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Abstract

Buildings are the result of a complex integration of multi-physics sub-
systems. Besides the obvious civil engineering infrastructure, thermal,
electrical, mechanical, control, communication and computing subsys-
tems must co-exist and be operated so that the overall operation is
smooth and efficient. This is particularly important for commercial
buildings but is also very relevant for residential buildings especially
apartment buildings. Unfortunately, the design and deployment of these
subsystems is rarely synchronized: lighting, security, heating, ventila-
tion and air conditioning systems are often designed independently.
However, simply putting together a collection of sub-systems, albeit
optimized, has led to inefficient buildings of today. Worldwide, build-
ings consume 42% of all electrical power – more than any other asset
– and it can be proven that much of this can be reduced if a holistic
approach to design, deployment and operation is taken.

Government agencies, academic institutions, building contractors
and owners have realized the significant impact of buildings on the
global environment, the electrical grid, and the mission of their orga-
nizations. However, the economic impact for all constituencies is still
difficult to assess. Government regulations can play a fundamental role,
as it has been the case for the transportation industry where regulations
on emission and fuel consumption have been the single most important
factor of innovation in automotive design.

We are convinced that by leveraging technology and utilizing a
system-level approach to buildings, they will provide comfort, safety
and functionality while minimizing energy cost, supporting a robust
electric grid and mitigating environmental impact. Realizing this vision
requires adding intelligence from the beginning of the design phase, to
deployment, from commissioning to operation, all the way to the end
of the building’s life cycle.

In this issue, we attempt to provide an overview of the activities
in the field of smart connected building design automation that at-
tempts to make the vision a reality. The overarching range of such
activities includes developing simulation tools for modeling and design
of buildings, and consequently control algorithms proposed to make

Full text available at: http://dx.doi.org/10.1561/1000000043



2

buildings smarter and more efficient. Further, we will review real-world
and large-scale implementation of such control strategies on physical
buildings. We then present a formal co-design methodology to design
buildings taking the view that buildings are prime examples of cyber-
physical systems where the virtual and physical worlds meet, as more
traditional products such as thermostats are able to connect online and
perform complicated computational tasks to control building temper-
ature effectively. We complete the presentation describing the growing
role of buildings in the operation of the smart grid where buildings are
not only consumers of energy, but also providers of services and energy
to the smart grid.

The audiences for this monograph are industry professionals and
researchers who work in the area of smart buildings, smart cities and
smart grid, with emphasis on energy-efficiency, simulation tools, opti-
mal control, and cyber-physical systems design for the emerging and
connected power markets.

M. Maasoumy and A. Sangiovanni-Vincentelli. Smart Connected Buildings Design
Automation: Foundations and Trends. Foundations and TrendsR© in Electronic
Design Automation, vol. 10, no. 1-2, pp. 1–143, 2016.
DOI: 10.1561/1000000043.
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1
Introduction

The term intelligent or smart building refers to the next generation of
buildings that provide new levels of comfort to the occupants with min-
imum possible energy consumption. They not only follow commands,
but also proactively learn from occupants’ behavior and adapt their
operation based on the indoor and outdoor conditions. These buildings
are no longer solely consumers of energy, but also significant players in
the ecosystem of smart grid, in that they provide regulation services to
the grid as well as energy if equipped with solar panels or other green
sources. Intelligent buildings not only are safe by design, but also re-
act in the case of a fault, system malfunction, or cyber-attack to steer
the system into a safe operating region. There has been much research
in academia and industry towards this goal. Companies such as Nest
(https://nest.com/), recently acquired by Google, have been formed
over the last few years to bring new technologies in this space to the
public. In this paper, we present an overview of the work done in this
domain over the last two decades.

