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ABSTRACT

Rotor angle stability refers to the ability of synchronous
machines in a power system to remain in synchronism after
a disturbance. It is one of the basic requirements for secure
operation of electric power systems. Traditional analysis
methods for rotor angle stability are oriented to node dy-
namics, especially the impact of generator modeling and
parameters, while power network parameters are simply
treated as some coefficients in the system dynamical models.
Thanks to the progress on graph theory and network science,
there is an emerging trend of investigating the connections
between power network structures and system dynamic be-
haviors. This monograph surveys the network-based results
on rotor angle stability in both early and recent years, where
the role of power network structure is elaborated. It reveals
that rotor angle dynamics essentially link to some graph
quantities (e.g., Laplacian matrix, cutset, effective resistance)
defined over the underlying power network structure. New
theories for angle stability are developed using advanced
graph theory tools tailored for power networks. These results
provide novel solutions to some important problems that
have not been well addressed in the traditional node-based

Yue Song, David J. Hill and Tao Liu (2020), “Network-Based Analysis of Rotor
Angle Stability of Power Systems”, Foundations and Trends® in Electric Energy
Systems: Vol. 4, No. 3, pp 222–345. DOI: 10.1561/3100000011.

Full text available at: http://dx.doi.org/10.1561/3100000011



2

studies, such as the impact of those lines with large angle
differences on stability, cutset vulnerability assessment and
convexification of stability constrained optimal power flow.
The purpose of this monograph is to establish a network-
based paradigm that sheds new light on the mechanism of
angle stability under small and large disturbances.
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1
Introduction

Electric power systems are a critical infrastructure in modern so-
ciety, where the users (loads) get electricity supply from generators
via the power transfer over the underlying power network. Rotor an-
gle stability is an issue of fundamental importance to power system
planning, operation and control. Conventionally, the studies of rotor
angle stability problems are oriented to the role of node-side factors, by
mainly considering the generator models. Following motivation from
the subject of complex dynamical networks, this monograph introduces
a network-based paradigm for angle stability analysis that focuses on
the role of power network structure.

1.1 Concept of Rotor Angle Stability

Let us begin by recalling the definition and classification of power
system stability. Power system stability refers to the ability of an electric
power system to regain a state of operating equilibrium point after being
subjected to a disturbance (Kundur et al., 2004). As shown in Fig. 1.1,
it can be further classified into angle stability, voltage stability and
frequency stability according to the main system variables in which
instability can be observed.

3
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4 Introduction

As the focus of this monograph, rotor angle stability refers to the
ability of synchronous machines (mainly synchronous generators) to
remain in synchronism after being subjected to a disturbance (Kundur
et al., 2004). Angle stability is a short-term issue mainly concerning
generator swing dynamics. The time frame of interest in the studies
of angle stability is usually 3 to 20 seconds following the disturbance
(Kundur et al., 2004). By the nature of disturbances, angle stability
can be further classified into small-disturbance angle stability and
transient stability. The term “transient stability” is equivalent to “large-
disturbance angle stability”, but the former term is more commonly
used in the power systems community. The rotor angle dynamics are
nonlinear, e.g., see (1.1) in the following. The linearized system models
are applicable to the study of small-disturbance angle stability since it
relates to the system behavior following sufficiently small disturbances
at an equilibrium point. In contrast, the nonlinearity must be taken into
account for transient stability problems since the system states may
severely deviate from the equilibrium point or the equilibrium point
may be changed after large disturbances.

Power System 

Stability

Rotor Angle 

Stability

Frequency 

Stability

Voltage 

Stability

Small-

Disturbance 

Angle Stability

Transient 

Stability

Short Term

Small-

Disturbance 

Voltage  Stability

Large-

Disturbance 

Voltage  Stability

Short Term Long Term

Short Term Long Term

Figure 1.1: Classification of power system stability (Kundur et al., 2004).

