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HELM: The Holomorphic
Embedding Load-Flow Method.
Foundations and Implementations
Antonio Trias1

1Aplicaciones en Informática Avanzada; triast@aia.es

ABSTRACT

The Holomorphic Embedding Load-Flow Method (HELM)
was recently introduced as a novel technique to construc-
tively solve the power flow equations in power networks,
based on advanced concepts from complex analysis, algebraic
curves, and modern techniques in approximation theory. In
contrast to traditional methods, which rely on numerical iter-
ative schemes whose convergence is often subject to varying
degrees of uncertainty, HELM’s results are always guaran-
teed and unequivocal: if the power flow problem is feasible,
it constructs the most desirable solution; and conversely, if
the power flow problem is infeasible, it signals such condi-
tion reliably. Additionally, the significance of HELM extends
beyond its utilitarian role as a reliable power flow solver,
since the theory backing this method is proving to be a
fertile ground for the development of new analysis tools for
power systems.

This work covers the HELM method from the ground up.
It revisits its theoretical foundations in detail, stressing the
importance of some key ideas grounded in the physics of
the problem. These provide the necessary intuition for the
mathematical developments to follow; in particular, for the

Antonio Trias (2018), “HELM: The Holomorphic Embedding Load-Flow Method.
Foundations and Implementations”, Foundations and TrendsR© in Electric Energy
Systems: Vol. 3, No. 3-4, pp 140–370. DOI: 10.1561/3100000015.
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introduction of the holomorphic embedding as a way to
turn the original problem into the study of a plane alge-
braic curve, where the branches represent the power flow
solutions. This is shown to be a natural way to characterize
the multiple solutions to the problem, answering some deep
practical questions such as: in the absence of information
about dynamic stability, which of the power flow solutions is
the most desirable one for the operation of a power system?
The formulations cover both traditional ac networks and
dc networks (which are gaining importance in microgrids,
spacecraft, and electric aircraft). Special attention is paid to
the analytic continuation of power series, in particular to the
calculation of Padé approximants. It also serves to introduce
the topic of higher order rational approximants, which allow
reproducing the nose points around voltage collapse with
better numerical stability than their Padé counterparts. An
interesting by-product of this theory, Sigma plots, is shown
to be a useful graphical tool for the quick visual assessment
and diagnosis of both feasible and unfeasible cases.
Controls, such as voltage regulation by generators, are first
incorporated into the method as algebraic equality con-
straints, with no limits in the controlling variables. The
method also covers a formulation that allows for possible con-
flicts between the specified controls, solving them optimally.
Also cover how to deal with control limits, without resorting
to control type-switching approaches, presenting a novel La-
grangian formulation and using the Padé-Weierstrass (P-W)
HELM method, a special analytic continuation technique
that greatly increases the precision achievable with HELM.

IEEE Index Terms—Load flow, power system analysis comput-
ing, power system simulation, power system modeling, circuit analysis
computing, nonlinear network analysis.

AMS 2010 Mathematics Subject Classification (MSC2010):
14H50, 14H81, 30B10, 30B40, 30B70, 30E10, 94C99.
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1
Introduction

1.1 The power flow problem

Electrical power has become an essential and critical infrastructure of
modern society. The power grid has been recognized by the US National
Academy of Engineering as “the most influential engineering innovation
of the 20th century” (Constable and Somerville, 2003). The power grid
is an enormously complex network of high voltage lines, transformers,
and substations that carries bulk power over long distances, from power
generation facilities to distribution substations. But despite all its
complexity, it is remarkable that the essential behavior of the grid can
be described according to the relatively simple physical laws of electric
circuits.

The cornerstone problem of electrical power systems is the so-called
power flow (also known as load flow) study, which describes the steady-
state of the network under some given conditions. The problem equations
can be written in terms of the current balance at each bus i, as follows:∑

k

Y
(tr)
ik Vk +Y

(sh)
i Vi = S∗i

V ∗i
(1.1)

3
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4 Introduction

where Y (tr)
ik are the elements of the transmission admittance matrix,

Y
(sh)
i are shunt admittances, and Si are constant-power injections going

into the bus. The index k runs over all buses including the swing bus,
whose voltage Vsw is specified as the reference. In its most basic form,
the problem consists in solving (1.1) for the voltages Vi, for a given set
of injections Si. The terms appearing on the l.h.s. of the equation are
all linear, while the ones on the r.h.s. are constant-power injections,
which makes the problem nonlinear and multi-valued. A variation of
this problem, closer to actual practice, takes into account the so-called
PV buses, for which the voltage modulus |Vi| is kept constant by means
of a variable injection of reactive power Qi provided by some generator.
This amounts to adding new constraint equations together with their
corresponding new variables to (1.1), as it will be shown in Section 2.

