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Abstract

In this paper cyber role in social-ecological energy systems (SEES) is formal-
ized by using the language of large-scale dynamical systems. The key notion
of interaction variables is introduced in support of their modeling as multi-
layered dynamical systems. It is stressed that qualitatively different cyber de-
signs are required for enabling performance of qualitatively different SEES
architectures. In particular, it is proposed that composite control-based hier-
archical control lends itself more naturally to supporting large-scale regulated
monopolies, and that distributed multi-layered control with or without coor-
dination is key to supporting SEES architectures comprising many decision
makers. Today’s hierarchical control is described as a particular case of hier-
archical composite control. Having these formulations may help bridge R&D
efforts across vastly multi-disciplinary communities working in the field of
changing electric energy systems.

Marija D. Ili¢. Toward a Unified Modeling and Control for Sustainable and Resilient Electric
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Introduction

The electric power industry is reaching a tipping point at which technological,
organizational and societal changes are extremely hard to reconcile. Different
views are taken by different communities and the taxonomies used are hard
to relate. Much progress is being made but the integration of piece-meal so-
lutions at well-understood value remains quite elusive. This is not accidental
nor intentional. The fundamental challenge to systematic integration in these
rapidly changing systems calls for recognizing that the problem of interest is
a classical wicked problem (Ostrom, 2009; Rittel and Webber, 1973; Camil-
lus, 2008). Wicked problems have been subject of work by many leading
institutional economists and business experts. I have convinced myself that
it is worthwhile to think about innovation in electric energy systems while
keeping in mind the gravity of the challenge captured as follows:

"By now we are beginning to realize that one of the most in-
tractable problems is the problem of defining the problem and of
locating the problem." (Rittel and Webber, 1973)

"There are no optimal solutions for wicked problems. There are
only "satisficing" solutions—you stop when you have a solution
that is "good enough"." (Simon, 1969)

2
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Given these disclaimers, our paper attempts a more narrow task of establish-
ing a modeling framework which could help pose the problem of providing
future electric energy services more systematically so that it lends itself to in-
novation at value. This can only be done in systems whose initial complexity
is truly overwhelming by establishing a relatively simple approach which is
based on concepts common across different communities. Thanks to my affil-
iation with some of the friends outside my own community (Marrian Jelinek,
Rolf Kunekke and John Groenewegen), I stumbled across thinking by Elinor
Ostrom and many in her field. The following quote states the basic idea that
has given me the encouragement to begin to relate what we do in engineering
and the view by these industry economists.

"Considerable theoretical and empirical research suggests that
adaptive management of social-ecological systems requires net-
works that combine dense local informational flows with effec-
tive connections across groups and scales to foster the combi-
nation of local knowledge, cross-scale coordination, and social
learning." (Ostrom, 2009)

This view taught me that in order to begin to relate our engineering inno-
vations to the solutions needed by the society, we should perhaps begin to
think about our physical engineering systems as multi-layered dynamical sys-
tems comprising intra- and inter-layers of very diverse components with lo-
cal functional sub-objectives, and their dynamic interactions. This idea be-
came a turning point for me as the connections with my own domain-specific
systems-based research begun to emerge. My work with associates, notably
my graduate students, over many years took another dimension in my mind.
I concluded that if we rethink the engineering side of evolving electric power
systems, including electricity markets, it quickly becomes clear that one must
align functional objectives and technological solutions within a given gover-
nance environment. However, for this to be systematic, currently used phys-
ical models in electric power systems engineering must be transformed into
models which are multi-layered themselves so that the functional objectives
and technological solutions are aligned. After many years of thinking about
this, and discussing it with my affiliates, I decided to formalize this unifying
view in this paper as a possible framework for moving forward. The basic
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idea is to think of these multi-layered complex systems in terms of dynam-
ical interactions between components belonging to layers, and in terms of
dynamical interactions between the layers. The novel modeling proposed is
a transformed state space for representing complex dynamics as a combina-
tion of internal dynamics specific to subsystems within the system layers and
the interaction variables capturing the inter-dependencies between the sub-
systems. It turns out that the notion of interactions is well understood across
disciplines by the engineers, economists and economists. The use of inter-
action variables makes it possible to innovate without being a true expert in
every single aspect of the problem. I decided that we can at least begin to
communicate to folks outside our own communities. What I have learned and
would like to share in this paper with the broader community is that different
communities already use notions of interaction variables, directly or indi-
rectly. For power engineers they are stored energy and power exchanged with
others; for economists these are prices associated with the same engineering
variables; and for institutional economists, notably for Elinor Ostrom, they
are means of qualitatively assessing how sustainable social-ecological sys-
tems will be. Notably, even more recent disciplines of social networks could
have interpretation of their methods using interaction variables, as we discuss
toward the end of our paper (Acemoglu et al., 2011, 2014). At the end, this
paper became the first attempt to relate these multiple uses of interaction vari-
ables for solving wicked multi-disciplinary problems in the emerging electric
energy systems.

