dx.doi.org/10.1561/1000000034

Contents

(1__Introductionl 1
[1.1 About Design| 1
1.2 System Design| 4
[2° From Programs to Systems — |
| Significant Differences| 11
|13 Achieving Correctness| 13
[3.1 Correctness versus Design Productivity] 13
[3.2 "Trustworthiness Requirements| 14
3.3 Optimization Requirements| 15
[3.4 Levels ot Criticality] 17
4 Existing Approaches and the State of the Art| 19
4.1 System Development Methodologies| 19
[4.2 Rigorous Design Techniques| 21
[4.3 The Limits of Correctness-by-Checking for Systems| 23
4.4 'The Integration Wall — Mixed-Criticality Systems| 26
|5 Four Principles for Rigorous System Design| 31
9.1 Rigorous System Design| 31
[5.2 Separation of Concerns| 32

Full text available at: http://dx.doi.org/10.1561/1000000034

5.3 Component-Based Design| 36
5.4 Semantically Coherent Design| 40
[5.5 Correct-by-Construction Design| 44
9.6 Putting Rigorous System Design into Practice in BIP)| 53
6 A System-Centric Vision for Computing] 59
6.1 Linking Computing to Other Disciplines| 60
6.2 Rigorous Design versus Controlled Experiments| 63
|6.3 The Limits of Understanding and Mastering |
| the Cyber-world| 64
6.4 The Quest for Mathematically Tractable and |
| Practically Relevant Theory| 66
|Acknowledgments| 69
[References| 71

Full text available at: http://dx.doi.org/10.1561/1000000034

1

Introduction

1.1 About Design

Design is the process that leads to an artifact meeting given require-
ments. These comprise functional requirements describing the func-
tionality provided by the system and extra-functional requirements
dealing with the way in which resources are used for implementation
and throughout the artifact’s lifecycle.

Design is a universal concept, a par excellence intellectual activity
linking the immaterial world of concepts to the physical world. It is
an essential area of human experience, expertise, and knowledge which
deals with our ability to mold our environment so as to satisfy material
and spiritual needs. The built world is the result of the accumulation
of artifacts designed by humans.

Design has at least two different connotations in different fields and
contexts. It may be simply a plan or a pattern for assembling objects
in order to build a given artifact. It also may refer to the creative
process for devising plans or patterns. In this monograph we adopt the
latter denotation with a focus on the formalization and analysis of the
process.

Full text available at: http://dx.doi.org/10.1561/1000000034

2 Introduction

Design can be decomposed into two phases. The first is procedural-
ization, leading from requirements to a procedure (executable descrip-
tion) prescribing how the anticipated functionality can be realized by
executing sequences of elementary functions. The second is material-
ization leading from a procedure to an artifact meeting the require-
ments (Figure [[.I). A main concern is how to meet extra-functional
requirements by using available resources cost-effectively.

Design is an essential component of any engineering activity. It
covers multiple disciplines including electrical, mechanical, thermal,
civil, architectural, and computing systems engineering. Design pro-
cesses should meet two often antagonistic demands: (1) productivity to
ensure cost-effectiveness; (2) correctness which is essential for accep-
tance of the designed artifacts, especially when they involve public
safety and security.

Design is a “problem-solving process”. As a rule, requirements are
declarative. They are usually expressed in natural languages. For some
application areas, they can be formalized by using logics. When require-
ments are expressed by logical specifications, proceduralization can be
considered as a synthesis problem: procedures are executable models
meeting the specifications. Model synthesis from logical requirements
often runs into serious technical limitations such as non-computability
or intrinsically high complexity. For all these reasons, in many areas
of engineering, design remains to a large extent an empirical activity
relying on the experience and expertise of engineering teams. New com-
plex products are seldom designed from scratch. Their designs follow
principles and reuse solutions that have proven their worth. Even if
some segments of the design process are fully automated by using tools
(e.g., CAD tools), there exist gaps that can be bridged only by creative
thinking and insightful analysis.