Rotor angle stability depends on whether each synchronous generator
can maintain or restore the equilibrium between its electromagnetic
torque and mechanical torque during the post-fault electromechanical
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1.1. Concept of Rotor Angle Stability 5

oscillations. At the pre-fault steady state, the system operates at an
equilibrium point where all generators get their electromagnetic torques
balanced with mechanical torques and the rotor speeds of all generators
remain constants. When the system is disturbed, this balance is broken
and generator rotors start to accelerate or decelerate according to
the law of motion. The well-known swing equation captures the most
fundamental characteristics of rotor dynamics (Kundur, 1994). Here
we use the following version of dynamical model designed to preserve
network structure (Bergen and Hill, 1981)

Miθ̈i +Diθ̇i = Pi −
∑
j∈Ni

|Vi||Vj |Bij sin(θi − θj), i ∈ VG

Diθ̇i = Pi −
∑
j∈Ni

|Vi||Vj |Bij sin(θi − θj), i ∈ VL
(1.1)

where VG,VL denote the set of generator buses and load buses; θi, θ̇i, |Vi|
respectively denote the rotor angle, angular frequency (a representation
of rotor speed) and voltage magnitude of bus i;Mi and Di represent the
moment of inertia of a generator and frequency coefficient; Pi represents
the node power injection; j ∈ Ni means bus i and bus j are directly
connected by a transmission line; and Bij represents the line coupling
strength between bus i and bus j. A detailed explanation of these
notations and derivation of (1.1) will be given in Chapter 2.

From (1.1) we observe that the rotor acceleration (or deceleration) of
generator i will be restrained by the consequent increment (or decrement)
in the term |Vi||Vj |Bij sin(θi − θj), which helps the system to regain a
state of equilibrium if the disturbance is not sufficiently severe. However,
this restorative effect is rather limited since |Vi||Vj |Bij sin(θi − θj) has
a bounded value. If the disturbance pushes the system state beyond
a certain limit, the system will become unstable as some generators
continue to accelerate or decelerate their rotor speeds and eventually
lose synchronism with other generators. Although it is not hard to have
an apparent understanding of angle stability from the above discussion,
the exact mechanism is highly complex due to the nonlinear system
behavior.

Full text available at: http://dx.doi.org/10.1561/3100000011



6 Introduction

1.2 Traditional Analysis Methods for Rotor Angle Stability

There are two mainstream methods for rotor angle stability assess-
ment: time domain simulation and the so-called direct method. Time
domain simulation applies to much higher-order models than (1.1) that
contain more details of the generators and loads. It gives a compre-
hensive description of the system response curves during the pre-fault,
fault-on and post-fault periods. Nevertheless, time domain simulation
has been criticized for being computationally demanding and incapable
of providing the mechanism of stability. On the other hand, the direct
method, as inferred from its name, can assess stability without simulat-
ing the post-fault dynamics. The direct method is based on the energy
functions (or Lyapunov functions) for power system models. Although
the direct method usually considers simpler system models than time
domain simulation, it is able to not only judge stability but also give
an estimation of the stability region. Unlike those numerical techniques
for stability region estimation such as the normal form analysis (Saha
et al., 1997) and reachable set computation (Jin et al., 2005; Althoff
and Krogh, 2014; El-Guindy et al., 2017), the direct method provides
an energy-based explanation to the mechanism of stability and facili-
tates the countermeasures for preventing instability. In the following we
briefly review those aspects of the energy functions and direct methods
that are more related to the theory-oriented theme of this monograph.

In general, an energy function for a power system is the sum of
energies contained in system components including generators, loads,
transmission lines and possibly other devices. The first energy func-
tion used for multi-machine transient stability analysis dates back to
Magnusson (1947) in 1940s, which is derived from a network reduced
model of power systems. Since the 1980s, structure preserving energy
functions have emerged with the establishment of power system struc-
ture preserving models, e.g., the Bergen-Hill model (1.1). The early
versions of energy functions consider the energies from classic second-
order generators, constant-power loads and transmission lines. So far
the energy functions have been developed into a big family considering
more detailed description of system components, such as generator
flux decay (Tsolas et al., 1985; Bergen et al., 1986), automatic voltage
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1.2. Traditional Analysis Methods for Rotor Angle Stability 7

regulators (Miyagi and Bergen, 1986), voltage dependent loads and
reactive powers (Narasimhamurthi and Musavi, 1984; Hiskens and Hill,
1989). Extensive reviews of energy functions for various power system
models are presented in, e.g., Pai (1981), Pai (1989) and Padiyar (2013).
Normally the energy functions are constructed by directly taking the
physical parameters of generators, loads and lines as the coefficients for
the respective energy terms. Some recent works have attempted to tune
the energy function expression by optimization techniques including
sum-of-squares programming and and semi-definite programming (e.g.,
see Anghel et al. (2013), Han et al. (2016), and Vu and Turitsyn (2016)).