1.1 The key role of cyber in enabling performance of SEES

Electric energy systems must become more digitized. The time has come
for this to happen as the industry is beginning to use on-line data more pro-
actively than in the past (Bennett and Highfill, 2008). The field of network
cyber-physical systems (Net-CPS) is quickly emerging (Sztipanovits et al.,
2012; Yang et al., 2013). However, here again, one must fully understand the
role of cyber and the ways to embed it into physical system at value. Shown
in Figure 1.1 is a sketch showing inter-dependencies between the functional
objectives of an SEES, and its physical grid design and its cyber. In today’s
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electric power systems integration of new resources and users does not sys-
tematically assess the role of CPS. However, by now there is sufficient evi-
dence in particular sub-problems that it is possible to offset extensive invest-
ments in grid infrastructures by relying on data-driven decisions. It is also
possible to enhance performance of the existing system by embedding right
cyber. Keeping this evidence in mind and major moves toward "smart" grids,
we must proceed with caution here as well. It is easy to run into different
type of complexity when over-relying on cyber unless one fully understands
the purpose of sensing, communications and control deployed. The following
challenge was recently presented to the academic community in this context:

"The systems most fitted for a purpose are those where the num-
ber of bits transferred between subsystems in achieving that pur-
pose is minimised." David Hirst, consultant UK, August 2016.

This is, as I understand it, a pledge on behalf of many practitioners in the
industry for avoiding cyber design complexity. The concern is well taken
and one way forward is to have models and functional objectives defined
keeping in mind multi-layered structure of an SEES for which cyber is be-
ing designed. As the first step, one must rethink electric power systems using
well-understood taxonomies of dynamical systems and control. This paper is
truly motivated by this need for modeling emerging electric energy systems
as complex dynamical systems whose structure helps design effective cyber.
Major part of the paper is devoted to rethinking models and their structures,
and underlying assumptions in support of manageable analysis and cyber de-
sign.

Once this is done, we tackle the hidden theoretical problems created
by non-convexity and non-linearities of models used. We propose the con-
cept of "inner convexification" when designing cyber for provable perfor-
mance in otherwise highly non-convex cyber design complex network prob-
lem (Caliskan and Tabuada, 2014; Ortega et al., 2013; Robinett and Wilson,
2010). Going back to the transformed state space, the inner convexification
problem becomes the problem of designing local controllers so that speci-
fications on interaction variables are met (Baros and Ili¢, 2014; Ili¢, 2011).
Moreover, instead of asking for excessive control in each component the per-
formance specifications are set for groups of collaborating components; we
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Cyber/
Hardware
Technologies

Physical
Grid

Functional
Objectives

Figure 1.1: SEES inter-dependencies with cyber and physical grid design.

