
Secure Processors Part II:
Intel SGX Security

Analysis and MIT Sanctum
Architecture

Victor Costan, Ilia Lebedev and Srinivas Devadas
victor@costan.us, ilebedev@mit.edu and devadas@mit.edu
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/1000000052

Foundations and Trends R© in
Electronic Design Automation
Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

V. Costan, I. Lebedev and S. Devadas. Secure Processors Part II:
Intel SGX Security Analysis and MIT Sanctum Architecture. Foundations and
TrendsR© in Electronic Design Automation, vol. 11, no. 3, pp. 249–361, 2017.

This Foundations and TrendsR© issue was typeset in LATEX using a class file de-
signed by Neal Parikh. Printed on acid-free paper.

ISBN: 978-1-68083-302-7
c© 2017 V. Costan, I. Lebedev and S. Devadas

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, mechanical, photocopying, recording
or otherwise, without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen-
ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for
internal or personal use, or the internal or personal use of specific clients, is granted by
now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The
‘services’ for users can be found on the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system
of payment has been arranged. Authorization does not extend to other kinds of copying,
such as that for general distribution, for advertising or promotional purposes, for creat-
ing new collective works, or for resale. In the rest of the world: Permission to photocopy
must be obtained from the copyright owner. Please apply to now Publishers Inc., PO
Box 1024, Hanover, MA 02339, USA; Tel. +1 781 871 0245; www.nowpublishers.com;
sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to
now Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com;
e-mail: sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/1000000052

Foundations and Trends R© in
Electronic Design Automation

Volume 11, Issue 3, 2017
Editorial Board

Editor-in-Chief

Radu Marculescu
Carnegie Mellon University
United States

Editors

Robert K. Brayton
UC Berkeley
Raul Camposano
Nimbic
K.T. Tim Cheng
UC Santa Barbara
Jason Cong
UCLA
Masahiro Fujita
University of Tokyo
Georges Gielen
KU Leuven
Tom Henzinger
Institute of Science and Technology
Austria
Andrew Kahng
UC San Diego

Andreas Kuehlmann
Coverity
Sharad Malik
Princeton University
Ralph Otten
TU Eindhoven
Joel Phillips
Cadence Berkeley Labs
Jonathan Rose
University of Toronto
Rob Rutenbar
University of Illinois
at Urbana-Champaign
Alberto Sangiovanni-Vincentelli
UC Berkeley
Leon Stok
IBM Research

Full text available at: http://dx.doi.org/10.1561/1000000052

Editorial Scope

Topics

Foundations and Trends R© in Electronic Design Automation publishes
survey and tutorial articles in the following topics:

• System level design

• Behavioral synthesis

• Logic design

• Verification

• Test

• Physical design

• Circuit level design

• Reconfigurable systems

• Analog design

• Embedded software and
parallel programming

• Multicore, GPU, FPGA, and
heterogeneous systems

• Distributed, networked
embedded systems

• Real-time and cyberphysical
systems

Information for Librarians

Foundations and Trends R© in Electronic Design Automation, 2017, Volume 11,
4 issues. ISSN paper version 1551-3939. ISSN online version 1551-3947. Also
available as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/1000000052

Foundations and TrendsR© in Electronic Design
Automation

Vol. 11, No. 3 (2017) 249–361
c© 2017 V. Costan, I. Lebedev and S. Devadas
DOI: 10.1561/1000000052

Secure Processors Part II:
Intel SGX Security Analysis and MIT Sanctum

Architecture

Victor Costan, Ilia Lebedev and Srinivas Devadas
victor@costan.us, ilebedev@mit.edu and devadas@mit.edu
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Full text available at: http://dx.doi.org/10.1561/1000000052

Contents

1 Introduction 2
1.1 The Case for Hardware Isolation 3
1.2 Intel SGX is Not the Answer 4
1.3 MIT Sanctum Processor 5

2 An Analysis of Intel’s Software Guard Extensions (SGX) 7
2.1 SGX Implementation Overview 8
2.2 SGX Memory Access Protection 13
2.3 SGX Security Check Correctness 20
2.4 Tracking TLB Flushes . 28
2.5 Enclave Signature Verification 32
2.6 Key Hierarchy and Derivation 37
2.7 SGX Security Properties 40