With the energy function, the direct method checks stability by
comparing the system energy with a threshold value called the critical
energy. A power system has zero energy at the pre-fault equilibrium
and growing energy during the fault-on period. If the energy at the
time of fault clearance is less than the critical energy, then the state
variable lies in the stability region, i.e., the post-fault system will be
stable. Also the difference between the two energy values gives a measure
of stability margin. Various ways for determining the critical energy
have been developed mainly based on the geometry of the stability
region, including the closest unstable equilibrium point (UEP) method
(Prabhakara and El-Abiad, 1975; Chiang and Thorp, 1987), potential
energy boundary surface (PEBS) method (Kakimoto et al., 1984; Chiang
et al., 1988), controlling UEP method (Athay et al., 1979; Chiang et al.,
1987; Fouad and Vittal, 1991) and boundary of stability region-based
controlling UEP (BCU) method (Chiang et al., 1994; Chiang and Chu,
1995). Readers can refer to Chiang (2011) for a comprehensive summary
of those methods. Moreover, the extended equal area criterion (EEAC)
gives another viewpoint for critical energy evaluation (Xue et al., 1988;
Xue et al., 1989; Belhomme et al., 1993). Via projection analysis of
all post-fault trajectories, it simplifies a generic power system into an
equivalent one-machine-infinite-bus system so that the critical energy is
given by the classic concept of “deceleration area”.

Overall, most research on angle stability have been oriented to the
influence of node-side factors, especially the modeling and parameters
of synchronous generators. For instance, many efforts have been put
into including more detailed generator dynamics into energy functions

Full text available at: http://dx.doi.org/10.1561/3100000011



8 Introduction

(Padiyar, 2013) or quantifying the impact of generator parameters by
sensitivity methods (e.g., see Nguyen and Pai (2003), Yuan and Fang
(2009), Hou and Vittal (2013), Sharma et al. (2018), and Mishra et al.
(2020)). This is probably due to the fact that rotor angle stability is
conceptually linked to generator behaviors. On the other hand, the
influence of power network structure in stability has been paid much
less attention. Power network parameters (e.g., Bij in (1.1)) are simply
taken as some coefficients in the system models. Although some early
works made an attempt to figure out the role of network structure
(Bergen and Hill, 1981; Hill and Bergen, 1982; Chandrashekhar and
Hill, 1983), the lack of advanced graph theory tools prevented a further
development.

1.3 Motivation of Network-Based Stability Analysis

Network-based stability analysis is motivated by revisiting power
systems as dynamical networks (Hill and Chen, 2006). As background
knowledge, we introduce below some basics of dynamical networks
which has been a hot topic in the control systems community with much
attention paid to network structural features. Consider a dynamical
network with n coupled nodes (also called agents), the mathematical
model of which is given by

ẋi = fi(xi) +
∑
j∈Ni

aij(xj − xi), i = 1, 2, ..., n (1.2)

where xi denotes the state of node i and j ∈ Ni means node i gets
information from node j. The state of each node in the dynamical
network evolves according to its local dynamics described by fi(xi)
and interaction with other nodes described by the underlying physical
or communication network. Note that the node state can be a multi-
dimension vector in generic dynamical network models (Strogatz, 2001).
Here we use the simplified model (1.2) with scalar node states just for
the convenience of illustration. System (1.2) can be rewritten into the
compact form

ẋ = f(x)−LGx (1.3)

Full text available at: http://dx.doi.org/10.1561/3100000011



1.3. Motivation of Network-Based Stability Analysis 9

where the vector x collects all node states, the function vector f(·)
collects all functions fi(·), and LG is the graph Laplacian matrix de-
scribing the underlying physical or communication network (a detailed
definition of which will be given in Chapter 3).

A major concern for dynamical networks is to determine the condi-
tions for reaching a synchronization or consensus, i.e.,

lim
t→∞

x1(t) = lim
t→∞

x2(t) = · · · = lim
t→∞

xn(t). (1.4)

In case of identical nodes (i.e., all functions fi(·) take the same ex-
pression), a well-known criterion (Wang and Chen, 2002; Wang and
Chen, 2003) says that system (1.2) reaches a consensus if λ2(LG) ≥ d,
where λ2(LG) is the algebraic connectivity of the corresponding graph
(i.e., the second smallest eigenvalue of the Laplacian matrix) and d is a
constant determined by function fi(·). The synchronization conditions
for dynamical networks with non-identical nodes do not take as neat
form as the case with identical nodes. But some results still indicate that
the algebraic connectivity has a decisive effect on reaching a consensus
in dynamical networks with non-identical nodes (Zhao et al., 2010; Zhao
et al., 2011).