3
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4 Introduction

1.1 Why Buildings?

But why buildings are so important? According to an Environmental
Protection Agency (EPA)1 survey, on average, Americans spend ap-
proximately 90% of their time indoors. Commercial Buildings Energy
Consumption Survey (CBECS)2 estimates that there were 5.6 million
commercial buildings in the United States in 2012, comprising 87 bil-
lion square feet of floor-space. This level represents a 14% increase in
the number of buildings and a 21% increase in floor-space since 2003,
the last year for which results are available. Between the first CBECS
(conducted in 1979) and the latest 2012 CBECS, the number of com-
mercial buildings in the United States has increased from 3.8 million
to 5.6 million, and the amount of commercial floor-space has increased
from 51 billion to 87 billion square feet. On the residential side, nearly
130 million residential housing units existed in the U.S. in 2010. Ap-
proximately 7.188 million new housing units were built between 2005
and 2009, according to the American Housing Survey (AHS [2008]).
The total primary energy consumption in the United States increased
from 35 quads3 in 1950 to 78.3 quads in 1980 to over 98.5 quads in
2014 as shown in Figure 1.1 by the Energy Information Administra-
tion (EIA)4. In 2014 the building sector accounts for 39.87% of this
total consumption according to the EIA as shown in Figure 1.2. The in-
dustrial and transportation sectors represent the remaining 31.33% and
27.12%. Electrical energy consumption of buildings doubled in the last
18 years, and another 25% growth is projected through 2030. Residen-
tial buildings accounted for 54.6% of the total energy consumption in
the building sector, while commercial buildings accounted for the other
45.4%. The building sector is also responsible for almost 40% of green-
house gas emissions and 70% of electricity use. The energy consumption
by Heating Ventilation and Air Conditioning (HVAC) systems is 50%
of the total energy usage in buildings and 20% of the total national en-

1Buildings and their Impact on the Environment: A Statistical Summary.
http://www.epa.gov/greenbuilding/pubs/gbstats.pdf

2http://www.eia.gov/consumption/commercial/
3A quad is a unit of energy equal to 1.055× 1018 joules.
4Annual energy outlook 2015. http://www.eia.gov/totalenergy/
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1.1. Why Buildings? 5

Figure 1.1: US Primary Energy Overview (Quadrillion Btu).

ergy usage in European and American countries Pérez-Lombard et al.
[2008]. HVAC energy consumption can exceed 50% of the total energy
usage of a building in tropical climate Chua et al. [2013].

The industrial sector has always been optimizing its processes to
reduce cost and increase profit. In the transportation sector, in the last
30 years a great amount of work has gone into emission and fuel con-
sumption reduction via better engine control, and efforts are already
well under way to find suitable alternatives to oil. Bio-fuels are one
possibility. Alternative types of vehicles – hybrids, electric vehicles, and
vehicles powered by hydrogen fuel cells, for example – all have the goal
of reducing our dependence on oil. The Corporate Average Fuel Econ-
omy (CAFE) standards, initially adopted in 1975, made more stringent
in 2007, and strengthened again in pending legislation, require auto-
mobile manufacturers to build cars with higher average fuel economy.
On the other hand, historically, not much has been done to improve
the energy efficiency of buildings.

Growth in population, increasing demand for building services and
comfort levels, together with the rise in time spent inside buildings,
assure that the upward trend in energy demand will continue in the fu-
ture. For this reason, energy efficiency in buildings is a prime objective
today for energy policy at regional, national and international levels.

Full text available at: http://dx.doi.org/10.1561/1000000043



6 Introduction

U.S. Energy Flow, 2014
(Quadrillion Btu)

1 Includes lease condensate.
2 Natural gas plant liquids.
3 Conventional hydroelectric power, biomass, geothermal, solar/photovoltaic, and wind.
4 Crude oil and petroleum products.  Includes imports into the Strategic Petroleum Reserve.
5 Natural gas, coal, coal coke, biofuels, and electricity.
6 Adjustments, losses, and unaccounted for.
7 Natural gas only; excludes supplemental gaseous fuels.
8 Petroleum products, including natural gas plant liquids, and crude oil burned as fuel.
9 Includes -0.02 quadrillion Btu of coal coke net imports.