refer to these as the for intelligent Balancing Authorities (iBAs). The coordi-
nation problem becomes more straightforward, but the burden is on design-
ing "smart" sensors and controllers at the iBA levels. We point out a long-
standing open problem of directly controlling power generated/consumed by
the local controllers which is key to implementing cyber for provable perfor-
mance in electric energy systems. We suggest that major recent progress in
theoretical nonlinear control design lends itself well to solving this major do-
main application problem (Caliskan and Tabuada, 2014; Ortega et al., 2013;
van der Schaft and Jeltsema, 2014; Robinett and Wilson, 2011). Potential of
utilizing this recent work in general dynamical systems for purposes of de-
signing provable control for complex electric energy systems of an arbitrary
architecture is discussed.

We contrast this idea of inner convexification with the efforts for con-
vexifying system-level coordination problems presented by the nonlinearities
of iBAs and components themselves (Low, 2014; Lavaei and Low, 2012).
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An outstanding research problem concerns trade off between these two ap-
proaches. Here, again, no single solution fits all. Hotly debated issues about
distributed vs. centralized control are briefly discussed and illustrated in this
light. To return to David Hirst’s quote above, one could transfer minimum bits
(in other words make it almost fully distributed, along the lines of homeostatic
control envisioned long ago by Fred Schweppe) (Schweppe et al., 1980), but
this should not be a prescription for all SEES. Outer convexification ideas for
coordinating power scheduling of otherwise nonlinear dynamic iBAs may
lend itself better to some architectures and not to others. Herb Simon’s quote
on the impracticality of seeking perfect solution must be taken quite seriously
as well.

At the end, our modeling framework helps design next generation physi-
cal grids and SCADA as a means of making electric energy systems sustain-
able and resilient. Based on modeling used, it is clear that SCADA must be
enhanced to attempt specifications for desired solutions, including long over-
due use of information from the system users themselves and not just from the
system coordinators. This has led us to proposing Dynamic Monitoring and
Decision Systems (DyMonDS) framework in support of this multi-directional
multi-layered information exchange for next generation SCADA (Ili¢, 2011).
Notably, the same modeling framework can be used for designing man-made
physical grids and their cyber for qualitatively different social-ecological en-
ergy systems (SEES). The new field of cyber-physical systems could fall real
short unless one understands the objectives of cyber design given the physi-
cal structures to the level of detail needed but no more. We explain how the
proposed unified modeling helps with this.

1.2 Major observations

Our proposed modeling and design principles needed to support sustainable
and resilient electric energy services in the future in an environment where
everything seems to be a moving target are a natural outgrowth of today’s
hierarchical control (Ili¢ and Liu, 2012; Ili¢ and Zaborszky, 2000). We
have found it tremendously intriguing in our own research to go from this
mathematical modeling approach and identify often hidden and implied
assumptions made in today’s operations. Once we know how to do this
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systematically, we can evolve technological solutions (physical and cyber)
which gradually relax these assumptions where the value is the highest. To
paraphrase former CEO of PJM, Terrence Boston, there is no way we can
restart software solutions in today’s energy management systems because
the investments and best industry practices have been very costly; estimated
cost of software related efforts in has been of the order of $ 800 M so
far. The challenge is how to build on what already exists in the man-made
side of electric energy systems. This paper wrote is about this challenge,
and it is work in progress. I describe open problems whenever possible
throughout the paper. Perhaps the most intellectually intriguing open area
to me is further work on the relations of the proposed transformed state
space and bond graph theory (Borutzky, 2010), nonlinear control design to
shape systems into Hamiltonian closed-loop systems (Robinett and Wilson,
2011; Ortega et al., 2013; Garcia-Canseco et al., 2010). While the relations
in small two-component systems are straightforward to illustrate, scalability
in bond graph representations has not been studied. Many open questions
remain considering physical realizations of nonlinear controllers which
meet specifications in bond graphs. Further formalization of the proposed
transformed state space as bond graph version of multi-layering for large
dynamical systems would be interesting and important. If this is understood,
the indirect links with Dirac structures and more formal computer science
languages becomes possible (Duindam et al., 2009). While these theoretical
formalizations are beyond the objectives of our paper, we do illustrate the use
of transformed state space for scalable modeling, control and simulations in
the domain application of electric energy systems. The simulation platform
for our Smart Grid in a Room Simulator (SGRS) utilizes the proposed mod-
eling framework and can be used by the broader community to demonstrate
concepts described in this paper (Wagner et al., 2015).