3 The MIT Sanctum Processor 58
3.1 Threat Model . 59
3.2 Programming Model Overview 61
3.3 Protection Boundaries . 67
3.4 Security Primitives . 67
3.5 Hardware Modifications 69
3.6 Software Design . 76

ii

Full text available at: http://dx.doi.org/10.1561/1000000052

iii

3.7 Security Analysis of Sanctum 90
3.8 Work Related to Sanctum Mechanisms 100

4 Conclusion 102

Acknowledgments 104

References 105

Full text available at: http://dx.doi.org/10.1561/1000000052

Abstract

This manuscript is the second in a two part survey and analysis of
the state of the art in secure processor systems, with a specific fo-
cus on remote software attestation and software isolation. The first
part established the taxonomy and prerequisite concepts relevant to
an examination of the state of the art in trusted remote computation:
attested software isolation containers (enclaves). This second part ex-
tends Part I’s description of Intel’s Software Guard Extensions (SGX),
an available and documented enclave-capable system, with a rigorous
security analysis of SGX as a system for trusted remote computation.
This part documents the authors’ concerns over the shortcomings of
SGX as a secure system and introduces the MIT Sanctum processor
developed by the authors: a system designed to offer stronger security
guarantees, lend itself better to analysis and formal verification, and
offer a more straightforward and complete threat model than the Intel
system, all with an equivalent programming model.

This two part work advocates a principled, transparent, and well-
scrutinized approach to system design, and argues that practical guar-
antees of privacy and integrity for remote computation are achievable
at a reasonable design cost and performance overhead.

V. Costan, I. Lebedev and S. Devadas. Secure Processors Part II:
Intel SGX Security Analysis and MIT Sanctum Architecture. Foundations and
TrendsR© in Electronic Design Automation, vol. 11, no. 3, pp. 249–361, 2017.
DOI: 10.1561/1000000052.

Full text available at: http://dx.doi.org/10.1561/1000000052

1
Introduction

Between the Snowden revelations and the seemingly unending series
of high-profile hacks of the past few years, the public’s confidence in
software systems has decreased considerably. At the same time, key
initiatives such as cloud computing and the IoT (Internet of Things)
are gaining popularity but require users to place much trust in the
systems providing these services. We must therefore develop capa-
bilities to build software systems with compelling security, and gain
back our users’ trust.

This manuscript is the second in a two part survey of the state of
the art in secure processor systems, with a specific focus on remote
software attestation and software isolation. Part I [Costan et al., 2017]
established relevant background in computer system design (§ I.2) and
security primitives (§ I.3), and surveyed relevant prior work (§ I.4).
The same work discussed the attested software isolation container (en-
clave): a modern primitive for modular secure software and trusted
remote computation, as exemplified by Intel’s Software Guard Ex-
tensions (§ I.5).

This manuscript extends the discussion of enclaves and SGX by
surveying the implementation and security properties of SGX (§ 2),

2

Full text available at: http://dx.doi.org/10.1561/1000000052

1.1. The Case for Hardware Isolation 3

and documents the authors’ concerns with its vulnerabilities to several
classes of software attacks. Informed by the successes and shortcom-
ings of SGX, this manuscript also discusses the MIT Sanctum proces-
sor (§ 3): a secure processor that offers an equivalent programming
model with strong security guarantees against an insidious software
threat model including cache timing and memory access pattern at-
tacks. With this work, we hope to enable a shift in discourse in secure
hardware architecture away from plugging specific security holes to a
principled approach to eliminating attack surfaces.

1.1 The Case for Hardware Isolation

The best known practical method for securing a software system
amounts to modularizing the system’s code in a way that minimizes
code in the modules responsible for the system’s security. Formal ver-
ification techniques are then applied to these modules, which make
up the system’s trusted codebase (TCB). The method assumes that
software modules are isolated, so the TCB must also include the mech-
anism providing the isolation guarantees.

Today’s systems rely on an operating system kernel, or a hypervi-
sor (such as Linux or Xen, respectively) for software isolation. How-
ever each of the last three years (2012-2014) witnessed over 100 new
security vulnerabilities in Linux [cve, 2014a, Chen et al., 2011], and
over 40 in Xen [cve, 2014b].

One may hope that formal verification methods can produce a se-
cure kernel or hypervisor. Unfortunately, these codebases are far out-
side our verification capabilities: Linux and Xen have over 17 million
[Anthony, 2014] and 150,000 [xen, 2015] lines of code, respectively. In
stark contrast, the seL4 formal verification effort [Klein et al., 2009]
spent 20 man-years to cover 9,000 lines of code.

Given Linux and Xen’s history of vulnerabilities and uncertain
prospects for formal verification, a prudent system designer cannot in-
clude either in a TCB (trusted computing base), and must look else-
where for a software isolation mechanism.