This nonlinearity and multi-valuedness is already manifest in the
simplest case one can study, the two-bus model. Figure 1.1 shows
schematically this model in the ac case, and its analogous counterpart
in dc circuits. There is one bus containing a source that maintains the
voltage fixed at a reference value Vsw, independently of the amount of
current extracted (or absorbed). This bus receives the name of “swing”
or “slack”, as it provides whatever amount of power is needed to balance
the system. Since the global phase angle can be arbitrary, the angle of
the swing’s voltage Vsw can be chosen at 0, without loss of generality.
The swing is connected to the second bus by a transmission line with
lumped impedance parameter Z =R+ jX, or equivalently, admittance
Y =G+ jB= 1/Z. This bus has a specified constant-power injection S,
which will be considered negative if it is a load, and positive if it is a
generator (using the active sign convention). The power flow problem
then reduces to a single equation for the bus voltage of this bus, V :

V =Vsw + ZS∗

V ∗
(1.2)

When working with the real and imaginary parts of V , one arrives at
two equations, one of them a second degree algebraic equation. Using
the shorthand notation a≡Re(ZS∗) =XQ+RP and b≡ Im(ZS∗) =

Full text available at: http://dx.doi.org/10.1561/3100000015



1.1. The power flow problem 5

Z (tr) = R + j X 

S = P + j Q (swing bus) 
Vsw 

P 

R 
(tr)

 

Vcc 
+

- 

V 

V 

Figure 1.1: The two-bus model, in ac and dc networks.

XP −RQ, it is straightforward to find the solution1

V = 1
2Vsw±

√
1
4V

2
sw + a− b2

V 2
sw

+ j
b

Vsw
(1.3)

Analyzing this closed form expression it is possible to appreciate
two important things. First, the nonlinearity is of a very specific kind:
it is algebraic, i.e. it has its sources in an algebraic equation (of degree
2 in this case, for both ac and dc). Second, the multiplicity of solutions
can be understood in terms of the multiple solution branches of said
algebraic equation. Moreover, one observes how it is possible to have no
solution, in other words, an infeasible power flow. This corresponds to
the well-known phenomenon of voltage collapse: as the power demand
increases, the system reaches a limit to the power that can be transferred
across the transmission line, due to the effects of the voltage drop. Past

1Appendix A
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6 Introduction

P 

V 

Vcc 

Pmax 

Figure 1.2: The two solution branches and voltage collapse in a dc circuit.

the point of collapse, there is no physical solution. Figure 1.2 shows
schematically this phenomenon in dc systems. For ac systems, one has
qualitatively the same behavior, only that both quantities V and S

are complex-valued and therefore one usually depicts sections of the
multi-dimensional curve V (S), such as the well-known P-V or Q-V
curves.

The two-bus model is perhaps underappreciated, as it brings an
enormous amount of insights into the physics of the power flow problem
and its mathematical structure. This claim will get substantiated in
various places along this work; in particular Appendix A contains a
detailed analysis that reproduces most of the essential points of HELM
and the theory behind it.

Turning our attention now to the general n-bus case, it is clear
that equations (1.1) are no longer solvable in closed form; they need
to be solved numerically in one way or another. The following sections



1.2. An overview of iterative power flow methods 7

review the most commonly used numerical methods and analyzes their
shortcomings, before introducing HELM.

1.2 An overview of iterative power flow methods

The traditional approach has been to use iterative numerical methods,
of the kind one uses for general nonlinear problems, not specifically the
power flow equations. The earliest methods were based on Gauss–Seidel
(GS) iteration (Ward and Hale, 1956), which has slow convergence rates
but very low memory requirements. GS may still be used when the
other methods fail to converge starting from the flat profile, but most
other methods are based on Newton–Raphson (NR) (Tinney and Hart,
1967), which works generally better than GS because of its quadratic
convergence properties.

