Computer-Aided Design and Optimization of Hybrid Energy Storage Systems
Computer-Aided Design and Optimization of Hybrid Energy Storage Systems

Younghyun Kim
Seoul National University
Korea
yhkim@elpl.snu.ac.kr

Yanzhi Wang
University of Southern California
USA
yanzhiwa@usc.edu

Naehyuck Chang
Seoul National University
Korea
naehyuck@elpl.snu.ac.kr

Massoud Pedram
University of Southern California
USA
pedram@usc.edu

Full text available at: http://dx.doi.org/10.1561/1000000035
Editorial Scope

Foundations and Trends® in Electronic Design Automation will publish survey and tutorial articles in the following topics:

- System Level Design
- Behavioral Synthesis
- Logic Design
- Verification
- Test
- Physical Design
- Circuit Level Design
- Reconfigurable Systems
- Analog Design

Information for Librarians
Foundations and Trends® in Electronic Design Automation, 2013, Volume 7, 4 issues. ISSN paper version 1551-3939. ISSN online version 1551-3947. Also available as a combined paper and online subscription.
Computer-Aided Design and Optimization of Hybrid Energy Storage Systems

Younghyun Kim¹, Yanzhi Wang², Naehyuck Chang³, and Massoud Pedram⁴

¹ Seoul National University, 1 Gwanak Rd, Gwanak-gu, Seoul, 151-744, Korea, yhkim@elpl.snu.ac.kr
² University of Southern California, 3740 McClintock Ave, Los Angeles, 90089, USA, yanzhiwa@usc.edu
³ Seoul National University, 1 Gwanak Rd, Gwanak-gu, Seoul, 151-744, Korea, naehyuck@elpl.snu.ac.kr
⁴ University of Southern California, 3740 McClintock Ave, Los Angeles, 90089, USA, pedram@usc.edu

Abstract

Electricity is the key to the proper functioning of modern human society. Ever-increasing electricity consumption gives rise to recent regulations and significant endeavors to improve the energy efficiency in all kinds of human activity from manufacturing to commerce, from transportation to digital communication, from entertainment to laptops and portable devices. An important technology for helping reduce energy consumption is the ability to store any excess electrical energy for long periods of time and efficiently retrieve the stored energy.

The design and management of electrical energy storage systems is the focus of the present paper, which starts off by reviewing and comparing various types of electrical energy storage elements in terms of
various metrics of interest ranging from power and energy density to output power rating and from self-leakage rate to cost per unit of stored energy, and from life cycle of the storage element to the efficiency of the charge/discharge cycle. Next the paper reviews various energy storage systems while motivating the need for a hybrid energy storage system comprised of heterogeneous types of energy storage elements organized in a hierarchical manner so as to hide the weaknesses of each storage element while eliciting their strengths. The paper continues with a detailed explanation of key challenges that one faces when dealing with the optimal design and runtime management of a hybrid energy storage system targeting some specific application scenario; for example, grid-scale energy management, household peak power shaving, mobile platform power saving, and more. A survey of some existing solutions to these problems is also included.
Contents

1 Introduction 1

2 Energy Storage Elements 5
 2.1 Performance Metrics for Energy Storage Elements 5
 2.2 Energy Storage Elements 11

3 Energy Storage Systems 19
 3.1 Architecture of Electrical Energy Storage Systems 20
 3.2 Classification of Energy Storage Systems 25

4 Hybrid Energy Storage Systems 35
 4.1 Motivation and Principle 35
 4.2 System Architecture 39

5 Hybrid Energy Storage System Design and Optimization 47
 5.1 Design-time Optimization 47
 5.2 Runtime Optimization 52

6 Hybrid Energy Storage System Applications 65
 6.1 Residential/Household Applications 65
Electricity is an integral utility in the modern society, with links to everything from agricultural production to manufacturing, from digital communication to media and internet, and from medical care to living conditions. Electric energy consumption has steadily risen since its industrial introduction in the second half of the nineteenth century. In fact the world’s total electrical energy production in 2009 was about 20,000 TWh, which is equivalent to a generated (and consumed) power of around 2.3 TW on average. This level of average power consumption is achieved by a combination of electricity generation stations, including heat engines fueled by chemical combustion or nuclear fission, kinetic energy of flowing water and wind, solar photovoltaics and geothermal processes. Fossil fuels (coal, gas, and oil in that order) account for 67%, renewable energy (mainly hydroelectric, wind, solar, and biomass) for 16%, nuclear power for 13%, and other sources for 3% of all electrical energy produced worldwide. Emissions of pollutants and greenhouse gases from fossil fuel-based electricity generation are responsible for a significant portion of world greenhouse gas emissions. Although Solar PV generation is advertised as environmentally friendly, fabrication of
PV cells utilize large amounts of water in addition to releasing toxic chemicals such as phosphorus and arsenic.

Reliable supply of electric energy is also an important issue. Power outage is regarded as a public emergency as people take the availability of uninterrupted power supply for granted. Electrical energy consumption in a system changes over time due to changes in the power requirements of load devices as well as the users’ behaviors. Load-following power plants (for example, fossil fuel power plants) are intended to handle rapid changes in power demands on the power grid. In addition, the grid requires a certain level of operating reserve, which is made up of spinning and non-spinning reserves, in order to prevent blackouts and brownouts. Spinning reserve denotes the on-line extra generating capacity to deal with the peak power demand that can arise for a short period of time. Non-spinning reserve, on the other hand, refers to the off-line additional generating capacity that can be turned on and connected to the power grid after a short delay. Both the spinning and non-spinning reserves require extra capital investment by the utility companies for their generation facility setup and operation. Reserve power generation is generally more costly than the normal operation on the power grid. Some countries have only small reserve margin during the peak hours, which threatens the power supply and demand match and gives rise to risky operating reserve guard banding. This can be remedied by building extra power plants. However, construction of new power plants requires large capital investment and has social and environmental costs.