Full text available at: http://dx.doi.org/10.1561/1000000052

4 Introduction

Fortunately, Intel’s Software Guard Extensions (SGX) [McKeen
et al., 2013, Anati et al., 2013] has brought attention to the alter-
native of providing software isolation primitives in the CPU’s hard-
ware. This avenue is appealing because the CPU is an unavoidable
TCB component, and processor manufacturers have strong economic
incentives to build correct hardware.

1.2 Intel SGX is Not the Answer

Unfortunately, although the SGX design includes a vast array of de-
fenses against a variety of software and physical attacks, it fails to offer
meaningful software isolation guarantees. The SGX threat model pro-
tects against all direct attacks, but excludes “side-channel attacks”,
even if they can be performed via software alone.

Alarmingly, cache timing attacks require only unprivileged software
running on the victim’s host computer, and do not rely on any phys-
ical access to the machine. This is particularly concerning in a cloud
computing scenario, where gaining software access to the victim’s com-
puter only requires a credit card [Ristenpart et al., 2009], whereas
physical access is harder, requiring trespass, coercion, or social engi-
neering on the cloud provider’s employees.

Similarly, in many Internet of Things (IoT) scenarios, the process-
ing units have some amount of physical security, but they run outdated
software stacks that have known security vulnerabilities. For example,
an attacker may exploit a vulnerability in an IoT lock’s Bluetooth
stack and obtain software execution privileges, then mount a cache
timing attack on its access-granting process, and obtain the crypto-
graphic key that opens the lock.

Furthermore, the analysis of SGX documentation as described in
Part I of this work reveals that it is impossible for anyone but In-
tel to reason about SGX’s security properties, because significant im-
plementation details are not covered by the publicly available docu-
mentation. This is a concern, as the myriad of security vulnerabilities
[Wojtczuk and Rutkowska, 2011, 2009b, Wojtczuk et al., 2009, Duflot
et al., 2006, Rutkowska and Wojtczuk, 2008, Wojtczuk and Rutkowska,

Full text available at: http://dx.doi.org/10.1561/1000000052

1.3. MIT Sanctum Processor 5

2009a, Wecherowski, 2009, Embleton et al., 2010] in TXT [Grawrock,
2009], Intel’s previous attempt at securing remote computation, show
that securing the machinery underlying Intel’s processors is incredibly
challenging, even in the presence of strong economic incentives.

If a successor to SGX claimed to protect against cache timing at-
tacks, substantiating such a claim would require an analysis of its hard-
ware and microcode, and ensuring that no implementation detail is
vulnerable to cache timing attacks. Barring a highly unlikely shift to
open-source hardware from Intel, such analysis will never happen.

A concrete example: the SGX documentation [Int, 2013, 2014] does
not state where SGX stores the EPCM (enclave page cache map). If
the EPCM is stored in cacheable RAM, page translation verification is
subject to cache timing attacks. Interestingly, this detail is unnecessary
for analyzing the security of today’s SGX implementation, as we know
that SGX uses the operating system’s page tables, and page transla-
tions are therefore vulnerable to cache timing attacks. The example
does, however, demonstrate the fine nature of crucial details that are
simply undocumented in today’s hardware security implementations.

In summary, while the principles behind SGX have great potential,
the SGX design does not offer meaningful isolation guarantees, and the
SGX implementation is not open enough for independent researchers
to be able to analyze its security properties.

1.3 MIT Sanctum Processor

The Sanctum processor’s main contribution is a software isolation
scheme that addresses the issues raised above: Sanctum’s isolation prov-
ably defends against known software side-channel attacks, including
cache timing attacks and passive address translation attacks. Sanctum
is a co-design that combines minimal and minimally invasive hard-
ware modifications with a trusted software security monitor that is
amenable to rigorous analysis and does not perform cryptographic
operations using keys.

Sanctum achieves minimality by reusing and lightly modifying
existing, well-understood mechanisms. For example, Sanctum’s per-

Full text available at: http://dx.doi.org/10.1561/1000000052

6 Introduction

enclave page tables implementation uses the core’s existing page walk-
ing circuit, and requires very little extra logic. Sanctum is minimally
invasive because it does not require modifying any major CPU build-
ing block. It only adds hardware to the interfaces between blocks,
and does not modify any block’s input or output. The use of con-
ventional building blocks limits the effort needed to validate a Sanc-
tum implementation.