One of the major downsides of NR, due to the limited computing
power available at the time it was introduced, was that each step
involved the solution of a large linear system involving the Jacobian
matrix of the system. Fortunately, the matrices arising from power
systems are very sparse, which explains why power systems researchers
were early pioneers in the area of direct numerical methods for sparse
linear algebra. For instance, Tinney and Walker (Tinney and Walker,
1967) developed the first “minimum degree” reordering algorithm for
reducing the fill-in in the factorization of sparse matrices, a method
that is widely used today in sparse linear algebra (Davis, 2006).

Several improvements were developed such as the Fast Decoupled
Load Flow (FDLF) to enhance convergence and reduce execution time
which yields a good approximation in high-voltage transmission systems
(Despotovic et al., 1971; Stott, 1972). Decoupling leads to smaller
Jacobian matrices, which can be a big computational gain in large
networks. Of all the various decoupled methods based on NR, the FDLF
formulation of Stott and Alsac (Stott and Alsac, 1974) has become the
most successful and it is almost a de-facto standard in the industry,
either in its original form or in one of its variants (Amerongen, 1989).
In addition to decoupling real and reactive power, the FDLF method
factorizes the Jacobian matrix only once.

Full text available at: http://dx.doi.org/10.1561/3100000015



8 Introduction

To this day, most power flow methods used in commercial software
for large real-world networks are still based on these numerical iterative
techniques (supplemented, of course, with various additional refine-
ments). Standard textbooks on power system analysis (Grainger and
Stevenson, 1994; Kundur, 1994; Das, 2011) describe all these methods in
detail. For a recent concise review, see for instance (Gómez-Expósito and
Alvarado, 2009). Additionally, the Power Systems Engineering Research
Center (PSERC) provides an open-source tool called MATPOWER
(Zimmerman et al., 2011), which contains good quality implementa-
tions of GS, NR, and FDLF (both Stott and Alsac’s “XB” version and
Amerongen’s “BX” version).

1.3 The convergence problem of iterative methods

A common shortcoming of all these traditional methods is their unre-
liable and unpredictable convergence behavior. To a greater or lesser
degree, numerical iteration suffers from these two pitfalls: on the one
hand, there is no guarantee that the iteration will always converge, as
this depends on the choice of the initial point; on the other, since the
system has multiple solutions, it is not always possible to control which
solution it will converge to. As it is well-known, the load flow equations
have many solutions, and only one of them corresponds to the actual
operating state of the electrical system. Unless one provides a starting
point sufficiently close to the desired solution, iterative schemes may
not just fail to converge, but converge to a different one.

The root causes of these convergence problems are deep. At the
core of any method based on numerical iteration we find the idea of
a map that, when iterated, is expected to converge to a fixed point.
One seeks maps having the contraction property, which in principle
guarantees that the iteration will converge to a fixed point starting from
any point belonging to a certain (non-empty) set. Such set is called the
basin of attraction of said fixed point under the map. However, it is well
known that these basins of attraction are impossible to characterize
with precision, as their borders are fractal, in general (McDonald et al.,
1985). This problem is particularly relevant for power systems, where
the power flow equations contain multiple solutions, each with their

Full text available at: http://dx.doi.org/10.1561/3100000015



1.3. The convergence problem of iterative methods 9

own basin of attraction under the iterative scheme. Several authors
have explored this fractality problem in the context of power flow
(DeMarco and Overbye, 1988; Thorp and Naqavi, 1989; Thorp and
Naqavi, 1997; Klump and Overbye, 2000a; Mori, 2000), showing with
numerical experiments how the borders between neighboring basins
intertwine in very complex patterns, also interspersed with points that
lead to divergence. Figure 1.3 shows an example calculated on the
IEEE-300 test case, using the Newton–Raphson method. The test case
has been loaded at bus 528 in order to stress the system (i.e. bring it
closer to a voltage collapse point), and therefore reveal the fractality
problem more clearly.

While it is true that in practice the basins of attraction are usually
large enough to allow an experienced engineer to find a good initial
point, the key point to stress here is that there exists no general char-
acterization for the shape and size of those basins2. Therefore, there is
no general procedure to ensure convergence to the desired solution in a
completely unattended fashion, unsupervised by human experts. HELM
was actually born out of the need to develop new software applications
for real-time decision-support in transmission operation. There, the algo-
rithms rely on performing a massive number of exploratory power flows,
many of them corresponding to abruptly changing scenarios. These
algorithms cannot afford that a percentage of cases, however small, had
a chance of diverging or mis-converging to undesired solutions. The
same thing would happen to any sort of autonomous control, if it needed
to rely on power flow calculations.