1.3 Paper organization

It has been broadly recognized that there exist tremendous challenges and op-
portunities on the way to modernizing operations of electric power systems.
Changes are necessary to enable integration of many new technologies into
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existing electric power grids, as well as for better on-line utilization of the ex-
isting system. Today’s industry practice does not readily lend itself to sustain-
able and resilient integration of new technologies. It also falls short of relying
on data-driven utilization of the existing system according to well-defined op-
erating protocols. In particular, connecting new equipment whose effects are
not well-understood by the power system operators is not straightforward.
Much innovation in on-line sensing, monitoring, predicting, decision making
and automation methods is required for this to become possible. Perhaps the
biggest challenge is the problem of abstracting the cyber design problems to
the level necessary so that effective methods can be embedded with a clear
understanding of their role within this very complex dynamical system. While
much progress has been made in designing new hardware technologies their
integration represents major challenge and roadblock. Also, recent progress
has been made in proposing problem-specific and technology-specific control
and optimization methods. Understanding the role of these solutions at value
within an end-to-end energy system is the major remaining challenge.

The intent of this paper is to introduce technology-agnostic unified mod-
eling foundations and to illustrate their use toward end-to-end cyber design
for provable performance of complex electric energy systems. We start in
Chapter 2 by recognizing that it would be real short-sighted to think of cyber
design for the emerging electric energy system as a solely technical prob-
lem. Instead, we take a broader look at the objectives of deploying cyber into
these physical systems in light of viewing them as general social-ecological
systems (SES). We highlight that in the approach taken by Elinor Ostrom key
metrics for assessing sustainability of any SES concern interactions between
different system members. A basic sketch of a SES is used to illustrate how
governance and regulatory/organizational rules set the stage for defining fea-
sible cyber architectures. The new institutional (governance) design problem
becomes the choice of different institutional designs which will have qual-
itatively different impacts. Options include: (a) Fully regulated monopolies
and centralized planning and operations; (b) Complete, carefully designed
markets; (c) Common set of interface standards and protocols; and, (d) Com-
mon regulator (Federal) level and/or lose cooperation of distributed State and
Sub-State regulators. We suggest that cyber design for these vastly different
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institutional architectures should be based on common principles. However,
the resulting cyber solutions are different, as described in the paper.

Next, we describe the electric power grid architectures which are rapidly
transforming as renewable resources are being connected closer to the end
users supported by organizational and technological drivers. In Chapter 3 we
summarize these technological, societal and organizational changes. In Chap-
ter 4 we describe the implications of these changes on the emerging archi-
tectures. In Section 4.4 general Dynamic Monitoring and Decision Systems
(DyMonDS) framework is introduced for abstracting the basic cyber design
problem which needs to be solved when adding "smarts" into the physical
electric power grid. This framework is effectively a next generation Super-
visory Control and Data Acquisition (SCADA) system enabled by advanced
on-line sensing, monitoring, communication, decision-making and automa-
tion for the changing electric energy systems. It is explained why design-
ing SCADA architecture for non-standardized physical system architectures
represents a major challenge. This problem is made even harder by the fact
that today’s state-of-the-art modeling of electric power system dynamics has
evolved under many strong assumptions many of which no longer hold, as de-
scribed later in this paper. In Section 4.5 we tackle the key question regarding
the information exchange needed to design DyMonDS and next generation
SCADA so that provable performance becomes possible. We point out that a
framework is needed for setting functional specifications across all industry
layers to enable orderly industry unbundling. To arrive at such information
exchange basis, we ask a long-overdue question regarding the existence of
possible unified modeling approach for electric power systems which lends
itself to a multi-layered representation of a complex dynamical system com-
prising different groups of components with their own performance goals in-
teracting with other groups of components. We arrive at this answer in several
steps.