Sanctum demonstrates that memory access pattern attacks by ma-
licious software can be foiled without incurring unreasonable over-
heads. Its hardware changes are small, small enough to present the
added circuits, in their entirety, in Figures 3.9 and 3.10. Sanctum cores
have the same clock speed as their insecure counterparts, as there
are no modifications on the CPU core critical execution path. Using
a straightforward page-coloring-based cache partitioning scheme with
Sanctum adds a few percent of overhead in execution time, which is
orders of magnitude lower than the overheads of the ORAM schemes
[Goldreich, 1987, Stefanov et al., 2013] that are usually employed to
conceal memory access patterns.

All layers of Sanctum’s TCB are open-sourced [MIT, 2017], and
unencumbered by patents, trade secrets, or other similar intellectual
property concerns that would disincentivize security researchers from
analyzing it. The Sanctum prototype targets the Rocket Chip [Lee
et al., 2014], an open-sourced implementation of the RISC-V [Water-
man et al., 2014, 2015] instruction set architecture, which is an open
standard. Sanctum’s software stack bears the MIT license.

To further encourage analysis, most of Sanctum’s security moni-
tor is written in portable C++ which, once rigorously analyzed, can
be used across different CPU implementations. Furthermore, even the
non-portable assembly code can be reused across different implemen-
tations of the same architecture. In comparison, SGX’s microcode is
CPU model-specific, so each micro-architectural revision would require
a separate verification effort.

Full text available at: http://dx.doi.org/10.1561/1000000052

References

Linux kernel: CVE security vulnerabilities, versions and detailed re-
ports. http://www.cvedetails.com/product/47/Linux-Linux-Kernel.
html?vendor_id=33, 2014a. [Online; accessed 27-April-2015].

XEN: CVE security vulnerabilities, versions and detailed reports. http://
www.cvedetails.com/product/23463/XEN-XEN.html?vendor_id=6276,
2014b. [Online; accessed 27-April-2015].

Xen project software overview. http://wiki.xen.org/wiki/Xen_Project_
Software_Overview, 2015. [Online; accessed 27-April-2015].

Ittai Anati, Shay Gueron, Simon P. Johnson, and Vincent R. Scarlata. In-
novative technology for CPU based attestation and sealing. In Proceedings
of the 2nd International Workshop on Hardware and Architectural Support
for Security and Privacy, HASP, volume 13, 2013.

Sebastian Anthony. Who actually develops Linux? the answer
might surprise you. http://www.extremetech.com/computing/
175919-who-actually-develops-linux, 2014. [Online; accessed 27-
April-2015].

Gorka Irazoqui Apecechea, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk
Sunar. Fine grain cross-VM attacks on Xen and VMware are possible!
Cryptology ePrint Archive, Report 2014/248, 2014. http://eprint.iacr.
org/.

Sebastian Banescu. Cache timing attacks. 2011. [Online; accessed 26-January-
2014].

105

Full text available at: http://dx.doi.org/10.1561/1000000052

http://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
http://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
http://www.cvedetails.com/product/23463/XEN-XEN.html?vendor_id=6276
http://www.cvedetails.com/product/23463/XEN-XEN.html?vendor_id=6276
http://wiki.xen.org/wiki/Xen_Project_Software_Overview
http://wiki.xen.org/wiki/Xen_Project_Software_Overview
http://www.extremetech.com/computing/175919-who-actually-develops-linux
http://www.extremetech.com/computing/175919-who-actually-develops-linux
http://eprint.iacr.org/
http://eprint.iacr.org/

106 References

Joseph Bonneau and Ilya Mironov. Cache-collision timing attacks against
AES. In Cryptographic Hardware and Embedded Systems-CHES 2006, pages
201–215. Springer, 2006.

E. Brickell and J. Li. Hardening inter-device secure communication using
physically unclonable functions, 2014. US Patent App. 13/844,559.

Ernie Brickell and Jiangtao Li. Enhanced privacy ID from bilinear pairing.
IACR Cryptology ePrint Archive, 2009.

Billy Bob Brumley and Nicola Tuveri. Remote timing attacks are still practi-
cal. In Computer Security–ESORICS 2011, pages 355–371. Springer, 2011.

David Brumley and Dan Boneh. Remote timing attacks are practical. Com-
puter Networks, 48(5):701–716, 2005.

J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions.
In Proceedings of the 9th annual ACM Symposium on Theory of Computing,
pages 106–112. ACM, 1977.

Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou, Nickolai Zeldovich, and
M. Frans Kaashoek. Linux kernel vulnerabilities: State-of-the-art defenses
and open problems. In Proceedings of the Second Asia-Pacific Workshop
on Systems, page 5. ACM, 2011.