Of course, many approaches have been developed to minimize the
chances of unpredictable behavior in iterative methods—but to our
knowledge, none of them can guarantee convergence in an automated,
unsupervised fashion. Some efforts have been made to understand
and characterize the regions of convergence (Wu, 1977), with very
limited success. Many heuristics have been devised to come up with
better starting seeds (Leonidopoulos, 1995; Klump and Overbye, 2000b;

2Specifically for Newton–Raphson, the Kantorovich theorem does in principle
provide a criteria to find out whether a given starting point will converge or not, but
this is unusable in practice as it requires computing the Lipschitz constant of the
Jacobian (at the chosen initial guess), which is highly impractical.

Full text available at: http://dx.doi.org/10.1561/3100000015



10 Introduction

Figure 1.3: Fractal basins of attraction in a stressed IEEE-300 test case (at bus
528). The area in white is the basin of attraction of the “high-voltage” solution, which
usually corresponds to the actual operating state of the network (the coordinates of
this solution are marked with a cross); the gray areas are the basin of attraction of
all other solutions, which contain one or more buses in a low-voltage state; and the
black areas are the basin of non-convergence.

Murray et al., 2013), which helps to mitigate non-convergence in some
cases. Another common mitigation strategy consists in monitoring and
limiting the size of each Newton–Raphson step, usually with some
criteria to find the best fraction of the step along the Newton direction
(see (Deuflhard, 2011); and also (Press et al., 2007), Chapter 9.7). This
is the idea behind Iwamoto and Tamura’s “optimal multiplier” method
(Iwamoto and Tamura, 1981) and its many descendants. Reference
(Schaffer and Tylavsky, 1988) provides a good review of these variants,
and (Braz et al., 2000; Tate and Overbye, 2005) provide more recent
assessments and comparisons between these methods. Note that the

Full text available at: http://dx.doi.org/10.1561/3100000015



1.4. Non-iterative methods 11

term “globally convergent”, sometimes used in relation to these step-
size changing methods, is a misnomer: there is really no guarantee of
convergence, let alone control on what solution is selected.

The methods that have the best chance of avoiding convergence
problems are those based on homotopy, also known as continuation or
path-following methods. The most commonly known is the Continuation
Power Flow (CPF) of Ajjarapu and Christy (Ajjarapu and Christy,
1992), but there are also many modern implementations; see for instance
(Mehta et al., 2016b) and the review in (Mehta et al., 2016a). These
methods are discussed in more detail later on in Section 1.6, touching
upon the similarities and differences with HELM. Continuation methods
are typically much slower, but the point here is that convergence still
remains a potential problem. And since convergence is not 100% ensured
in all cases, human supervision is still needed to assess the results
obtained.

1.4 Non-iterative methods

As evidenced above, there is a need for a direct, fully reliable load flow
method. One theoretical possibility is solving the algebraic equations
exactly, in closed form. This can be done because they are actually a set
of polynomial equations in the voltage variables, and these can be solved
using polynomial elimination techniques (resultants and Gröbner Basis)
with the help of computer algebra packages (Montes, 1998; Ning et al.,
2009; Mehta et al., 2016a). However, this has very strong limitations,
since the memory and computational costs increase exponentially (or
faster) with network size, making it impossible to get past 5 or 6
buses even with the most capable computers available today3. For the
foreseeable future, even power flows with only hundreds of buses are
out of reach for these computer-algebra approaches, unless there is a
fundamental breakthrough. There is however, great value in being able
to explore closed-form solutions for, say, 3 or 4 bus problems, as there is
a lot to be gained in terms of mathematical intuition into the interplay
of all solution branches.