In addition, consider the further simplified system below

ẋ = −LGx (1.5)

which is usually called the network consensus protocol. System (1.5)
reaches a consensus if and only if the Laplacian matrix LG is positive
semi-definite (PSD) with only one zero eigenvalue (Olfati-Saber et al.,
2007). Moreover, other synchronization conditions for many variants
of (1.2) or (1.5) have been established, which all show that network
structural properties are crucial to the behavior of dynamical networks
(e.g., see Olfati-Saber and Murray (2004), Moreau (2004), Ren and
Beard (2005), Li et al. (2010), Yu et al. (2010), and Altafini (2013)).

Taking a network-based perspective, power systems are indeed a class
of nonlinear dynamical networks with network structural information
embedded into the dynamics. An example illustrating the modeling
analogy between power systems and dynamical networks is that the
small-disturbance model of (1.1) is equivalent to consensus protocol
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10 Introduction

(1.5) in an extreme case where Mi = 0 and Di = 1. Moreover, the
collective behaviors in dynamical networks, e.g., reaching a consensus,
are conceptually similar to angle stability in power systems which
requires that all generators get synchronized angular frequencies.

We now recap two facts from the above discussion:

• Network structure features play an important role in the synchro-
nization/consensus of dynamical networks;

• Power systems are analogous to dynamical networks regarding
the modeling and collective behaviors.

These facts indicate that the traditional node-based theory of power
system stability needs to be pushed further in the direction of network-
based analysis, i.e., exploiting the structural features of the underlying
power networks. Thanks to the progress in dynamical networks, it is now
possible to develop more powerful graph theory tools for power systems,
which help to deepen the understanding of power system stability by
elaborating the role of power network structure.

Following this motivation, there recently rises a trend of reinvesti-
gating stability problems with focus on power network structure. For
instance, some early works in this direction have discovered that power
system model (1.1) can be interpreted as Kuramoto oscillators (a com-
mon class of dynamical network model), where the stability conditions
in terms of power network parameters are derived based on the theory
of dynamical networks (e.g., see Dörfler and Bullo (2011b), Dörfler and
Bullo (2012), Lozano et al. (2012), and Dörfler et al. (2013)). These
results have then inspired many more studies that further reveal the rela-
tionship between power system dynamics and power network structure.
This monograph aims to establish a network-based paradigm for angle
stability analysis by surveying the authors’ results (e.g., Bergen and
Hill (1981), Chandrashekhar and Hill (1983), Song et al. (2018b), Song
et al. (2018a), and Song et al. (2019b)) as well as other contemporary
results from researchers all over the world.
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1.4. Organization of This Monograph 11

1.4 Organization of This Monograph

In the next seven chapters we introduce in turn the power system
models for angle stability analysis, new graph theories tailored for
power systems and application of those tools in small-disturbance angle
stability and transient stability problems. The contents of each chapter
are outlined below.

Chapter 2 briefly reviews the power system models adopted for angle
stability analysis and presents the structure preserving model as a basis
for the following analysis.

Chapter 3 develops some graph-based matrix conditions and extends
the definition of graph effective resistance to characterize the impact of
negative weighted edges on the graph Laplacian spectrum.

Chapter 4 develops some new characterizations for graph cutsets
and cycles.

Chapter 5 studies small-disturbance angle stability problems by
applying the graph theory developed in Chapter 3. We establish network-
based stability criteria that systematically uncover the mechanism of
small-disturbance instability induced by the lines with large angle
differences in the power network.

Chapter 6 studies transient stability problems by applying the
graph theory developed in Chapter 4. We shed light on a cutset-related
phenomenon in transient stability and improve the cutset index for
better assessing transient stability.

Chapter 7 establishes a new type of transient stability constrained
optimal power flow (TSC-OPF) model by linking transient dynamics
to the extended version of effective resistance. This TSC-OPF model
admits a convex relaxation form by applying the graph theory tools in
Chapter 3.

Chapter 8 makes some concluding remarks and a prospect for future
research directions.

For better clarity, the proofs of some important theorems will be
presented in the respective chapters, while the proofs of other results
will be omitted and referred to the corresponding publication.
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