Victor Costan and Srinivas Devadas. Security challenges and opportunities in
adaptive and reconfigurable hardware. In 2011 IEEE International Sympo-
sium on Hardware-Oriented Security and Trust (HOST), pages 1–5. IEEE,
2011.

Victor Costan and Srinivas Devadas. Intel SGX explained. Cryptology ePrint
Archive, Report 2016/086, Feb 2016.

Victor Costan, Ilia Lebedev, and Srinivas Devadas. Secure processors part I:
Background, taxonomy for secure enclaves and Intel SGX architecture. In
FnTEDA, 2017.

Shaun Davenport. SGX: the good, the bad and the downright ugly. Virus
Bulletin, 2014.

Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
Information Theory, IEEE Transactions on, 22(6):644–654, 1976.

Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael Abu-Ghazaleh, and
Dmitry Ponomarev. Non-monopolizable caches: Low-complexity mitiga-
tion of cache side channel attacks. ACM Transactions on Architecture and
Code Optimization (TACO), 8(4):35, 2012.

Full text available at: http://dx.doi.org/10.1561/1000000052

References 107

Loïc Duflot, Daniel Etiemble, and Olivier Grumelard. Using CPU sys-
tem management mode to circumvent operating system security functions.
CanSecWest/core06, 2006.

Alan Dunn, Owen Hofmann, Brent Waters, and Emmett Witchel. Cloaking
malware with the trusted platform module. In USENIX Security Sympo-
sium, 2011.

Shawn Embleton, Sherri Sparks, and Cliff C. Zou. SMM rootkit: a new breed
of OS independent malware. Security and Communication Networks, 2010.

Dmitry Evtyushkin, Jesse Elwell, Meltem Ozsoy, Dmitry Ponomarev, Nael
Abu Ghazaleh, and Ryan Riley. Iso-X: A flexible architecture for hardware-
managed isolated execution. In Microarchitecture (MICRO), 2014 47th
annual IEEE/ACM International Symposium on, pages 190–202. IEEE,
2014.

Christopher W. Fletcher, Marten van Dijk, and Srinivas Devadas. A secure
processor architecture for encrypted computation on untrusted programs.
In Proceedings of the Seventh ACM Workshop on Scalable Trusted Comput-
ing, pages 3–8. ACM, 2012.

Blaise Gassend, Dwaine Clarke, Marten Van Dijk, and Srinivas Devadas. Sili-
con physical random functions. In Proceedings of the 9th ACM Conference
on Computer and Communications Security, pages 148–160. ACM, 2002.

Oded Goldreich. Towards a theory of software protection and simulation by
oblivious RAMs. In Proceedings of the 19th annual ACM symposium on
Theory of Computing, pages 182–194. ACM, 1987.

K. C. Gotze, G. M. Iovino, and J. Li. Secure provisioning of secret keys during
integrated circuit manufacturing, 2014a. US Patent App. 13/631,512.

K. C. Gotze, J. Li, and G. M. Iovino. Fuse attestation to secure the provi-
sioning of secret keys during integrated circuit manufacturing, 2014b. US
Patent 8,885,819.

David Grawrock. Dynamics of a Trusted Platform: A building block approach.
Intel Press, 2009.

Shay Gueron. Quick verification of RSA signatures. In 8th International
Conference on Information Technology: New Generations (ITNG), pages
382–386. IEEE, 2011.

Shay Gueron. A memory encryption engine suitable for general purpose pro-
cessors. Cryptology ePrint Archive, Report 2016/204, 2016.

Full text available at: http://dx.doi.org/10.1561/1000000052

108 References

Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay Phegade, and
Juan Del Cuvillo. Using innovative instructions to create trustworthy soft-
ware solutions. In Proceedings of the 2nd International Workshop on Hard-
ware and Architectural Support for Security and Privacy, HASP, volume 13,
2013.

Mehmet Sinan Inci, Berk Gulmezoglu, Gorka Irazoqui, Thomas Eisenbarth,
and Berk Sunar. Seriously, get off my cloud! cross-VM RSA key recovery
in a public cloud. Cryptology ePrint Archive, Report 2015/898, 2015.

Software Guard Extensions Programming Reference. Intel Corporation, 2013.
Reference no. 329298-001US.

Software Guard Extensions Programming Reference. Intel Corporation, 2014.
Reference no. 329298-002US.

Intel R© Software Guard Extensions (Intel R© SGX). Intel Corporation, Jun
2015a. Reference no. 332680-002.