3At least when using the most powerful desktop computers available as of 2018,
and computer algebra packages such as Maple.
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12 Introduction

A more interesting approach from the practical point of view is
the so-called Series Load Flow (Xu et al., 1998; Zambroni De Souza
et al., 2007), based on an earlier idea by Sauer (Sauer, 1981). This
method uses the Taylor expansion of the voltage variables as functions
of all the specified parameters of the problem (power injections, voltage
magnitudes), calculated on a point at which the solution is known.
Summation of the Taylor series then allows to extend the solution to
other scenarios, in a process that is limited by the radius of convergence
of the series. Although it was developed completely independently, the
Holomorphic Embedding method is somewhat related to these ideas,
but with one key difference: the Series Load Flow uses real variables and
therefore cannot guarantee convergence of the Taylor series in general,
for arbitrary ranges. By contrast, the Holomorphic Embedding Load
Flow is based on Complex Analysis. This seemingly minor technicality
makes an enormous difference. It is only by working in the complex field
and using the wonderful properties of algebraic curves and holomorphic
functions that the method achieves its desired properties of completeness
(i.e., give the right solution when it exists; and unambiguously signal
infeasibility when it does not). Additionally, the approach of real-valued
Taylor series does not offer any new analytic insights, other than those
very specific to the particular study case. HELM, on the other hand,
brings along a new set of tools and ideas offering new theoretical insights
into the general problem of power flow.

1.5 HELM and its significance

The Holomorphic Embedded Load Flow was first presented in (Trias,
2012), after being awarded two US patents for its industrial applications
(Trias, 2009; Trias, 2011). This method radically broke away from
the established iterative methods by employing a whole different set
of techniques. Its most defining features are that it is non-iterative,
constructive (and therefore deterministic), and provides unequivocal
results: backed by a mathematical proof, it obtains the correct solution
to the multivalued load flow problem when it is feasible), and otherwise
signals the non-existence of a solution when the problem is infeasible
(i.e., beyond a point of voltage collapse).
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The method is based on a holomorphic embedding that turns the
voltage variables into analytic functions in the complex plane. In doing
so, the power flow problem is converted from a set of algebraic equations
into a much richer structure: a problem in plane algebraic curves. This
provides a framework to study and obtain solutions using the full power
of algebraic geometry and complex analysis techniques.

HELM’s core procedure consists in the construction of the power
series of complex voltages at a well-defined reference point of the embed-
ding, where it is trivial to identify the correct branch of the multivalued
problem (the so-called “reference state”). It then uses analytic continu-
ation by means of Padé approximants to reach the objective. This last
step is backed by Stahl’s theory (Stahl, 1985a; Stahl, 1985b; Stahl, 1989;
Stahl, 1997), and it is what confers the completeness properties upon
the method: since the Padé approximants (actually, certain sequences
on the Padé table) are proven to converge to the voltage functions in
their maximal domain of analyticity, the method obtains the solution
when it exists, and signals infeasibility when it does not. Section 2
provides the rigorous details.

From a purely numerical standpoint, one can see that HELM’s
paradigm is that of Approximation Theory. In contrast to numerical
iterative schemes with unreliable and hard to characterize convergence
behavior, with HELM one constructs successive approximations, guaran-
teed to reach the desired precision if one is willing to put the necessary
effort into it (essentially: the number of terms in the series, and dealing
with finite-precision arithmetic). This is the way many special func-
tions (trigonometrics, exponential, Bessel, . . . ) are actually calculated
in pocket calculators and computers, whenever Newton–Raphson and
other fixed-point iterative schemes just do not have the convergence
guarantees to be reliable4. In this respect, probably the single most im-
portant impact of HELM is that it enables reliable, real-time, intelligent
applications. The HELM method was actually born out of the need for
a fully reliable load flow in the context of some AI-based applications
that depend critically on the ability to perform exploratory load flow

4To our knowledge, only division and the real square root are sometimes imple-
mented via Newton–Raphson, because in those elementary cases the convergence
properties are guaranteed.
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studies, with absolutely no margin for failure. The most prominent
examples are two decision-support tools, a Limits Violation Solver and
a Restoration Plan Builder, implemented successfully in an industrial-
strength EMS (AIA, 1998–2017). These tools are fully model-based
thanks to a technique well-known in the AI community: searching for
optimal paths in the state-space of the system, using the A∗ algorithm.
In this case the state-space consists of all possible electrical (steady)
states that the network can achieve, and the available SCADA actions
provide transitions between them. The algorithm also needs sophisti-
cated heuristics to guide the search efficiently, but the load flow method
needs to be 100% reliable, since it is used at each and every step of
the exploration. Of course, other real-time tools such as Contingency
Analysis, or the online calculation of PV/QV Curves also benefit from
increased reliability.

