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ABSTRACT
The power flow equations relate the power injections and
voltages in an electric power system and are therefore key
to many power system optimization and control problems.
Research efforts have developed a wide variety of relaxations
and approximations of the power flow equations with a
range of capabilities and characteristics. This monograph
surveys relaxations and approximations of the power flow
equations, with a particular emphasis on recently proposed
formulations.
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1
Introduction

The power flow equations model the relationship between voltage phasors
and power injections at nodes (buses) in an electric power system. These
equations are fundamental in the analysis and operation of power sys-
tems. Accordingly, they form the key constraints in many optimization
and control problems relevant to electric power systems, including opti-
mal power flow (OPF), unit commitment, state estimation, contingency
evaluation, voltage stability assessment, and dynamic stability analy-
sis. The power flow equations are nonlinear and result in non-convex
optimization problems. Moreover, at least some optimization problems
containing the power flow equations (e.g., OPF problems) are gener-
ally NP-Hard [1], even for systems with radial network topologies [2],
and may have multiple local solutions [3]. This inherent complexity is
immediately apparent in the simple examples presented at the end of
Chapter 2.

There exists a voluminous literature regarding the power flow equa-
tions. The intent of this monograph is to review various representations
of the power flow equations, with a particular focus on those proposed
in the last decade.

2
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3

The power flow representations in this monograph are primarily
presented in the context of optimization problems. However, note that
while optimization plays an important role in many problems relevant
to the design and operation of power systems (e.g., OPF, state esti-
mation, unit commitment, transmission switching, expansion planning,
etc. [4, 5]), various power flow representations are relevant to other
important problems (stability analyses, dynamic simulations, analysis
of control strategies such as volt/var control and automatic generation
control, etc. [6, 7]). Moreover, while much of the literature develops
power flow representations in the context of certain applications, this
monograph focuses on the power flow representations themselves rather
than specific problems. The reader interested in a specific problem or
solution algorithm is referred to the surveys and tutorials that exist for
power flow [8, 9], different formulations of optimal power flow [10–21]
(and various extensions to consider, e.g., security constraints [22–25]
and transient-stability constraints [26, 27]), unit commitment [28–31],
state estimation [32–35], transmission switching [36], infrastructure
planning [19], voltage stability analysis [37–40], cascading failure [41],
distributed optimization and control methods [42–45], complex network
theory [46], and more general power system stability concepts [6]. Sev-
eral recent references of particular relevance are the surveys in [47]
and [48] as well as the video lectures in [49], all of which review some
of the topics covered in this monograph. Also note that reference imple-
mentations for several of the power flow representations presented in
this monograph are provided in the software packages Matpower [50]
and PowerModels.jl [51].

The power flow representations surveyed in this monograph are
categorized as either relaxations or approximations. Figure 1.1 shows
conceptual examples of a relaxation and an approximation of a non-
convex feasible space. Relaxations enclose the non-convex feasible spaces
associated with the power flow equations in a larger space. The larger
space is typically chosen to be convex to enable the application of theory
and algorithms developed for convex optimization problems.

Approximations use assumptions regarding certain quantities to sim-
plify the power flow equations. Power flow approximations are capable
of closely representing system behavior when the associated assumptions

Full text available at: http://dx.doi.org/10.1561/3100000012
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Relaxation

Non-Convex
Space

(a) Convex Relaxation

Approximation

Non-Convex
Space

(b) Approximation

Figure 1.1: Conceptual illustrations showing a convex relaxation (blue region on
the left) and an approximation (red region on the right) for the gray non-convex
space.

are valid. Many power flow approximations are reasonably accurate for
“typical” operating conditions.

In general, solutions to optimization problems that use power flow
relaxations and approximations do not exactly satisfy the actual power
flow equations. Rather, relaxations and approximations are typically
employed in attempts to obtain tractable formulations which adequately
represent the actual power flow physics. Optimization problems that use
convex relaxations additionally provide bounds on the optimal objective
value for the original non-convex problem as well as sufficient conditions
for certifying problem infeasibility. Some convex relaxations also have
associated sufficient conditions which guarantee their ability to provide
global optima for certain limited classes of power system optimization
problems. Some of these sufficient conditions can be evaluated prior
to solving the relaxation based solely on the problem parameters and
network topology, while other conditions are checked after solving a
relaxation. In contrast, note that approximations do not provide any of
the aforementioned theoretical guarantees provided by relaxations.

Solutions to relaxations and approximations may not exactly satisfy
the power flow equations. This may be unacceptable for some applica-
tions, necessitating the deployment of algorithms that return a feasible
power flow solution, possibly at the cost of increased computational dif-
ficulty or the lack of theoretical guarantees. A wide variety of nonlinear
programming techniques have been applied to power system optimiza-
tion problems. Starting from specified initializations, these techniques
typically seek local optima for power system optimization problems,

Figure 1.1: Conceptual illustrations showing a convex relaxation (blue region on
the left) and an approximation (red region on the right) for the gray non-convex
space.

are valid. Many power flow approximations are reasonably accurate for
“typical” operating conditions.