Design formalization raises a multitude of deep theoretical prob-
lems related to the conceptualization of needs in a given area and their
effective transformation into correct artifacts. So far, it has attracted
little attention from scientific communities and is often relegated to
second-class status. This can be explained by several reasons. One is
the predilection of the academic world for simple and elegant theories.
Another is that design is by nature multidisciplinary. Its formalization

3

1.1 About Design

‘swe)sAs Surndurod 0g Sur{ood woy s[qesridde jdeouod [esIeAlun ® st uSiso(] ['T 814

sejnuIW S J0j
sealbap OSE 18 exegs
‘sa|dde Jano Jnod pue ||sm X =

‘sinu ay pue jjes jo youid

‘G6@ usjeaqun uj pusig =
‘Jeng pue Jnoj)

‘ebns dna | xjw |moq & U] «
.reBns uoodse|qe) | pue
UOWBUUID UM 8pjuuds »
:oje|d eid u) sajdde jnd «

’l

(enneie|oop)
sjuswalinbay

/

‘ a
(seaunosay)

SLNIIQIEONI
4 (weiboid)
| - B Jdi03y &

)IW
-1
® &
(¢]

c 2
o
- =
R0
(M

uolezileusien

v
N

o

£$83UPRLI0D £,S83U}9a1I0D

Full text available at: http://dx.doi.org/10.1561/1000000034

Full text available at: http://dx.doi.org/10.1561/1000000034

4 Introduction

requires consistent integration of heterogeneous system models sup-
porting different levels of abstraction including logics, algorithms and
programs as well as physical system models.

1.2 System Design

The monograph deals with the formalization of the design of mixed
hardware/software systems. As a rule, these are interactive systems
continuously interacting with an external environment. Their behavior
is driven by stimuli from the environment, which, in turn, is affected
by their outputs. They drastically differ from function systems which
compute an action on an input, producing an output some time later,
and stopping. Interaction systems can receive new inputs and produce
new outputs while they are already in operation. They are expected to
operate continuously.

Interactive systems are inherently complex and hard to design due
to unpredictable and subtle interactions with the environment, emer-
gent behaviors, and occasional catastrophic cascading failures, rather
than to complex data and algorithms. Compared to function software,
their complexity is aggravated by additional factors such as concurrent
execution, uncertainty resulting from interaction with unpredictable
environments, heterogeneity of interaction between hardware and soft-
ware, and non-robustness (small variations in a certain part of the
system can have large effects on overall system behavior). Henceforth,
the term “system” stands for interactive system.

In system design, proceduralization leads to an application soft-
ware meeting the functional requirements. Materialization consists in
building an implementation from application software and models of
its execution platforms. As program synthesis is intractable, writing
trustworthy application software requires a good deal of creativity and
skills. Materialization also requires a deep understanding of how the
application software interacts with the underlying hardware and, in
particular, how dynamic properties of its execution are determined by
the available physical resources.

The monograph advocates rigorous system design as a coherent and
accountable process aimed at building systems of guaranteed quality

Full text available at: http://dx.doi.org/10.1561/1000000034

1.2 System Design 5

cost-effectively. We need to move away from empirical approaches to
a well-founded discipline. System design should be studied as a for-
mal systematic process supported by a methodology. The latter should
be based on divide-and-conquer strategies consisting of a set of steps
leading from requirements to an implementation. At each step, a partic-
ular humanly tractable problem must be solved by addressing specific
classes of requirements. The methodology should clearly identify seg-
ments of the design process that can be supported by tools to automate
tedious and error-prone tasks. It should also clearly distinguish points
where human intervention and ingenuity are needed to resolve design
choices through requirements analysis and confrontation with experi-
mental results. Identifying adequate design parameters and channeling
the designers’ creativity are essential for achieving design goals.

The design methodology should take into consideration theoretical
obstacles as well as the limitations of the present state of the art. It
should propose strategies for overcoming as many of the obstacles as
possible. The identified theoretical obstacles are the following:

Requirements formalization: Despite progress in formalizing require-
ments over the past decades (e.g., by using temporal logics), we still
lack theoretical tools for the disciplined specification of extra-functional
requirements.

For instance, security and privacy requirements should take into
account human behavior which is mostly unpredictable and hardly
amenable to formalization. Exhaustive and precise specification of
system security threats depends on our ability to figure out all pos-
sible attack strategies of intruders. Similarly, for privacy violation we
need theory for predicting how global personal data can be inferred by
combining and interpreting partial data.

Another difficulty is linking user-defined requirements to concrete
properties satisfied by the system. This is essential for checking system
correctness. The simple requirement that “when an elevator cabin is
moving all doors should be closed” may be implied by a mutual exclu-
sion property at system level. To prove formally such an implication,
requirements should be analyzed to relate system states to stimuli pro-
vided by user interfaces.

Full text available at: http://dx.doi.org/10.1561/1000000034

6 Introduction

Intractability of synthesis/verification: Designers need automated tech-
niques either to synthesize programs from abstract specifications or
to verify derived models against requirements. Both problems do not
admit exact algorithmic solutions for infinite state systems.