But another promising potential of the method lies in the new in-
sights it brings into the analysis of the load flow problem. The treatment
in terms of algebraic curves could prove quite powerful. For instance, it
provides a coherent framework for the characterization and computation
of all the multiple solutions to the original problem in the radial system
case (white, black, ghost solutions). Given the vast amounts of results
in the field of algebraic curves in Complex Analysis, it is reasonable to
think that HELM is just scratching the surface of what is potentially
possible. The theory of approximants (rational or other) is another
source for insights and practical results. For instance, the zeros and
poles of Padé approximants tend to accumulate on Stahl’s (minimal)
set of branch cuts of the functions V (s) (see (Baghsorkhi and Suetin,
2015; Baghsorkhi and Suetin, 2016a; Baghsorkhi and Suetin, 2016b) for
several examples). Therefore their values, or even their evolving patterns
as the approximant order increases, may be used as new indicators, in
ways that have not been fully explored yet. To sum up, one may think
of HELM theory as a new language for the analysis of an old problem.

1.6 Conceptual differences with continuation methods

The apparent similarities between HELM and continuation methods
warrant an extended discussion in order to clarify some quite important
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points. It is worthwhile to clear up this common misunderstanding as
soon as possible: the holomorphic embedding method has absolutely
nothing to do with the Continuation Power Flow (CPF) and other
homotopy-based methods. In order to fully appreciate the profound dif-
ferences that separate these, one must first understand the key concepts
behind homotopy.

Homotopic continuation (Allgower and Georg, 2003) is a broad,
general-purpose mathematical technique that addresses nonlinear prob-
lems. Homotopy-based methods are also known as “path-following”
methods. In the domain of ac power flow, homotopy is the basis for
several methods specifically devised to address convergence problems of
iterative power flows. The most widely known is the Continuation Power
Flow (CPF) (Ajjarapu and Christy, 1992; Zaborsky and Ilić, 2000),
but there are also many refined variants; see for instance the recent
review in (Mehta et al., 2016a). Homotopy is also used extensively in
the domain of electronics, for finding the dc operating point (or points)
of general nonlinear circuits (Wolf and Sanders, 1996; Trajković, 1999;
Trajković, 2012).

Like HELM, continuation methods are also based on the general idea
of the embedding technique, whereby one is able to solve the problem
at the “easy” limit of the embedding parameter (λ= 0) and then follow
this solution up to the value of the parameter where the original system
is recovered (λ= 1). However, the key difference is that homotopy only
exploits continuity and single differentiability. It is therefore a local
method, essentially. It only requires that the starting point satisfies
the conditions of the Implicit Function Theorem (i.e. no degeneracy at
λ= 0), and that no bifurcations are encountered on the path up to λ= 1.
Certain bifurcations, namely turning points of the curve with respect to
the parameter, may be overcome by switching to arc-length parametriza-
tion. In the context of finding dc operating points of nonlinear circuits,
probability-1 globally convergent continuation methods (Melville et al.,
1993; Wolf and Sanders, 1996) ensure that no bifurcations will be en-
countered (although there is no control as to what solution the homotopy
arrives at). For these curve-tracking calculations, methods use either
ODE-integration techniques or a predictor-corrector scheme, where
the corrector is based on Newton–Raphson or quasi-Newton iteration.
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Modern continuation methods are considered to be computationally
slow but robust; however, their reliance on numerical iteration may still
cause problems in practice (Zaborsky and Ilić, 2000; Roychowdhury and
Melville, 2006). The fractality problem remains, because no numerical
iterative method can guarantee the correct convergence in all possible
cases.

Related also to homotopic continuation, but coming from a very
different domain, the Homotopic Analysis Method of Liao (Liao, 1992;
Liao, 2003; Liao, 2013) does share more commonalities with HELM.
The method targets nonlinear ordinary and partial differential equa-
tions (ODE/PDE) in fluid mechanics and several other areas of applied
mathematics (Liao, 1999; Vajravelu and Van Gorder, 2013). It uses
Taylor series expansions, and it computes the coefficients by a pro-
cedure completely analogous to HELM’s N -th order representation,
transforming the nonlinear problem into an infinite sequence of linear
ones just like HELM. The method even uses Padé approximants as well,
for accelerating the sum of the power series. However, this method only
uses real analysis techniques, so the same limitations discussed about
the Series Load Flow in Section 1.4 apply here. In particular, the Padé
approximants are not guaranteed to converge, in general.