Intel R© 64 and IA-32 Architectures Software Developer’s Manual. Intel Cor-
poration, Sep 2015b. Reference no. 325462-056US.

Simon Johnson, Vinnie Scarlata, Carlos Rozas, Ernie Brickell, and Frank Mc-
keen. Intel R© software guard extensions: EPID provisioning and attesta-
tion services. https://software.intel.com/en-us/blogs/2016/03/09/
intel-sgx-epid-provisioning-and-attestation-services, Mar 2016.
[Online; accessed 21-Mar-2016].

Simon P. Johnson, Uday R. Savagaonkar, Vincent R. Scarlata, Francis X.
McKeen, and Carlos V. Rozas. Technique for supporting multiple secure
enclaves, Dec 2010. US Patent 8,972,746.

Richard E. Kessler and Mark D. Hill. Page placement algorithms for large
real-indexed caches. ACM Transactions on Computer Systems (TOCS), 10
(4):338–359, 1992.

Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flipping bits in mem-
ory without accessing them: An experimental study of DRAM disturbance
errors. In Proceeding of the 41st annual International Symposium on Com-
puter Architecuture, pages 361–372. IEEE Press, 2014.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David
Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolan-
ski, Michael Norrish, et al. seL4: Formal verification of an OS kernel. In
Proceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles, pages 207–220. ACM, 2009.

Full text available at: http://dx.doi.org/10.1561/1000000052

https://software.intel.com/en-us/blogs/2016/03/09/intel-sgx-epid-provisioning-and-attestation-services
https://software.intel.com/en-us/blogs/2016/03/09/intel-sgx-epid-provisioning-and-attestation-services

References 109

Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Advances in Cryptology–CRYPTO’96, pages
104–113. Springer, 1996.

Jingfei Kong, Onur Aciicmez, Jean-Pierre Seifert, and Huiyang Zhou. Decon-
structing new cache designs for thwarting software cache-based side channel
attacks. In Proceedings of the 2nd ACM workshop on Computer security
architectures, pages 25–34. ACM, 2008.

Tsvika Kurts, Guillermo Savransky, Jason Ratner, Eilon Hazan, Daniel Skaba,
Sharon Elmosnino, and Geeyarpuram N. Santhanakrishnan. Generic debug
eXternal connection (GDXC) for high integration integrated circuits, 2011.
US Patent 8,074,131.

Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and
Marcus Peinado. Inferring fine-grained control flow inside SGX enclaves
with branch shadowing. CoRR, abs/1611.06952, 2016. URL http://
arxiv.org/abs/1611.06952.

Yunsup Lee, Andrew Waterman, Rimas Avizienis, Henry Cook, Chen Sun,
Vladimir Stojanovic, and Krste Asanovic. A 45nm 1.3 GHz 16.7 double-
precision GFLOPS/w RISC-V processor with vector accelerators. In Eu-
ropean Solid State Circuits Conference (ESSCIRC), ESSCIRC 2014-40th,
pages 199–202. IEEE, 2014.

Jiang Lin, Qingda Lu, Xiaoning Ding, Zhao Zhang, Xiaodong Zhang, and
P. Sadayappan. Gaining insights into multicore cache partitioning: Bridging
the gap between simulation and real systems. In 14th International IEEE
Symposium on High Performance Computer Architecture (HPCA), pages
367–378. IEEE, 2008.

Fangfei Liu and Ruby B. Lee. Random fill cache architecture. In Microarchi-
tecture (MICRO), 2014 47th annual IEEE/ACM International Symposium
on, pages 203–215. IEEE, 2014.

Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. Last-
level cache side-channel attacks are practical. In Security and Privacy (SP),
2015 IEEE Symposium on, pages 143–158. IEEE, 2015.

Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas, Gernot
Heiser, and Ruby B. Lee. CATalyst: Defeating last-level cache side channel
attacks in cloud computing. In HPCA, Mar 2016.

R. Maes, P. Tuyls, and I. Verbauwhede. Low-Overhead Implementation of a
Soft Decision Helper Data Algorithm for SRAM PUFs. In Cryptographic
Hardware and Embedded Systems (CHES), pages 332–347, 2009.

Full text available at: http://dx.doi.org/10.1561/1000000052

http://arxiv.org/abs/1611.06952
http://arxiv.org/abs/1611.06952

110 References

Clémentine Maurice, Nicolas Le Scouarnec, Christoph Neumann, Olivier
Heen, and Aurélien Francillon. Reverse engineering Intel last-level cache
complex addressing using performance counters. In Proceedings of the 18th
International Symposium on Research in Attacks, Intrusions and Defenses
(RAID), 2015.