To tackle the high demand for electric power and reduce the power plant over-provisioning, electrical energy storage systems (ESS) have been proposed. An ESS performs operating reserve management, which is performed by expensive, environmentally unfriendly load-following power plants. In addition, the ESS effectively enhances the power grid stability as well as the availability of renewable power sources such as windmills and photovoltaic (PV) panels. Renewable power sources have unreliable power generation characteristics; the level of power generation of the renewable power sources, such as PV cells and windmills, is heavily dependent on environmental factors (for example, the solar irradiance level or climate conditions). The ESS also
resolves the mismatch between the power generation and power consumption times in case of renewable power sources.

Nevertheless, ESS technologies are not ready for large-scale and widespread deployment. The main reason is that in spite of the large variety of ESS technologies, no technology offers sufficient performance in respect of key figures of merit needed of an electrical energy storage medium. For instance, a high-performance ESS should exhibit high cycle-efficiency, high power and energy storage capacity, low cost, high volumetric and/or graviometric density, and long-cycle life. The ESS technology of choice for many applications (especially those requiring high volumetric and/or graviometric density) is battery storage. Different battery technologies, however, have widely different characteristics. Again no single battery can simultaneously achieve all the desired characteristics of a high-performance ESS. Furthermore, no battery technology is in sight that can achieve these characteristics. So the focus is on finding ways to build ESS that comprise of different battery types so as to hide the weaknesses of each battery type, yet presenting the strongest features of each battery type.

It is a practically promising solution to develop system-level design methodology that enhances storage system performance and lifetime through efficient use of the current energy storage technologies. A hybrid ESS (HESS) consists of multiple heterogeneous energy storage elements so as to exploit the unique advantages of each energy storage element while hiding their unique shortcomings by introducing novel storage system architecture and hierarchy along with sophisticated charge management policy and means [124]. The HESS concept is derived in analogy to the computer memory hierarchy employed in computer systems and used to provide low-latency, yet low-cost, access to program and data storage.

However, designing the optimal HESS is not a trivial problem. Simply mixing different types of energy storage elements does not automatically guarantee to make up a high performance ESS. HESS architectural design is a multi-variable multi-objective optimization, and heterogeneity of the energy storage elements explodes the design complexity. It includes both continuous and discrete design parameters and many complex nonlinear models. Management policies of HESS
4 Introduction

involves in another highly complicated runtime optimization. Therefore, computer-aided design and optimization is a must for the optimal design and operation of the HESS with reasonable time and efforts.

This paper covers a wide range of topics regarding the computer-aided design and runtime management of HESS. The remainder of the paper is organized as follows.

- Section 2 begins with the introduction and evaluation of various types of energy storage elements. We review some of the performance metrics for energy storage elements and compare these elements in terms of these metrics.
- Section 3 introduces the ESS architecture and components in more detail and provides an overview of research work focusing on the ESS.
- From Section 4, we focus on the HESS. We first explain the HESS architecture in analogy with the computer memory hierarchy. Next we discuss various flavors of HESS architectures focusing on energy storage hybridization.
- Section 5 reviews some of the recent work on the systematic optimization of the HESS, including both design-time and runtime optimization schemes that maximize the benefits of the HESS.
- Section 6 provides a survey of applications of the HESS, including the power grid, electric vehicle (EV)/hybrid electric vehicle (HEV), and low-power embedded systems.
- Section 7 concludes this paper by outlining possible future directions for the HESS research and development.
References

83
References

2005.

[9] T. B. Atwater, P. J. Cygan, and F. C. Leung, “Man portable power needs of
the 21st century: I. applications for the dismounted soldier, ii. enhanced capa-
bilities through the use of hybrid power sources,” Journal of Power Sources,

[10] L. Barote, R. Weissbach, R. Teodorescu, C. Marinescu, and M. Cirstea,
“Stand-alone wind system with vanadium redox battery energy storage,” in
Proceedings of the International Conference on Optimization of Electrical and

tric vehicle charge pattern optimization for energy cost and battery longevity,”

tric double-layer supercapacitors,” in Proceedings of the Industry Applications

stand-alone hybrid renewable energy systems,” Renewable and Sustain-

[15] P. Bhatnagar and R. Nema, “Maximum power point tracking control tech-
niques: State-of-the-art in photovoltaic applications,” Renewable and Sustain-

with hydrogen storage for residential applications,” Journal of Power Sources,

“The importance of “going nano” for high power battery materials,” Journal

in energy production and storage applications,” Journal of Power Sources,

high power Sn–C/C–LiFePO₄ lithium ion battery,” Journal of Power Sources,

behavior of supercapacitors using impedance spectroscopy,” in Proceedings of

ulation models of supercapacitors and li-ion batteries for power electronic
applications,” IEEE Transactions on Industry Applications, vol. 41, no. 3,
References

[38] Consolidated Edison Company of New York, Inc. 2012, “Service classification no. 1 — residential and religious.”.

References

Full text available at: http://dx.doi.org/10.1561/1000000035
88 References

References

[94] Linear Technology, “LTC6803-1/LTC6803-3: Multicell battery stack monitor.”.

[95] Linear Technology, “LTM4609: 36 V_in, 34 V_out high efficiency buck-boost DC/DC µModule regulator.”.

Full text available at: http://dx.doi.org/10.1561/1000000035
References

Full text available at: http://dx.doi.org/10.1561/1000000035
References

Full text available at: http://dx.doi.org/10.1561/1000000035
References

References

Full text available at: http://dx.doi.org/10.1561/1000000035
References