In contrast to homotopic continuation, the holomorphic embedding
technique exploits holomorphism, in other words, complex analyticity.
This is a much stronger condition than single differentiability. In fact,
holomorphism endows the method with global properties, because knowl-
edge of the power series at a given point (that is, all its derivatives) can
be used to reconstruct the function everywhere, by virtue of analytic
continuation. It should be emphasized that analytic continuation and
homotopic continuation are two different mathematical topics that have
nothing in common. Analytic continuation is a technique widely used
in complex analysis to extend the domain of a given holomorphic func-
tion. In particular, for holomorphic functions given as a power series
representation, it is typically used to extend the function beyond the
radius of convergence of the series. For a general mathematical problem,
it is not known a priori what analytic continuation technique can be
successful (other than a cumbersome re-evaluation of the power series
at a different point), or what will be the extent of the maximal domain
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to which the function can be analytically extended. But, in the context
of the power flow problem, the HELM method does provide a method
to perform analytic continuation, and moreover, it ensures that it is
maximal. This analytic continuation is provided by the sequence of
near-diagonal Padé approximants constructed from the power series,
as established by Stahl’s theorems. As a way of showing the profound
differences with homotopic continuation without delving any further
in the mathematical foundations (see Section 2 and (Trias, 2015)), a
few practical differences can be pointed out: HELM is able to directly
calculate the solution at any point along the embedded path (actually,
the complex plane), without needing any previous point. Moreover,
the calculation is carried out by a constructive procedure having a
well-characterized convergence behavior. To conclude this discussion
on the conceptual differences, a few remarks must be made on another
common misunderstanding about the holomorphic embedding method,
regarding its use of power series and “approximants”. In contrast to real
analysis, power series play a major role in complex analysis, and even
more so in the field of algebraic curves. Actually, power series are one of
the major ways of representing holomorphic functions. Far from being
an approximation, the power series is the function. And although the
power series only converges within its radius of convergence, analytic
continuation allows one to make use of the information contained in the
power series to reconstruct the function well beyond that radius. Note
that, for general holomorphic functions, there is no known procedure to
obtain the maximal analytic continuation, but herein lies the power of
Stahl’s theorem: it states that, for the class of functions HELM deals
with, the near-diagonal sequences of Padé approximants converge to
the function in their maximal logarithmic capacity domain of analytic
continuation. Therefore, the method is not limited by any convergence
issues (within the limits of finite-precision arithmetic), because the
successive Padé approximants can get as close as desired to the sought
solution—one just needs to obtain more terms of the power series. And,
as shown in Section 5, even when finite-precision arithmetic is an issue,
there is a well-defined way to avoid it.
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1.7 An outline of this work

This work is structured as follows. Section 2 focuses on the foundational
concepts and the theory on which HELM is grounded. It starts by review-
ing the HELM method centered on the core procedures. Then it goes
deep into the foundations by establishing the underlying mathematical
structure of the theory, which sits on two pillars: one algebraic-geometric;
the other, complex-analytic. The algebraic-geometric view stems from
a fundamental projective invariance of the power flow equations. This
invariance has deep, physically interpretable roots, and it is shown how
it is an essential guide for devising embeddings that ultimately allow
treating the power flow problem as essentially a study in algebraic curves.
Of course, a non-trivial technical point is that such embeddings need
to be holomorphicity-preserving (for this, the introduction of the V̂ (s)
functions plays a key role in getting rid of the complex conjugation). Al-
gebraic curves also help to shed light on the physical characterization of
the multiple solutions of the powerflow problem, showing why HELM’s
solution (the so-called white branch) is the most desirable one for the
operation of power systems. Complementing this algebraic-geometric
viewpoint, it is shown how to apply standard techniques of Complex
Analysis (power series) for practical computation of the solution. Stahl’s
theorem on the maximality of the analytic continuation provided by
Padé approximants then ensures the completeness of the method.