Francis X. McKeen, Carlos V. Rozas, Uday R. Savagaonkar, Simon P. John-
son, Vincent Scarlata, Michael A. Goldsmith, Ernie Brickell, Jiang Tao Li,
Howard C. Herbert, Prashant Dewan, Stephen J. Tolopka, Gilbert Neiger,
David Durham, Gary Graunke, Bernard Lint, Don A. Van Dyke, Joseph
Cihula, Stalinselvaraj Jeyasingh, Stephen R. Van Doren, Dion Rodgers,
John Garney, and Asher Altman. Method and apparatus to provide secure
application execution, Dec 2009. US Patent 9,087,200.

Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham
Shafi, Vedvyas Shanbhogue, and Uday R. Savagaonkar. Innovative instruc-
tions and software model for isolated execution. HASP, 13:10, 2013.

MIT. Reference implementation of a Sanctum security monitor. https:
//github.com/pwnall/sanctum, 2017. [Online; accessed 1-Jan-2017].

Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and Angelos D.
Keromytis. The spy in the sandbox – practical cache attacks in JavaScript.
arXiv preprint arXiv:1502.07373, 2015.

Peter Pessl, Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Re-
verse engineering intel DRAM addressing and exploitation. CoRR,
abs/1511.08756, 2015.

Stefan M. Petters and Georg Farber. Making worst case execution time anal-
ysis for hard real-time tasks on state of the art processors feasible. In Sixth
International Conference on Real-Time Computing Systems and Applica-
tions, pages 442–449. IEEE, 1999.

Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. Hey,
you, get off of my cloud: Exploring information leakage in third-party com-
pute clouds. In Proceedings of the 16th ACM Conference on Computer and
Communications Security, pages 199–212. ACM, 2009.

Xiaoyu Ruan. Platform Embedded Security Technology Revealed. Apress, 2014.
ISBN 978-1-4302-6571-9.

Joanna Rutkowska. Thoughts on Intel’s upcoming software guard extensions
(part 2). Invisible Things Lab, 2013.

Joanna Rutkowska and Rafał Wojtczuk. Preventing and detecting Xen hy-
pervisor subversions. Blackhat Briefings USA, 2008.

Full text available at: http://dx.doi.org/10.1561/1000000052

https://github.com/pwnall/sanctum
https://github.com/pwnall/sanctum

References 111

Daniel Sanchez and Christos Kozyrakis. The ZCache: Decoupling ways and as-
sociativity. In Microarchitecture (MICRO), 2010 43rd annual IEEE/ACM
International Symposium on, pages 187–198. IEEE, 2010.

Daniel Sanchez and Christos Kozyrakis. Vantage: scalable and efficient fine-
grain cache partitioning. In ACM SIGARCH Computer Architecture News,
volume 39, pages 57–68. ACM, 2011.

Mark Seaborn and Thomas Dullien. Exploiting the DRAM rowhammer bug to
gain kernel privileges. http://googleprojectzero.blogspot.com/2015/
03/exploiting-dram-rowhammer-bug-to-gain.html, Mar 2015. [Online;
accessed 9-March-2015].

V. Shanbhogue, J. W. Brandt, and J. Wiedemeier. Protecting information
processing system secrets from debug attacks, 2015. US Patent 8,955,144.

Emil Stefanov, Marten Van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren,
Xiangyao Yu, and Srinivas Devadas. Path ORAM: An extremely simple
oblivious ram protocol. In Proceedings of the 2013 ACM SIGSAC confer-
ence on Computer & communications security, pages 299–310. ACM, 2013.

G. Edward Suh and Srinivas Devadas. Physical unclonable functions for device
authentication and secret key generation. In Proceedings of the 44th annual
Design Automation Conference, pages 9–14. ACM, 2007.

G. Edward Suh, Dwaine Clarke, Blaise Gassend, Marten Van Dijk, and Srini-
vas Devadas. AEGIS: architecture for tamper-evident and tamper-resistant
processing. In Proceedings of the 17th annual international conference on
Supercomputing, pages 160–171. ACM, 2003.

G. Edward Suh, Charles W. O’Donnell, Ishan Sachdev, and Srinivas Devadas.
Design and Implementation of the aegis Single-Chip Secure Processor Us-
ing Physical Random Functions. In Proceedings of the 32nd ISCA’05. ACM,
June 2005.