10 Includes 0.16 quadrillion Btu of electricity net imports.
11 Total energy consumption, which is the sum of primary energy consumption, electricity retail

sales, and electrical system energy losses.  Losses are allocated to the end-use sectors in
proportion to each sector’s share of total electricity retail sales.  See Note 1, “Electrical Systems
Energy Losses,” at the end of U.S. Energy Information Administration, Monthly Energy Review
(March 2015), Section 2.

Notes: •  Data are preliminary.  •  Values are derived from source data prior to rounding for
publication.  •  Totals may not equal sum of components due to independent rounding.

Sources:  U.S. Energy Information Administration, Monthly Energy Review (March 2015),
Tables 1.1, 1.2, 1.3, 1.4a, 1.4b, and 2.1.

Figure 1.2: US Energy Flow in 2014 (Quadrillion Btu).

1.2 Why Smart Buildings?

Given that we spend on average more than 90% of our time in buildings
and the fact that 40% of total energy consumption is being consumed
in buildings, it is crucial that these systems are safe and comfortable
while consuming the minimum amount possible of energy. In order to
achieve these objectives, we need to make buildings smart about the
way they operate. Studies such as the American Housing Survey for
the United States by EnergySTAR, have shown that 30% of energy
consumption of commercial buildings is wasted and could be saved by
continuously monitoring and adjusting operations of these buildings.
Achieving safety, energy efficiency and comfort is only feasible if all
subsystems in the building continuously sense the environment, com-
municate between different parts of the system and make the right
decision both individually and collectively.

Full text available at: http://dx.doi.org/10.1561/1000000043



1.3. Areas of research 7

Buildings of the future are perceived as entities for real-time en-
ergy trading, as opposed to passive energy consumers. In this scenario,
buildings not only need to be aware of and responsive to the internal
conditions, but also need to be able to operate their subsystems (e.g.
HVAC, and lighting) in coordination with the grid. Real-time pricing
combined with the intelligence of the Building Energy Management
System (BEMS) to operate the building in a cost-effective way, is an
example of such scenarios. More sophisticated scenarios would involve
buildings operating in a cost-effective way given not only the real-time
energy prices, but also rewards that a utility or system operator may
offer buildings to provide flexibility in their energy consumption. The
latter scenario would require a fundamentally different building control
design; operating a system in the most cost-effective manner does not
typically lead to much flexibility around the operating trajectory. In a
scenario where the objective is defined not only by the goal of reducing
energy cost, but also by the reward for operating in certain regions, the
optimization problem becomes multi-objective and nontrivial.

1.3 Areas of research

According to the building energy data book of the US Department of
Energy (DOE)5, about 50% of the energy consumption in buildings
is directly related to space heating, cooling and ventilation as shown
in Figure 1.3. As such, reducing building energy consumption by de-
signing smart control systems to operate the HVAC system in a more
energy-efficient way is critically important to address the worldwide
energy and environmental concerns. With the advent of smart, easily-
controllable and remotely-accessible thermostats, smart meters, and
two-way broadband communication infrastructure between occupants
and buildings via smart devices such as smartphones and next gen-
eration connected electric cars, as well as between the buildings as
consumers of energy and utility companies as providers of energy, the
role of buildings in the operation of the smart grid will be even more
significant and crucial compared to the current state-of-the-art.

5http://buildingsdatabook.eren.doe.gov/default.aspx
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8 Introduction

Space Heating
44.2%

Water Heating
16.9%

Space Cooling
8.9%

Lighting
4.6%

Refrigeration
4.0%

Electronics
2.9%

Wet Cleaning
3.4% Cooking

3.1%

Computers
1.7%

Other
10.3%

Residential Sector Energy Consumption

2015 Residential Energy End‐Use Splits

Figure 1.3: Breakdown of energy consumption in a typical building. Over 50% of
energy consumption is related to HVAC systems.