The treatment of controls is introduced by showing how to include
the most common kind, namely voltage control on a local bus by means
of synchronous generators (what is commonly referred to as a PV-
type bus). Here an emphasis is made on the fact that controls can be
easily incorporated into HELM as long as they can be expressed as
additional algebraic constraints for the power flow equations, in which
case holomorphicity is preserved and the problem can still be described
in terms of an algebraic curve. Of course, each new constraint brings
along one new variable into the system (e.g., the reactive injection
Qi in case of PV buses), so as to keep the balance between the total
number of equations and unknowns in the system. Since HELM somehow
converts the original system of nonlinear equations into an infinite
sequence of linear ones (in what will be referred to as the “N -th order
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representation”), the treatment of controls is an excellent opportunity
to show how linear algebra manipulations can be used to our advantage.
For instance, it is shown how PV buses can actually reduce the number
of equations and unknowns in the system, by using transformations that
simply amount to a form of Gaussian elimination. A more advanced
example of the kind of new possibilities made available in the N -th order
representation is the treatment of generalized controls, where it is shown
how to deal with conflicting controls via the singular value decomposition
(SVD). Control limits, however, need a whole different approach, and
their treatment is deferred until Section 5. The section concludes with
a discussion on how the method is extended to accommodate “smooth”
controls, such as the ubiquitous generator-controlled PV bus.

In Section 3, the method is extended from ac to fully-dc power
systems, which is of interest in the area of modern autonomous micro-
grids for terrestrial uses, spacecraft, and more-electric ship and aircraft.
Through an appropriate embedding technique, the method is shown to
extend naturally to dc power transmission systems, preserving all the
constructive and deterministic properties it has in the ac world. However,
these systems are characterized by the presence of multiple power-
electronics devices with highly nonlinear behavior, so the implementation
of HELM for some of these devices may not be entirely evident at first.
Therefore this section shows a few non-trivial examples, such as a
photovoltaic array feeding a constant-power load. The extension to the
general problem of finding dc operating points in electronics is also
discussed, and exemplified on the diode model.

Section 4 is dedicated to the topic of Padé Approximants and other
analytic continuation techniques of interest in HELM. Since this is a
quite vast and very well developed area of applied mathematics and
numerical analysis, the exposition will not try to develop any specific
numerical method for computing approximants. Instead, the discussion
will offer the most relevant references and pointers to practical implemen-
tations, typical caveats to observe, limitations, and advice for would-be
implementors. Perhaps more interestingly from the conceptual point of
view is the exposition on higher-order algebraic approximants (Padé-
Hermite), which, when viewed under the light of an osculation of the
underlying algebraic curve, can be used as reduced pseudo-equivalents.
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In particular, one class of higher-order approximants that has found
interesting practical applications is the Sigma approximant, which pro-
vides novel diagnostic capabilities in a very visual way, especially for
infeasible cases (where a non-converging iterative method would be
silent).

Section 5 covers a quite recent development in the theory of HELM:
how to deal with control limits, without resorting to control type-
switching or any other sort of “outer loop” approaches, presenting
a novel Lagrangian formulation, arguably the one that is closest to
the physics of transmission networks. The method has been termed
Padé-Weierstrass (P-W) HELM, after the special analytic continuation
technique it uses (which, as an added benefit, greatly increases the
precision achievable with HELM at nose points).

Section 6 ends with a wrap-up of this work, and points to sev-
eral possible avenues for future research in HELM and HELM-related
methods.

Some interesting topics, whose exposition is more self-contained,
have been relegated to the appendices. Appendix A is an end-to-end
application of all the theoretical concepts given in the main text to the
two-bus model. The advantage of doing so is that one can work out all
results in closed form, and gain an enormous amount of intuition that
most of the times (but not all) carries over to the n-bus case with good
fidelity. Appendix B then presents a few assorted numerical results,
starting with the rate of convergence of Padé approximants in several
cases and load/generation scenarios. Then it is shown how full precision
can be recovered thanks to the new P-W method.

In the Appendix C the convergence of the continuous fraction is
extended for complex s values. The HELM P-W method is summarized
in Appendix D and finally Appendix E presents a method (Trias, 2017a)
that allows finding all power flow solutions, by focusing on the study
of the whole algebraic curve, i.e. all of its branches. The method only
applies to networks with a very special topology, but it is remarkable
because it effectively achieves the full elimination procedure.

Throughout this work, the author has also tried to do their best
job at citing all papers from other authors on HELM and Holomorphic
Embedding-related methods. Although the subject is still young, we
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have found that there are already many quality papers published on
the subject. We have done our best to identify all these before this
manuscript went to press.
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