In general, solutions to optimization problems that use power flow
relaxations and approximations do not exactly satisfy the actual power
flow equations. Rather, relaxations and approximations are typically
employed in attempts to obtain tractable formulations which adequately
represent the actual power flow physics. Optimization problems that use
convex relaxations additionally provide bounds on the optimal objective
value for the original non-convex problem as well as sufficient conditions
for certifying problem infeasibility. Some convex relaxations also have
associated sufficient conditions which guarantee their ability to provide
global optima for certain limited classes of power system optimization
problems. Some of these sufficient conditions can be evaluated prior
to solving the relaxation based solely on the problem parameters and
network topology, while other conditions are checked after solving a
relaxation. In contrast, note that approximations do not provide any of
the aforementioned theoretical guarantees provided by relaxations.

Solutions to relaxations and approximations may not exactly satisfy
the power flow equations. This may be unacceptable for some applica-
tions, necessitating the deployment of algorithms that return a feasible
power flow solution, possibly at the cost of increased computational dif-
ficulty or the lack of theoretical guarantees. A wide variety of nonlinear
programming techniques have been applied to power system optimiza-
tion problems. Starting from specified initializations, these techniques
typically seek local optima for power system optimization problems,
which are feasible points with objective values that are superior to all
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Decreasing
Cost

Figure 1.2: Conceptual illustration showing local optima (blue triangles) and the
global optimum (green star).

nearby points but potentially inferior to the global optimum. Figure 1.2
provides a conceptual example showing the distinction between local
and global optima. While surveying the power system optimization
literature regarding local solution techniques is largely beyond the scope
of this monograph, a brief summary of traditional nonlinear program-
ming techniques is presented in §6. The interested reader is directed to
other reviews of traditional local solution techniques, such as [13–17]
for further details. Additionally, some of the power flow representations
considered in this monograph form the basis of recently developed algo-
rithms for computing local optima or “nearly globally optimal” feasible
points. This monograph also reviews several such algorithms in §6.

The capabilities of various power flow relaxations and approxima-
tions are, in many ways, complementary rather than competitive with
the capabilities of local solution algorithms. Local solution algorithms
can benefit from the outputs resulting from power flow relaxations and
approximations (e.g., using the decision variable values and the set
of binding constraints to initialize certain local solution algorithms).
Moreover, optimization problems may combine various power flow repre-
sentations in order to balance accuracy and computational tractability.
For instance, an optimization problem may have a “base case” that uses
a detailed model of the power flow physics and multiple “scenarios” that
use simplified power flow representations for the sake of computational
tractability. As another example, an algorithm could decompose the
solution of a complicated mixed-integer nonlinear program into two
steps: first solve a mixed-integer problem with a simplified power flow
model to select values for the discrete variables, and then apply a local

Full text available at: http://dx.doi.org/10.1561/3100000012



6 Introduction

solution algorithm to the continuous optimization problem that results
from fixing the discrete variables and employing a higher-fidelity power
flow model.

The theoretical guarantees provided by relaxations also complement
the capabilities of local solution algorithms. Infeasibility of a relaxation
certifies that the original optimization problem is infeasible, but fea-
sibility of a relaxation is not sufficient to guarantee feasibility of the
original problem. Conversely, a local solution algorithm can show that
a problem is feasible, but failure of a local algorithm to converge to a
feasible point does not guarantee that the original problem is infeasible.
Thus, relaxations and local solution algorithms have complementary
capabilities with respect to the question of problem feasibility. Fur-
thermore, many global solution algorithms compute an optimality gap
by comparing the objective value bound from a relaxation with the
achievable objective value from a feasible point obtained via a local
solution algorithm. In order to provably obtain a global optimum, these
algorithms then use a variety of techniques to shrink the optimality gap.
Also note that the objective value bounds can be directly useful, for
instance, in algorithms that aim to achieve robustness with respect to
a set of possible uncertainty realizations, compute bounds on voltage
stability margins, etc. The references at the end of §7.2 provide examples
of these and other synergistic uses of various power flow representations.

The remainder of this monograph is organized as follows. Chapter 2
describes the power flow equations. Chapter 3 overviews the optimization
tools which form the basis for the power flow representations. Chapters 4
and 5 review the literature of power flow relaxations and approximations,
respectively. Chapter 6 overviews various techniques for obtaining a
feasible point, focusing on recent developments. Chapter 7 concludes
the monograph and discusses open research topics.
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