In the last decade a significant amount of work has been done in ar-
eas that, directly or indirectly, have contributed to achieving improved
performance, reliability and efficiency of buildings. We categorize this
work into the following areas:

• Simulation tools;

• Building models;

• Building control design;

• Test-beds and real-scale experiments;

• Buildings as cyber-physical systems;

• Smart buildings in the smart grid ecosystem.
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1.4. Organization 9

In this monograph, we provide an overview of what has been
achieved in each of these areas, and we highlight emerging or exist-
ing areas for research.

1.4 Organization

The remaining chapters of this monograph are organized as follows:
We start by reviewing the simulation tools that have been devel-

oped over the years in Chapter 2. We cover EnergyPlus and Modelica
Libraries among other building simulation tools.

We then present our work in modeling buildings. In particular, we
first present Resistor-Capacitor (RC) models, which are the building
blocks of the majority of building simulation tools. Next, we show how
we use related available information from additional sensors such as
CO2 sensors, outside air temperature, and Global Horizontal Irradiance
(GHI) to infer quantities that are not measured, such as internal and
external heat gains and un-modeled dynamics.

Furthermore, we show how the proposed modeling framework can
be enhanced by introducing a Parameter-Adaptive Building (PAB)
model. The proposed PAB model leverages a Kalman filter-based state
estimation algorithm to simultaneously estimate the states and param-
eters of the system, resulting in a parameter-varying model.

We first provide an overview of classical building HVAC controllers.
We then present a hierarchical control scheme in which the high-level
controller optimizes a cost function and sends the optimal set-point to
the local low-level PID controllers. The majority of Chapter 4 is devoted
to obtaining and studying Model Predictive Control (MPC), Robust
Model Predictive Control (RMPC), Stochastic Model Predictive Con-
trol (SMPC), and Exergy-based Model Predictive Control (XMPC),
and studying the performance of each in the presence of model uncer-
tainty. At the end of this chapter we provide a guideline for selecting
the most appropriate control strategy based on the accuracy of the
building model.

In Chapter 5 we review some of the outstanding efforts in this
domain, and present some findings on how effective new control tech-

Full text available at: http://dx.doi.org/10.1561/1000000043



10 Introduction

niques are when implemented on real buildings. We focus on real-scale
implementation of novel control algorithms on buildings and classify
the studies according to the system that was controlled (e.g. whole
building, test cell), the actuators, the total experiment time, and the
MPC model.

After presenting various control strategies in Chapter 4, and re-
viewing real-scale implementation of such algorithms on real, physical
buildings, we present a framework to co-design the control algorithm
and the embedded platform for building HVAC systems in Chapter 6,
thus treating a building as a cyber-physical system. As complex cyber-
physical systems, HVAC systems involve three closely related subsys-
tems – the control algorithm, the physical environment and the embed-
ded implementation platform. In this chapter, we propose a co-design
approach that analyzes the interaction between the control algorithm
and the embedded platform through a set of interface variables, in par-
ticular the sensing accuracy. Based on the proposed models, we explore
the design space of the control algorithm and the embedded platform
to optimize a system with respect to energy cost and monetary cost
while satisfying the constraints for user comfort level.

In Chapter 7, we address the future role of smart buildings in the
context of the smart grid. We first propose a means to define and quan-
tify the flexibility of a commercial building. We then propose a con-
tractual framework that could be used by building operators and utility
companies to declare flexibility on one side and reward structure on the
other. Subsequently, we design a control mechanism for the building to
decide its flexibility for the next contractual period to maximize the
reward, given the contractual framework. Finally, we perform at-scale
experiments to demonstrate the feasibility of the proposed algorithm.

Finally, Chapter 8 draws the conclusions of the monograph with a
discussion on the possible directions for future work.

Full text available at: http://dx.doi.org/10.1561/1000000043
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