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Abstract

This manuscript is the second in a two part survey and analysis of
the state of the art in secure processor systems, with a specific fo-
cus on remote software attestation and software isolation. The first
part established the taxonomy and prerequisite concepts relevant to
an examination of the state of the art in trusted remote computation:
attested software isolation containers (enclaves). This second part ex-
tends Part I’s description of Intel’s Software Guard Extensions (SGX),
an available and documented enclave-capable system, with a rigorous
security analysis of SGX as a system for trusted remote computation.
This part documents the authors’ concerns over the shortcomings of
SGX as a secure system and introduces the MIT Sanctum processor
developed by the authors: a system designed to offer stronger security
guarantees, lend itself better to analysis and formal verification, and
offer a more straightforward and complete threat model than the Intel
system, all with an equivalent programming model.

This two part work advocates a principled, transparent, and well-
scrutinized approach to system design, and argues that practical guar-
antees of privacy and integrity for remote computation are achievable
at a reasonable design cost and performance overhead.

V. Costan, I. Lebedev and S. Devadas. Secure Processors Part II:
Intel SGX Security Analysis and MIT Sanctum Architecture. Foundations and
TrendsR© in Electronic Design Automation, vol. 11, no. 3, pp. 249–361, 2017.
DOI: 10.1561/1000000052.
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1
Introduction

Between the Snowden revelations and the seemingly unending series
of high-profile hacks of the past few years, the public’s confidence in
software systems has decreased considerably. At the same time, key
initiatives such as cloud computing and the IoT (Internet of Things)
are gaining popularity but require users to place much trust in the
systems providing these services. We must therefore develop capa-
bilities to build software systems with compelling security, and gain
back our users’ trust.

This manuscript is the second in a two part survey of the state of
the art in secure processor systems, with a specific focus on remote
software attestation and software isolation. Part I [Costan et al., 2017]
established relevant background in computer system design (§ I.2) and
security primitives (§ I.3), and surveyed relevant prior work (§ I.4).
The same work discussed the attested software isolation container (en-
clave): a modern primitive for modular secure software and trusted
remote computation, as exemplified by Intel’s Software Guard Ex-
tensions (§ I.5).

This manuscript extends the discussion of enclaves and SGX by
surveying the implementation and security properties of SGX (§ 2),

2
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1.1. The Case for Hardware Isolation 3

and documents the authors’ concerns with its vulnerabilities to several
classes of software attacks. Informed by the successes and shortcom-
ings of SGX, this manuscript also discusses the MIT Sanctum proces-
sor (§ 3): a secure processor that offers an equivalent programming
model with strong security guarantees against an insidious software
threat model including cache timing and memory access pattern at-
tacks. With this work, we hope to enable a shift in discourse in secure
hardware architecture away from plugging specific security holes to a
principled approach to eliminating attack surfaces.

1.1 The Case for Hardware Isolation

The best known practical method for securing a software system
amounts to modularizing the system’s code in a way that minimizes
code in the modules responsible for the system’s security. Formal ver-
ification techniques are then applied to these modules, which make
up the system’s trusted codebase (TCB). The method assumes that
software modules are isolated, so the TCB must also include the mech-
anism providing the isolation guarantees.

Today’s systems rely on an operating system kernel, or a hypervi-
sor (such as Linux or Xen, respectively) for software isolation. How-
ever each of the last three years (2012-2014) witnessed over 100 new
security vulnerabilities in Linux [cve, 2014a, Chen et al., 2011], and
over 40 in Xen [cve, 2014b].

One may hope that formal verification methods can produce a se-
cure kernel or hypervisor. Unfortunately, these codebases are far out-
side our verification capabilities: Linux and Xen have over 17 million
[Anthony, 2014] and 150,000 [xen, 2015] lines of code, respectively. In
stark contrast, the seL4 formal verification effort [Klein et al., 2009]
spent 20 man-years to cover 9,000 lines of code.

Given Linux and Xen’s history of vulnerabilities and uncertain
prospects for formal verification, a prudent system designer cannot in-
clude either in a TCB (trusted computing base), and must look else-
where for a software isolation mechanism.

Full text available at: http://dx.doi.org/10.1561/1000000052



4 Introduction

Fortunately, Intel’s Software Guard Extensions (SGX) [McKeen
et al., 2013, Anati et al., 2013] has brought attention to the alter-
native of providing software isolation primitives in the CPU’s hard-
ware. This avenue is appealing because the CPU is an unavoidable
TCB component, and processor manufacturers have strong economic
incentives to build correct hardware.

1.2 Intel SGX is Not the Answer

Unfortunately, although the SGX design includes a vast array of de-
fenses against a variety of software and physical attacks, it fails to offer
meaningful software isolation guarantees. The SGX threat model pro-
tects against all direct attacks, but excludes “side-channel attacks”,
even if they can be performed via software alone.