George Taylor, Peter Davies, and Michael Farmwald. The TLB slice - a
low-cost high-speed address translation mechanism. SIGARCH Computer
Architecture News, 18(2SI):355–363, 1990.

Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng Wang,
Vincent Bindschaedler, Haixu Tang, and Carl A. Gunter. Leaky cauldron
on the dark land: Understanding memory side-channel hazards in SGX.
CoRR, abs/1705.07289, 2017.

Zhenghong Wang and Ruby B. Lee. New cache designs for thwarting software
cache-based side channel attacks. In Proceedings of the 34th annual Inter-
national Symposium on Computer Architecture, ISCA ’07, pages 494–505,
2007. ISBN 978-1-59593-706-3.

Full text available at: http://dx.doi.org/10.1561/1000000052

http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html

112 References

Andrew Waterman, Yunsup Lee, David A. Patterson, and Krste Asanovic.
The RISC-V instruction set manual, volume I: User-level ISA, version 2.0.
Technical Report UCB/EECS-2014-54, EECS Department, University of
California, Berkeley, May 2014. URL http://www.eecs.berkeley.edu/
Pubs/TechRpts/2014/EECS-2014-54.html.

Andrew Waterman, Yunsup Lee, Rimas Avizienis, David A. Patterson, and
Krste Asanovic. The RISC-V instruction set manual volume II: Privileged
architecture version 1.7. Technical Report UCB/EECS-2015-49, EECS
Department, University of California, Berkeley, May 2015. URL http:
//www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-49.html.

Filip Wecherowski. A real SMM rootkit: Reversing and hooking BIOS SMI
handlers. Phrack Magazine, 13(66), 2009.

Mark N. Wegman and J. Lawrence Carter. New hash functions and their
use in authentication and set equality. Journal of Computer and System
Sciences, 22(3):265–279, 1981.

Rafal Wojtczuk and Joanna Rutkowska. Attacking SMM memory via Intel
CPU cache poisoning. Invisible Things Lab, 2009a.

Rafal Wojtczuk and Joanna Rutkowska. Attacking Intel trusted execution
technology. Black Hat DC, 2009b.

Rafal Wojtczuk and Joanna Rutkowska. Attacking intel txt via sinit code
execution hijacking, 2011.

Rafal Wojtczuk, Joanna Rutkowska, and Alexander Tereshkin. Another way
to circumvent Intel R© trusted execution technology. Invisible Things Lab,
2009.

Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel at-
tacks: Deterministic side channels for untrusted operating systems. In Pro-
ceedings of the 36th IEEE Symposium on Security and Privacy (Oakland).
IEEE – Institute of Electrical and Electronics Engineers, May 2015.

Yuval Yarom and Katrina E. Falkner. Flush+Reload: a high resolution, low
noise, L3 cache side-channel attack. IACR Cryptology ePrint Archive, 2013:
448, 2013.

Yuval Yarom, Qian Ge, Fangfei Liu, Ruby B. Lee, and Gernot Heiser. Mapping
the Intel last-level cache. Cryptology ePrint Archive, Report 2015/905,
2015.

Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert Muth,
Tavis Ormandy, Shiki Okasaka, Neha Narula, and Nicholas Fullagar. Native
client: A sandbox for portable, untrusted x86 native code. In Security and
Privacy, 2009 30th IEEE Symposium on, pages 79–93. IEEE, 2009.

Full text available at: http://dx.doi.org/10.1561/1000000052

http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-49.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-49.html

References 113

Marcelo Yuffe, Ernest Knoll, Moty Mehalel, Joseph Shor, and Tsvika Kurts. A
fully integrated multi-CPU, GPU and memory controller 32nm processor.
In Solid-State Circuits Conference Digest of Technical Papers (ISSCC),
2011 IEEE International, pages 264–266. IEEE, 2011.

Full text available at: http://dx.doi.org/10.1561/1000000052

	Introduction
	The Case for Hardware Isolation
	Intel SGX is Not the Answer
	MIT Sanctum Processor

	An Analysis of Intel's Software Guard Extensions (SGX)
	SGX Implementation Overview
	SGX Memory Access Protection
	SGX Security Check Correctness
	Tracking TLB Flushes
	Enclave Signature Verification
	Key Hierarchy and Derivation
	SGX Security Properties

	The MIT Sanctum Processor
	Threat Model
	Programming Model Overview
	Protection Boundaries
	Security Primitives
	Hardware Modifications
	Software Design
	Security Analysis of Sanctum
	Work Related to Sanctum Mechanisms

	Conclusion
	Acknowledgments
	References