First, in Chapter 5 we describe how each physical component can be rep-
resented as a dynamic component using standard state space formulation.
The interconnection of dynamical components is modeled keeping in mind
the ultimate need of viewing the problem as a multi-layered dynamic prob-
lem. This implies that when modeling the interconnected system a differenti-
ation between internal states and port variables can be made which makes the
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structure of physical dynamics quite clear. The most powerful modeling and
simulation approaches of multi-physics systems, such as Modelica and Dy-
mola (Fritzson, 2010; Zauner et al., 2007), are fundamentally based on this
approach. We briefly summarize a recently proposed approach to automated
modeling specific to electric power systems (Bachovchin and 1li¢, 2015). This
is quite important for the purposes of lifting the very modeling of technology-
specific and purpose-specific power grids to the process of automated, even
symbolic, modeling. We observe that, no matter which way one arrives at
these physical models, the port variables on the boundaries of components are
modeled in the voltage-current (v — 7) space because of the requirement that
the interconnected components obey two basic Kirchhoff voltage and current
laws. Appendix A.1 provides example state-space models of a few represen-
tative electric power system components. We use without loss of generality a
small microgrid system to illustrate the inherent structure of models in stan-
dard state space form for the interconnected electric power systems. We point
out that it is this structure which sets the basis for distributed control in these
systems.

Second, in Chapter 6 we make the case for introducing a transformed
state space modeling in order to enable multi-granular representation of very
complex large-scale electric energy systems. The basic idea is the one of
modeling interactions between components within a subsystem, or interac-
tions between sub-systems within a large interconnecting system in terms of
their net effects, instead of by representing each component in full detail. We
propose that each module (stand-alone component, balancing authority (BA),
intelligent Balancing Authority (iBA)) can be modeled as a combination of
its internal states and the interaction variable which represents net stored in-
cremental energy of the component and its rate of exchange (power) with the
rest of the system. We derive models of stand-alone modules, and models of
dynamical interactions of modules within an interconnected layer. Existence
of such interaction variable is a result of most general conservation of power
law, and, as such, it is applicable to any type of system modules (Penfield
et al., 1970). Illustrations of models for representative electric power system
components in this transformed state space are provided in Appendix A.7.
While in this section a transformed state space is introduced for reasons of
managing complexity brought about by the sheer complexity of very large
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number of diverse components, it is pointed out that this model helps un-
derstand causes and effects in terms of power production, delivery and con-
sumption in its most natural way. This is done without having to understand
the specifics of technologies embedded within the modules.

Third, in Chapter 7 we move on to defining general functional objectives
of a complex electric energy system as a complex dynamic optimization prob-
lem. The performance objective (cost) of this optimization is expressed in
terms of interaction variables and control. The equality constraints are com-
plex dynamical models representing natural response of physical system. The
inequality constraints are output variables associated with all components,
which are needed to both account for safety constraints and for quality of ser-
vice (QoS) required. Finally, the optimization is subject to physical control
limits. To start with, this formulation is a benchmark optimal control for-
mulation and, as such, it does not have pre-defined references for tracking
output and interaction variables of interest. These are result of optimization.
We also point out that it is generally necessary to differentiate between inter-
action variables and output variables associated with specific modules. If this
is not done, many hidden assumptions in today’s industry practices cannot be
identified.