Alarmingly, cache timing attacks require only unprivileged software
running on the victim’s host computer, and do not rely on any phys-
ical access to the machine. This is particularly concerning in a cloud
computing scenario, where gaining software access to the victim’s com-
puter only requires a credit card [Ristenpart et al., 2009], whereas
physical access is harder, requiring trespass, coercion, or social engi-
neering on the cloud provider’s employees.

Similarly, in many Internet of Things (IoT) scenarios, the process-
ing units have some amount of physical security, but they run outdated
software stacks that have known security vulnerabilities. For example,
an attacker may exploit a vulnerability in an IoT lock’s Bluetooth
stack and obtain software execution privileges, then mount a cache
timing attack on its access-granting process, and obtain the crypto-
graphic key that opens the lock.

Furthermore, the analysis of SGX documentation as described in
Part I of this work reveals that it is impossible for anyone but In-
tel to reason about SGX’s security properties, because significant im-
plementation details are not covered by the publicly available docu-
mentation. This is a concern, as the myriad of security vulnerabilities
[Wojtczuk and Rutkowska, 2011, 2009b, Wojtczuk et al., 2009, Duflot
et al., 2006, Rutkowska and Wojtczuk, 2008, Wojtczuk and Rutkowska,
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1.3. MIT Sanctum Processor 5

2009a, Wecherowski, 2009, Embleton et al., 2010] in TXT [Grawrock,
2009], Intel’s previous attempt at securing remote computation, show
that securing the machinery underlying Intel’s processors is incredibly
challenging, even in the presence of strong economic incentives.

If a successor to SGX claimed to protect against cache timing at-
tacks, substantiating such a claim would require an analysis of its hard-
ware and microcode, and ensuring that no implementation detail is
vulnerable to cache timing attacks. Barring a highly unlikely shift to
open-source hardware from Intel, such analysis will never happen.

A concrete example: the SGX documentation [Int, 2013, 2014] does
not state where SGX stores the EPCM (enclave page cache map). If
the EPCM is stored in cacheable RAM, page translation verification is
subject to cache timing attacks. Interestingly, this detail is unnecessary
for analyzing the security of today’s SGX implementation, as we know
that SGX uses the operating system’s page tables, and page transla-
tions are therefore vulnerable to cache timing attacks. The example
does, however, demonstrate the fine nature of crucial details that are
simply undocumented in today’s hardware security implementations.

In summary, while the principles behind SGX have great potential,
the SGX design does not offer meaningful isolation guarantees, and the
SGX implementation is not open enough for independent researchers
to be able to analyze its security properties.

1.3 MIT Sanctum Processor

The Sanctum processor’s main contribution is a software isolation
scheme that addresses the issues raised above: Sanctum’s isolation prov-
ably defends against known software side-channel attacks, including
cache timing attacks and passive address translation attacks. Sanctum
is a co-design that combines minimal and minimally invasive hard-
ware modifications with a trusted software security monitor that is
amenable to rigorous analysis and does not perform cryptographic
operations using keys.

Sanctum achieves minimality by reusing and lightly modifying
existing, well-understood mechanisms. For example, Sanctum’s per-
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6 Introduction

enclave page tables implementation uses the core’s existing page walk-
ing circuit, and requires very little extra logic. Sanctum is minimally
invasive because it does not require modifying any major CPU build-
ing block. It only adds hardware to the interfaces between blocks,
and does not modify any block’s input or output. The use of con-
ventional building blocks limits the effort needed to validate a Sanc-
tum implementation.

Sanctum demonstrates that memory access pattern attacks by ma-
licious software can be foiled without incurring unreasonable over-
heads. Its hardware changes are small, small enough to present the
added circuits, in their entirety, in Figures 3.9 and 3.10. Sanctum cores
have the same clock speed as their insecure counterparts, as there
are no modifications on the CPU core critical execution path. Using
a straightforward page-coloring-based cache partitioning scheme with
Sanctum adds a few percent of overhead in execution time, which is
orders of magnitude lower than the overheads of the ORAM schemes
[Goldreich, 1987, Stefanov et al., 2013] that are usually employed to
conceal memory access patterns.

All layers of Sanctum’s TCB are open-sourced [MIT, 2017], and
unencumbered by patents, trade secrets, or other similar intellectual
property concerns that would disincentivize security researchers from
analyzing it. The Sanctum prototype targets the Rocket Chip [Lee
et al., 2014], an open-sourced implementation of the RISC-V [Water-
man et al., 2014, 2015] instruction set architecture, which is an open
standard. Sanctum’s software stack bears the MIT license.

To further encourage analysis, most of Sanctum’s security moni-
tor is written in portable C++ which, once rigorously analyzed, can
be used across different CPU implementations. Furthermore, even the
non-portable assembly code can be reused across different implemen-
tations of the same architecture. In comparison, SGX’s microcode is
CPU model-specific, so each micro-architectural revision would require
a separate verification effort.
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