Hardware—Software interaction: We currently have no theory for
predicting precisely the behavior of some given software running on
a hardware platform with known characteristics. This difficulty lies in
the fundamental difference between hardware and software. Software
is immaterial. Software models ignore physical time and resources.
Hardware is subject to laws of physics. Its behavior is bound to timing
constraints, its resources are limited by their physical characteristics.
Program execution dynamics inherit hardware-dynamic properties.
These properties cannot be precisely characterized or estimated owing
to inherent uncertainty and the resulting unpredictability.

Despite these obstacles and limitations, it is important to study
design as a systematic process. As absolute correctness is not achiev-
able, we advocate accountability, that is, the possibility to assert which
among the requirements are satisfied and which may not be satisfied.
Accountability can be enhanced by using property-preservation results:
if some essential property holds at some design step then it should hold
in all subsequent steps. We present rigorous design as a process rooted
in four principles.

Separation of concerns: The separation between proceduralization and
materialization is crucial for taming complexity. It allows separation
of what functionality is provided by the system by focusing only on
functional requirements, from how this functionality is implemented by
using resources. Rigorous system design is a formally defined process
decomposed into steps. At each step the designer develops a model of
the system to be designed at some abstraction level. Within each step,
abstraction is progressively reduced by replacing conceptual constructs
and primitives by more concrete ones. The final model is a blueprint
for building the physical implementation.

Component-based construction: Components are essential for enhanced
productivity and correctness through reuse and architectures. In
contrast to many other engineering disciplines, computing systems

Full text available at: http://dx.doi.org/10.1561/1000000034

1.2 System Design 7

engineering lacks a component taxonomy and theory for component
composition. Electrical and mechanical engineering are based on the
use of a few component types. Electrical engineers build circuits from
elements of predictable behavior such as resistances, capacitances,
and inductances. System designers deal with a large variety of
heterogeneous components with different characteristics and unrelated
coordination principles: synchronous or asynchronous, object-based or
actor-based, and event-based or data-based. This seriously limits our
ability to ensure component interoperability in complex systems.

Semantic coherency: The lack of a framework for disciplined
component-based construction is reflected in the existence of a large
variety of languages used by designers. Application software may be
written in Domain-Specific Languages (DSL) or general purpose pro-
gramming languages. Specific languages may be used for modeling,
simulation, or performance analysis. These languages often lack well-
founded semantics and this is a main obstacle to establishing seman-
tic coherency of the overall design process. Frequently, validation and
performance analyses are carried out on models that cannot be rigor-
ously related to system development formalisms. This introduces gaps
in the design process which seriously lessen productivity and limit our
ability for ensuring correctness. To overcome these limitations, design-
ers should use languages rooted in well-founded semantics defined in a
common host language. This language should be expressive enough to
establish source-to-source translations between the hosted languages,
in particular for enhanced traceability of analysis results at different
abstraction levels.

Correctness-by-construction: Correctness-by-checking suffers from
well-known limitations. An alternative approach is achieving
correctness-by-construction. System designers extensively use algo-
rithms, architectures, patterns, and other principles for structuring
interaction between components so as to ensure given properties. These
can be described and proven correct in well-founded languages and
made available to system designers. A key issue is how to combine
existing solutions to partial problems and their properties in order to
solve design problems. For this we need theory and rules for building

Full text available at: http://dx.doi.org/10.1561/1000000034

8 Introduction

complex designs meeting a given requirement by composing properties
of simpler designs.

The monograph proposes a view for rigorous system design and
identifies the main obstacles and associated scientific challenges. This
view summarizes key ideas and principles of a research program pursued
for more than 10 years at Verimag. It has been amply implemented in
the BIP (Behavior, Interaction, Priority) component framework [30]
and substantiated by numerous experimental results showing both its
relevance and feasibility.

BIP consists of a language for component-based construction
and an associated suite of system design tools. The language allows
the modeling of composite, hierarchically structured systems from
atomic components characterized by their behavior and their interface.
Components are coordinated by layered application of interactions and
of priorities. Interactions express synchronization constraints between
actions of the composed components, while priorities are used to filter
amongst possible interactions and to steer system evolution so as to
meet performance requirements, e.g., to express scheduling policies.
Interactions are described in BIP as the combination of two types of
protocols: rendezvous, to express strong symmetric synchronization
and broadcast, to express triggered asymmetric synchronization. The
combination of interactions and priorities confers BIP expressiveness
not matched by any other existing formalism. It defines a clean and
abstract concept of architecture separate from behavior. Architecture
in BIP is a first-class concept with well-defined semantics that can
be analyzed and transformed. BIP relies on rigorous operational
semantics that has been implemented by specific run-time systems for
centralized, distributed, and real-time execution.