Next, in Chapter 8 we explain why the general benchmark optimal con-
trol problem is highly impractical to implement. Instead, a composite control
based on temporal separation of disturbances driving power system dynam-
ics is formalized as the basis for hierarchical control design at provable per-
formance. Sub-objectives of primary, secondary and tertiary controllers are
posed as separable optimization objectives which are integrated using system-
atic information exchange between these layers. Key observations are pro-
vided with regard to conditions under which such composite control would
have provable performance. One of the key requirements concerns the ability
of primary controllers to stabilize relevant output variables to their reference
values given at the slower rate by the higher layer controllers. In Section 8.6
we review current state-of-the-art for primary control in electric energy sys-
tems and highlight typical assumptions made. Appendices A.10 and A.11
describe closed-loop modeling of representative power system components
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and point out the assumptions made. Notably, it becomes possible to de-
sign primary controllers capable of meeting specifications in terms of inter-
action variables using state-of-the-art energy-based nonlinear control design
(Ili¢, 2017). In Chapter 9 today’s hierarchical control for a bulk power sys-
tem (BPS) is summarized and explicit assumptions typically made are high-
lighted. These assumptions are no longer valid in some new SEES architec-
tures, such as microgrids (Ili¢, 2017).

The remaining material in this paper represents a qualitatively different
approach to supporting evolution and operations of the emerging electric en-
ergy systems. In Chapter 10 a multi-layered distributed control with minimal
coordination is proposed. This approach is not critically dependent on tem-
poral separation of primary, secondary and tertiary controller sub-objectives
required for composite control-based hierarchical control. Instead, distributed
optimization is embedded into modules of the complex system and distributed
model-predictive control (MPC) is carried out to create specifications regard-
ing sensitivities of cost functions with respect to their own interaction vari-
ables. This information is provided to the iBAs responsible for meeting per-
formance of components cooperating under the same iBA. At higher layers
iBAs interact either multi-laterally or with the higher-layer iBAs within a gen-
eral architecture shown in Figure 1.2. General underlying principles are stated
for such distributed control to meet technical performance specifications. The
problem effectively becomes the one of plug-and-play approach to complex
systems (Doyle and Carlson, 2002). In Chapter 10 a general multi-layered
decision making problem formulation using the proposed transformed state
space is stated. It is claimed that in any given particular architecture dual vari-
ables associated with the dynamic constraints on physical interaction vari-
ables form sufficient information exchange basis. They are sensitivities of
cost functions used by any iBA within the given architecture with respect
to physical interaction variables. As such, they provide economic incentives
which reflect the value of interaction variable between any iBA and the rest of
the system. Once this is understood it becomes straightforward to define what
must be exchanged in electricity markets, and one can interpret distributed
bidding and market clearing using the higher-level interaction models only. In
this sense electricity markets could and should become technology-agnostic.
Using this approach it becomes possible to design protocols/standards for
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-SBA: Smart Balancing
Authorities
(Generalization of
Control Area)

-IR: Inter-Region

-R: Region

-T: Tertiary

-D: Distribution

-S: Smart Component

Figure 1.2: Nested hierarchies in the emerging electric energy systems.

cyber design to enable robust/resilient system operation over broad ranges of
operating conditions and equipment status. These standards and protocols de-
fine information that should be exchanged in the next generation SCADA for
the electricity services to be provided at value. The proposed unified multi-
layered modeling has been used to design a computer platform for scalable
simulation of smart grids named Smart Grid in a Room Simulator (SGRS)
(Wagner et al., 2015). As such it sets the basis for simulating electricity mar-
kets, and their effects on physical system response.

In the closing Chapter 11 it is concluded that the proposed transformed
state space provides a necessary level of abstraction for posing cyber design
in future electric energy systems by accounting for their physical, economic
and social governance objectives in a systematic manner. Notably, we illus-
trate how such modeling opens the opportunities for systematic cyber design
with well understood rationale for the type and rate of information exchange
required between modules within a multi-layered dynamical system. Several
key open questions and next steps are suggested.
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