The monograph is structured as follows.

Section [2] presents significant differences between programs and sys-
tems. Section [3| discusses the concept of correctness characterized by
two types of hardly reconcilable requirements: trustworthiness and opti-
mization. Trustworthiness requirements capture qualitative correctness
while optimization requirements are constraints on resources. Their
interplay determines levels of criticality in system design. Section [4]
presents existing approaches for system design and their limitations.

Full text available at: http://dx.doi.org/10.1561/1000000034

1.2 System Design 9

We discuss how existing rigorous design paradigms can be transposed
to system design. Section [5| discusses the four principles for rigorous
system design and their application in the BIP framework. Section 6
presents a system-centric vision for computing, discusses possible links
with other disciplines and emphasizes on centrality of system design.

Full text available at: http://dx.doi.org/10.1561/1000000034

References

(1]
2]
B8l

(4]

(5]

(7l

(8]

(9]

T. Abdellatif, J. Combaz, and J. Sifakis, “Model-based implementation of real-
time applications,” EMSOFT, pp. 229-238, 2010.

K. J. Astrom and B. Wittenmark, Adaptive Control. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., 2nd ed., 1994.

Beck, Kent; et al., Manifesto for Agile Software Development. Agile Alliance,
2001.

S. Bensalem, M. Bozga, A. Legay, T.-H. Nguyen, J. Sifakis, and R. Yan, “Incre-
mental component-based construction and verification using invariants,” in
FMCAD, pp. 257-256, Lugano, Switzerland, October 20-23 2010.

S. Bliudze and J. Sifakis, “A Notion of Glue Expressiveness for Component-
Based Systems,” Lecturer Notes in Computer Science, vol. 5201, pp. 508-522,
2008.

P. Bogdan and R. Marculescu, “Towards a science of cyber-physical systems
design,” Proceeding ICCPS ’11 Proceedings of the 2011 IEEE/ACM Second
International Conference on Cyber-Physical Systems, pp. 99-108.

B. Bonakdarpour, M. Bozga, M. Jaber, J. Quilbeuf, and J. Sifakis, “From high-
level component-based models to distributed implementations,” EMSOFT,
pp. 209-218, 2010.

P. Bourgos, A. Basu, M. Bozga, S. Bensalem, J. Sifakis, and K. Huang, “Rig-
orous system level modeling and analysis of mixed HW/SW systems,” MEM-
OCODE, pp. 11-20, 2011.

M. Butler, M. Leuschel, S. L. Presti, and P. Turner, “The use of formal methods
in the analysis of trust (Position Paper),” Lecture Notes in Computer Science,
vol. 2995/2004, pp. 333-339, 2004.

71

72
(10]
(11]

(12]

(13]

(14]

15]

[16]
(17]
(18]
(19]
20]
(21]
22]

23]

24]

[25]

[26]

[27]

28]

Full text available at: http://dx.doi.org/10.1561/1000000034

References

G. Buttazzo, Hard Real-Time Computing Systems, Predictable Scheduling Algo-
rithms and Applications. Real-Time Systems Series, Springer, vol. 24, 2001.
E. M. Clarke, E. A. Emerson, and J. Sifakis, “Model checking: Algorithmic
verification and debugging,” CACM, vol. 52, no. 11, November 2009.

J. M. Cobleigh, G. S. Avrunin, and L. A. Clarke, “Breaking up is hard to do:
An evaluation of automated assume-guarantee reasoning,” ACM Transactions
on Software Engineering and Methodology, vol. 17, no. 2, 2008.

P. Derler, E. A. Lee, and A. Sangiovanni-Vincentelli, “Modeling cyber-physical
systems,” Proceedings of the IEEE (special issue on CPS), vol. 100, no. 1,
pp. 13-28, January 2012.

D. Garlan, R. Monroe, and D. Wile, “Acme: An architecture description inter-
change language,” in Proceedings of the 1997 Conference of the Centre for
Advanced Studies on Collaborative Research (CASCON 97), pp. 169-183, IBM
Press, 1997.

D. Q. Goldin, S. A. Smolka, P. C. Attie, and E. L. Sonderegger, “Turing
machines, transition systems, and interaction,” Information and Computation,
vol. 194, no. 2, pp. 101-128, November 2004.

N. Halbwachs, Synchronous Programming of Reactive Systems. Kluwer Aca-
demic Pub., 1993.

T. Hannay, “The controlled experiment,” in This Will Make You Smarter,
(J. Brockman, ed.), Happer Perennial.

D. Harel, A. Marron, and G. Weiss, “Behavioral programming,” Communica-
tions of the ACM, vol. 55, no. 7, July 2012.

T. A. Henzinger and J. Sifakis, “The discipline of embedded systems design,”
COMPUTER, vol. 40, pp. 36-44, 2007.

H. Hoos, “Programming by optimization,” Communications of the ACM,
vol. 55, no. 2, February 2012.

International Council on Systems Engineering (INCOSE), Systems Engineering
Handbook Version 3.1. August 2007.

H. Kopetz, “The rationale for time-triggered ethernet,” Proceedings of the 29th
IEEFE Real-Time Systems Symposium.

H. Kopetz, R. Obermaisser, C. E. Salloum, and B. Huber, “Automotive soft-
ware development for a multi-core system-on-a-chip,” Fourth International
Workshop on Software Engineering for Automotive Systems (SEAS’07), 2007.
E. A. Lee and T. M. Parks, “Dataflow process networks,” Proceedings of the
IEEE, vol. 83, no. 5, pp. 773-801, May 1995.

J. Magee and J. Kramer, “Dynamic structure in software architectures,” in
Proceedings of the Jth ACM SIGSOFT Symposium on Foundations of Software
Engineering (SIGSOFT 96), pp. 3-14, ACM Press, 1996.

S. Maoz, D. Harel, and A. Kleinbort, “A compiler for multimodal scenarios:
Transforming LSCs into AspectJ, September 2011,” Transactions on Software
Engineering and Methodology (TOSEM), vol. 20, no. 4.

D. H. Mcknight and N. L. Chervany, “The meanings of trust,” Trust in Cyber-
Societies-LNAI, pp. 27-54, 2001.

R. A. D. Millo, R. J. Lipton, and A. J. Perlis, “Social Processes and Proofs of
Theorems and Programs,” CACM, vol. 22, no. 5, May 1979.

29]

(30]

(31]

32]

33]

34]

(35]

(36]

Full text available at: http://dx.doi.org/10.1561/1000000034

References 73

D. K. Mulligany and F. B. Schneider, “Doctrine for Cybersecurity,” Technical
Report, Cornell University, May 2011.

Rigorous Design of Component-Based Systems — The BIP Component
Framework: http://www-verimag.imag.fr /Rigorous-Design-of-Component-
Based.html.

J. Reineke, B. Wachter, S. Thesing, R. Wilhelm, I. Polian, J. Eisinger, and
B. Becker, “A definition and classification of timing anomalies,” in Sizth Inter-
national Workshop on Worst-Case Ezecution Time (WCET) Analysis, Dres-
den, Germany, July 4 2006.

J. Sifakis, “A framework for component-based construction,” in IEEE Inter-
national Conference on Software Engineering and Formal Methods (SEFMO05),
pp- 293-300, Koblenz, September 7-9 2005.

SOFTWARE 2015: A national software strategy to ensure U.S. security and
competitiveness report of the 2nd national software summit, April 29, 2005.
R. J. van Glabbeek, “Ursula Goltz: Refinement of actions and equiva-
lence notions for concurrent systems,” Acta Information, vol. 37, no. 4/5,
pp- 229-327, 2001.

J. van Leeuwen and J. Wiedermann, “The turing machine paradigm in
contemporary computing,” in Mathematics Unlimited — 2001 and Beyond,
(B. Enquist and W. Schmidt, eds.), LNCS, Springer-Verlag, 2000.

D. A. Watt, B. A. Wichmann, and W. Findlay, “Ada: Language and Method-
ology,” 1987.

	Introduction
	About Design
	System Design

	From Programs to Systems --- Significant Differences
	Achieving Correctness
	Correctness versus Design Productivity
	Trustworthiness Requirements
	Optimization Requirements
	Levels of Criticality

	Existing Approaches and the State of the Art
	System Development Methodologies
	Rigorous Design Techniques
	The Limits of Correctness-by-Checking for Systems
	The Integration Wall --- Mixed-Criticality Systems

	Four Principles for Rigorous System Design
	Rigorous System Design
	Separation of Concerns
	Component-Based Design
	Semantically Coherent Design
	Correct-by-Construction Design
	Putting Rigorous System Design into Practice in BIP

	A System-Centric Vision for Computing
	Linking Computing to Other Disciplines
	Rigorous Design versus Controlled Experiments
	The Limits of Understanding and Mastering the Cyber-world
	The Quest for Mathematically Tractable and Practically Relevant Theory

	Acknowledgments
	References

